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Abstract. We survey several results and open problems related to syn-
chronizing automata. In particular, we discuss some recent advances to-
wards a solution of the Černý conjecture.

1 History and Motivations

Let A = 〈Q, Σ, δ〉 be a deterministic finite automaton (DFA), where Q denotes
the state set, Σ stands for the input alphabet, and δ : Q × Σ → Q is the
transition function defining an action of the letters in Σ on Q . The action
extends in a unique way to an action Q × Σ∗ → Q of the free monoid Σ∗

over Σ ; the latter action is still denoted by δ . The automaton A is called
synchronizing if there exists a word w ∈ Σ∗ whose action resets A , that is
to leave the automaton in one particular state no matter which state in Q it
started at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q . Any word w with this property
is said to be a reset word for the automaton.

Fig. 1. A synchronizing automaton

Fig. 1 shows an example of a synchroniz-
ing automaton with 4 states. The reader can
easily verify that the word ab3ab3a resets the
automaton leaving it in the state 1. With
somewhat more effort one can also check that
ab3ab3a is the shortest reset word for this
automaton. The example in Fig. 1 is due to
Černý, a Slovak computer scientist, in whose
pioneering paper (1964) the notion of a syn-
chronizing automaton explicitly appeared for
the first time. (Černý called such automata
directable. The word synchronising in this
context was probably introduced by Hennie
(1964).) Implicitly, however, this concept has
been around since the earliest days of automata theory. The very first synchro-
nizing automaton that we were able to trace back in the literature appeared in
Ashby’s classic book (1956, pp. 60–61). There Ashby presents a puzzle dealing
with taming two ghostly noises, Singing and Laughter, in a haunted mansion.
Each of the noises can be either on or off, and their behaviour depends on com-
binations of two possible actions, playing the organ or burning incense. Under
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a suitable encoding, this leads to the following automaton with 4 states and 4
input letters:

Fig. 2. Ashby’s “ghost taming” automaton

Here 00 encodes the state when both Singing and Laughter are silent, 01 stands
for the state when Singing is of but Laughter is on, etc. Similarly, a stands
for the transition that happens when neither the organ is played nor incense
is burned, b encodes the transition caused by organ-playing in the absence of
incense-burning, etc. The problem is to ensure silence, in other words, to bring
the automaton in Fig. 2 to the state 00. Ashby only solves the problem under the
assumption that the automaton is in the state 11 and his suggested solution is
encoded by the word acb . However, it is easy to check that acb is in fact a reset
word for the automaton so applying the corresponding sequence of actions will
get the house quiet from any initial configuration. It is not clear whether or not
Ashby realized this nice feature of his automaton, and moreover, the fact that
Ashby’s automaton is synchronizing seems to be overlooked for many years.

Let us return to the genesis of the concept of synchronizing automata. In
(Černý, 1964) this notion arose within the classic framework of Moore’s
“Gedanken-experiments” (1956). For Moore and his followers finite automata
served as a mathematical model of devices working in discrete mode, such as
computers or relay control systems. This leads to the following natural problem:
how can we restore control over such a device if we do not know its current
state but can observe outputs produced by the device under various actions?
Moore (1956) has shown that under certain conditions one can uniquely deter-
mine the state at which the automaton arrives after a suitable sequence of actions
(called an experiment). Moore’s experiments were adaptive, that is, each next
action was selected on the basis of the outputs caused by the previous actions.
Ginsburg (1958) considered more restricted experiments that he called uniform.
A uniform experiment1 is just a fixed sequence of actions, that is, a word over
1 After (Gill, 1961), the name homing sequence has become standard for the notion.
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the input alphabet; thus, in Ginsburg’s experiments outputs were only used for
calculating the resulting state at the end of an experiment. From this, just one
further step was needed to come to the setting in which outputs were not used
at all. It should be noted that this setting is by no means artificial—there exist
many practical situations when it is technically impossible to observe output sig-
nals. (Think of a satellite which loops around the Moon and cannot be controlled
from the Earth while “behind” the Moon.)

It is not surprising that synchronizing automata were re-invented a number
of times. First of all, the notion was very natural by itself and fitted fairly well
in what was considered as the mainstream of automata theory in the 1960s.
Second, Černý’s paper (1964) published in Slovak language remained unknown
in the English-speaking world for some time. As examples, we mention here
the report (Laemmel & Rudner, 1969) and the paper (Fischler & Tannenbaum,
1970) both rediscovering results from (Černý, 1964). The books (Booth, 1967;
Hennie, 1968; Kohavi, 1970) also present some information about synchronizing
automata but do not refer to (Černý, 1964). It seems that the situation begun
to change only in 1972 when the English translation of the book (Starke, 1969)
appeared.

The original “Gedanken-experiments” motivation for studying synchronizing
automata is still of importance, and reset words are frequently applied in model-
based testing of reactive systems2. Rather unexpectedly, an additional source of
problems related to synchronizing automata has come from robotics or, more pre-
cisely, from part handling problems in industrial automation such as part feeding,
fixturing, loading, assembly and packing. Within this framework, the concept of a
synchronizing automaton was again rediscovered in the mid-1980s by Natarajan
(1986, 1989). We explain how abstract automata arise in part handling problems
by means of a simple illustrative example from (Ananichev & Volkov, 2004).

Fig. 3. A part

Suppose that a part of a certain device has the shape
shown in Fig. 3. Such parts arrive at manufacturing sites
in boxes and they need to be sorted and oriented before
assembly. For simplicity, assume that only four initial ori-
entations of the part shown in Fig. 3 are possible, namely,
the four shown in in Fig. 4.

Fig. 4. Four possible orientations

Further, suppose that prior the assembly the part should take the “bump-left”
orientation (the second one in Fig 4). Thus, one has to construct an orienter

2 See (Cho et al, 1993; Boppana et al, 1999) as typical samples of technical contribu-
tions to the area and (Sandberg, 2005) for a recent survey.
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which action will put the part in the prescribed position independently of its
initial orientation.

Of course, there are many ways to design such an orienter but practical consid-
erations favor methods which require little or no sensing, employ simple devices,
and are as robust as possible. For our particular case, these goals can be achieved
as follows. We put parts to be oriented on a conveyer belt which takes them to
the assembly point and let the stream of the parts encounter a series of passive
obstacles placed along the belt. We need two type of obstacles: high and low. A
high obstacle should be high enough in order that any part on the belt encoun-
ters this obstacle by its rightmost low angle (we assume that the belt is moving
from left to right). Being curried by the belt, the part then is forced to turn
90◦ clockwise. A low obstacle has the same effect whenever the part is in the
“bump-dow” orientation (the first one in Fig. 4); otherwise it does not touch the
part which therefore passes by without changing the orientation.

HIGH, low

HIGH

HIGH

HIGH

low

lowlow

Fig. 5. The action of the obstacles

The scheme in Fig. 5 summarizes how the aforementioned obstacles effect the
orientation of the part. The reader immediately recognizes the synchronizing
automaton from Fig. 1. Remembering that its shortest reset word is the word
ab3ab3a , we conclude that the series of obstacles

low–HIGH–HIGH–HIGH–low–HIGH–HIGH–HIGH–low

yields the desired sensor-free orienter.
Since the 1990s synchronizing automata usage in the area of robotic manipula-

tion has grown into a prolific research direction but it is fair to say that publica-
tions in this direction deal mostly with implementation technicalities. However,
amongst them there are papers of theoretical importance such as (Eppstein,
1990; Goldberg, 1993; Chen & Ierardi, 1994).

Speculating about further possible applications of synchronizing automata,
one can think of biocomputing. Here we refer to recent experiments
(Benenson et al, 2001, 2003) in which DNA molecules have been used as both
hardware and software for finite automata of nanoscaling size. For instance,
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Benenson et al (2003) produced a “soup of automata”, that is, a solution con-
taining 3 × 1012 identical automata per μ l. All these molecular automata can
work in parallel on different inputs, thus ending up in different and unpredictable
states. In contrast to an electronic computer, one cannot reset such a system by
just pressing a button; instead, in order to synchronously bring each automaton
to its “ready-to-restart” state, one should spice the soup with (sufficiently many
copies of) a DNA molecule whose nucleotide sequence encodes a reset word.

Clearly, from the viewpoint of applications, real or yet imaginary, algorithmic
and complexity issues are of crucial importance. We discuss them in Section 2.

Putting applications aside, mathematicians since the 1960s have intensively
studied synchronizing automata per se, as an interesting combinatorial object.
These studies are mainly motivated by the Černý conjecture. Černý (1964) con-
structed for each n > 1 a synchronizing automaton Cn with n states which
shortest reset word has length (n − 1)2 (the automaton in Fig. 1 is C4 ). Soon
after that he conjectured that those automata represent the worst possible case,
that is, every synchronizing automaton with n states can be reset by a word
of length (n − 1)2 . By now this simply looking conjecture is arguably the most
longstanding open problem in the combinatorial theory of finite automata. We
will discuss the Černý conjecture and some related partial results in Section 3.

Other mathematical motivations for studying synchronizing automata come
from semigroup theory (see Ananichev & Volkov, 2004), multiple-valued logic
and symbolic dynamics (see Mateescu & Salomaa, 1999). The latter connection
is especially interesting in view of a recent breakthrough in the area—a (positive)
solution to the Road Coloring Problem found by Trahtman (2008), but it clearly
deserves a separate survey.

2 Algorithms and Complexity

It should be clear that not every DFA is synchronizing. Therefore, the very first
question that we should address is the following one: given an automaton A ,
how to determine whether or not A is synchronizing?

This question is in fact quite easy, and the most straightforward solution to
it can be achieved via the classic power automaton construction. Recall that the
power automaton P(A ) of a given DFA A = 〈Q, Σ, δ〉 has the collection P ′(Q)
of the non-empty subsets of Q as the state set and the natural extension of δ to the
set P ′(Q)×Σ as the transition function (still denoted by δ ). In other words, for P
being a non-empty subset of Q and a ∈ Σ , one sets δ(P, a) = {δ(p, a) | p ∈ P} .
Fig. 6 presents the power automaton for the DFA C4 shown in Fig. 1.

Now it is obvious that a word w ∈ Σ∗ is a reset word for the DFA A if and
only if w labels a path in P(A ) starting at Q and ending at a singleton. (For
instance, the bold path in Fig. 6 represents the shortest reset word ab3ab3a of
the automaton C4 .) Thus, the question of whether or not a given DFA A is
synchronizing reduces to the following reachability question in the underlying
digraph of the power automaton P(A ): is there a path from Q to a singleton?
The latter question can be easily answered by breadth-first search (see, e.g.,
Corman et al, 2001, Section 22.2).
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Fig. 6. The power automaton P(C4 )

The described procedure is conceptually very simple but rather inefficient
because the power automaton P(A ) is exponentially larger than A . However,
the following criterion of synchronizability (Černý, 1964, Theorem 2) gives rise
to a polynomial algorithm.

Proposition 1. A DFA A = 〈Q, Σ, δ〉 is synchronizing if and only if for every
q, q′ ∈ Q there exists a word w ∈ Σ∗ such that δ(q, w) = δ(q′, w) .

One can treat Proposition 1 as a reduction of the synchronizability problem to
a reachability problem in the subautomaton P [2](A ) of P(A ) whose states are

2-element and 1-element subsets of Q . Since the subautomaton has
|Q|(|Q| + 1)

2
states, breadth-first search solves this problem in O(|Q|2 · |Σ|) time. This com-
plexity bound assumes that no reset word is explicitly calculated. If one requires
that, whenever A turns out to be synchronizing, a reset word is produced, then
the best of the known algorithms (which is due to (Eppstein, 1990, Theorem 6),
see also (Sandberg, 2005, Theorem 1.15)) has an implementation that consumes
O(|Q|3 + |Q|2 · |Σ|) time and O(|Q|2 + |Q| · |Σ|) working space, not counting
the space for the output which is O(|Q|3).

For a synchronizing automaton, the power automaton can be used to construct
shortest reset words which correspond to shortest paths from the whole state set
to a singleton. Of course, this requires exponential (of |Q|) time in the worst
case. Nevertheless, there were attempts to implement this approach (see, e.g.,
Rho et al, 1993; Trahtman, 2006a). One may hope that, as above, a suitable
calculation in the “polynomial” subautomaton P [2](A ) may yield a polynomial
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algorithm. However, it is not the case, and moreover, as we will see, it is very
unlikely that any reasonable algorithm may exist for finding shortest reset words
in general synchronizing automata. In the following discussion we assume the
reader’s acquaintance with some basics of computational complexity (such as
the definitions of the complexity classes NP, coNP and PSPACE) that can be
found, e.g., in (Garey & Johnson, 1979; Papadimitriou, 1994).

Consider the following decision problems:

Short-Reset-Word: Given a synchronizing automaton A and a positive in-
teger � , is it true that A has a reset word of length �?

Shortest-Reset-Word: Given a synchronizing automaton A and a positive
integer � , is it true that the minimum length of a reset word for A is equal
to �?

Clearly, Short-Reset-Word belongs to the complexity class NP: one can
non-deterministically guess a word w ∈ Σ∗ of length � and then check if w is a
reset word for A in time �|Q| . Eppstein (1990) has proved that
Short-Reset-Word is NP-hard by a polynomial reduction from 3-SAT. Thus,
Short-Reset-Word is NP-complete. Other proofs for the same result (all
via reductions from 3-SAT) have been suggested in (Goralčik & Koubek, 1995;
Salomaa, 2003; Samotij, 2007). From the proofs it follows easily that Shortest-

Reset-Word is NP-hard; recently Samotij (2007) has shown that the negation
of 3-SAT can be polynomially reduced to Shortest-Reset-Word whence the
latter problem is also coNP-hard. As a corollary, Shortest-Reset-Word can-
not belong to NP unless NP = coNP which is commonly considered to be very
unlikely. In other words, even non-deterministic algorithms cannot find the min-
imum length of a reset word for a given synchronizing automaton in polynomial
time.

On the other hand, the exhaustive search for reset words through all words
over Σ of length ≤ � can be performed in polynomial (in fact, linear) space since
one can reuse space. Thus, the problem Shortest-Reset-Word belongs to the
complexity class PSPACE; the question of the precise location of this problem
with respect to the polynomial hierarchy still remains open. An upper bound
has been recently found by Martjugin (unpublished) who has shown that the
problem lies in the complexity class Σ2 ∩ Π2 .

By a standard argument, the hardness of the decision problem Short-Reset-

Word implies that its optimization version, in which one seeks a reset word of
minimum length for a given synchronizing automaton, is hard as well. This did
not exclude however that the optimization problem might admit a polynomial-
time approximation algorithm, and moreover, all existing proofs for NP-hardness
of Short-Reset-Word were consistent with the conjecture that such an algo-
rithm exists. However, recently Berlinkov (unpublished) has shown (assuming
P �= NP) that, for any given positive integer k , no polynomial algorithm can
find for each synchronizing automaton A a reset word whose length would be
bounded by k times the minimum length of reset words for A . Thus, approxi-
mating the minimum length of reset words is hard.
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We mention that Pixley et al (1992) suggested an heuristic algorithm for find-
ing short reset words in synchronizing automata that was reported to perform
rather satisfactory on a number of benchmarks from (Yang, 1991); further algo-
rithms yielding short (though not necessarily shortest) reset words were imple-
mented by Trahtman (2006a).

3 The Černý Conjecture

In this section we discuss results and open problems related to the following
natural question: given a positive integer n , how long can be reset words for
synchronizing automata with n states?

First of all, we recall Černý’s construction (1964). For n > 1, let Cn stand
for the DFA whose states are the residues modulo n and whose input letters a
and b act as follows:

δ(0, a) = 1, δ(m, a) = m for 0 < m < n , δ(m, b) = m + 1 (mod n).

n−2

n−1

0

1

2

a

a a

a
b

b a, b

b

. . . . . .

Fig. 7. The automaton Cn

Černý (1964) has proved that Cn is a synchronizing automaton and that its
shortest reset word is (abn−1)n−2a of length (n − 1)2 . (This series of automata
was rediscovered many times, see, e.g., (Laemmel & Rudner, 1969; Fischler &
Tannenbaum, 1970; Eppstein, 1990).) Thus, if we define the Černý function
C(n) as the maximum length of shortest reset words for synchronizing automa-
ta with n states, the above property of the series {Cn} , n = 2, 3, . . . , yields the
inequality C(n) ≥ (n − 1)2 . The Černý conjecture is the claim that the equality
C(n) = (n − 1)2 holds true.

In the literature, one often refers to (Černý, 1964) as the source of the Černý
conjecture. In fact, the conjecture was not yet formulated in that paper. There
Černý only observed that

(n − 1)2 ≤ C(n) ≤ 2n − n − 1 (1)

and concluded the paper with the following remark:
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“The difference between the bounds increases rapidly and it is necessary
to sharpen them. One can expect an improvement mainly for the upper
bound.”

The conjecture in its present-day form was formulated a bit later, after the
expectation in the above quotation was confirmed by Starke (1966). (Namely,
Starke improved the upper bound in (1) to 1 + n(n−1)(n−2)

2 , which was the
first polynomial upper bound for C(n).) Černý explicitly stated the conjecture
C(n) = (n − 1)2 in his talk at the Bratislava Cybernetics Conference held in
1969; in print the conjecture first appeared in (Černý et al, 1971).

The best upper bound for the Černý function C(n) achieved so far guarantees
that for every synchronizing automaton with n states there exists a reset word
of length n3−n

6 . Such a reset word arises as the output of the following greedy
algorithm.

Algorithm 1.

input A = 〈Q, Σ, δ〉 (a DFA)

initialization w ← 1 (the empty word)
P ← Q

while |P | > 1 find a word v ∈ Σ∗ of minimum length with |δ(P, v)| < |P | ; if
none exists, return Failure
w ← wv
P ← δ(P, v)

return w

If |Q| = n , then clearly the main loop of Algorithm 1 is executed at most
n − 1 times. In order to evaluate the length of the output word w , we estimate
the length of each word v produced by the main loop.

Consider a generic step at which |P | = k > 1 and let v = a1 · · · a� with
ai ∈ Σ , i = 1, . . . , � . Then it is easy to see that the sets

P1 = P, P2 = δ(P1, a1), . . . , P� = δ(P�−1, a�−1)

are k -element subsets of Q . Furthermore, since |δ(P�, a�)| < |P�| , there exist
two distinct states q�, q

′
� ∈ P� such that δ(q�, a�) = δ(q′�, a�). Now define 2-

element subsets Ri = {qi, q
′
i} ⊆ Pi , i = 1, . . . , � , such that δ(qi, ai) = qi+1 ,

δ(q′i, ai) = q′i+1 for i = 1, . . . , � − 1. Then the condition that v is a word of
minimum length with |δ(P, v)| < |P | implies that Ri � Pj for 1 ≤ j < i ≤ � .
Altogether, we arrive at the following purely combinatorial problem:

Question 1. Let Q be an n-element set, P1, . . . , P� a sequence of its k -element
subsets (k > 1) and R1, . . . , R� a sequence of its 2-element subsets. Suppose
that Ri ⊆ Pi for each i = 1, . . . , � but Ri � Pj for 1 ≤ j < i ≤ � . How big the
number � can be?
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Question 1 was solved by Frankl (1982) who found the tight bound � ≤
(
n−k+2

2

)
.

Summing up these inequalities from k = n to k = 2, one arrives at the afore-
mentioned bound

C(n) ≤ n3 − n

6
. (2)

In the literature the bound (2) is usually attributed to Pin who explained the
above connection between Algorithm 3.1 and Question 1 and conjectured the
estimation � ≤

(
n−k+2

2

)
in his talk at the Colloquium on Graph Theory and

Combinatorics held in Marseille in 1981; Frankl learned Question 1 from that
talk. Accordingly, the usual reference for (2) is the paper (Pin, 1983) based on
the talk. The full story is however more complicated. Actually, the bound (2) first
appeared in (Fischler & Tannenbaum, 1970) where it was deduced from a com-
binatorial conjecture equivalent to Pin’s one. Fischler & Tannenbaum presented
their paper at the 11th FOCS conference but that time there was no Frankl
in the audience so that the conjecture remained unproved and the paper even-
tually got lost in limbo. The bound (2) then reoccurred in Kohavi & Winograd
(1971, 1973) but the argument justifying it in these papers was insufficient. Later
both (2) and Frankl’s solution to Question 1 were independently rediscovered in
(Klyachko et al, 1987).

If one executes Algorithm 1 on the Černý automaton C4 (Fig. 6 is quite help-
ful here), one sees that the algorithm returns the word ab2abab3a of length 10
which is not the shortest reset word for C4 . This reveals one of the main intrin-
sic difficulties of the synchronization problem: the standard optimality principle
does not apply here since it is not true that the optimal solution behaves op-
timally also in all intermediate steps. In our example, the optimal solution is
the word ab3ab3a but it cannot be found by the greedy algorithm because the
algorithm chooses v = b2a rather than v = b3a on the second execution of the
main loop.

Another difficulty behind the scene is that there are only very few examples of
extreme synchronizing automata, that is n-state synchronizing automata whose
shortest reset words have lengths (n − 1)2 . In fact, the Černý series Cn , n =
2, 3, . . . , is the only known infinite series of extreme synchronizing automata.
Besides that, we know only a few isolated examples of such automata: up to
isomorphism and adding/removing non-essential letters, there are three extreme
automata with 3 states, three extreme automata with 4 states (see Fig. 8), one
extreme automaton with 5 states recently found by Roman, see Fig. 9, and one
extreme automaton with 6 states found by Kari (2001), see Fig. 10.

Moreover, even synchronizing automata whose shortest reset words have
lengths close to the Černý bound are very rare. For instance, we are not aware of
any 5-state synchronizing automaton whose shortest reset word has length 24,
nor of any 6-state synchronizing automaton whose shortest reset word has length
33 or 34 or 35, etc. As for regular constructions of “almost-extreme” automata,
we know just one series of n-state synchronizing automata with odd n ≥ 5 such
that the minimum length of reset words for the nth automaton in the series is
equal to (n − 1)(n − 2), see (Ananichev et al, 2007).
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Fig. 10. Kari’s automaton

In general, “slowly” synchronizing automata turn out to be rather exceptional,
and this observation is supported also by probabilistic arguments. Indeed, if Q
is an n-element set (with n large enough), then, on average, any product of
2n randomly chosen transformations of Q is known to be a constant map, see
(Higgins, 1988). Being retold in automata-theoretic terms, this fact implies that a
randomly chosen DFA with n states and a sufficiently large input alphabet tends
to be synchronizing, and moreover, the length of its shortest reset word does not
exceed 2n . This means, in particular, that there is no hope to find new examples
of “slowly” synchronizing automata, to say nothing of a counterexample to the
Černý conjecture, via a random sampling experiment.

The Černý conjecture has been confirmed for various classes of synchroniz-
ing automata satisfying some additional restrictions. We conclude with a (non-
complete) list of the most important results of this sort.

We begin with Eppstein’s result (1990) in which restrictions are imposed on
the action of the letters on the state set. Consider the set {0, 1, . . . , n − 1}
equipped with the natural cyclic order 0 ≺ 1 ≺ 2 ≺ · · · ≺ n − 1 ≺ 1 (here
k ≺ � means that � immediately follows k ). If i1, i2, . . . , im are numbers in
{0, 1, 2, . . . , n − 1} , we call the sequence i1, i2, . . . , im cyclic if, after removal
of possible adjacent duplicate numbers, it is a subsequence of a cyclic shift of
the sequence 0, 1, 2, . . . , n − 1. In a slightly more formal language, we may say
that i1, i2, . . . , im is a cyclic sequence if there exists no more than one index
t ∈ {1, . . . , m} such that it+1 < it where im+1 is understood as i1 and <
stands for the usual strict linear order on {0, 1, 2, . . . , n − 1} . A transformation
α of the set {0, 1, 2, . . . , n−1} is said to be orientation preserving if the numbers
0α, 1α, . . . , (n − 1)α form a cyclic sequence. Now let A = 〈Q, Σ, δ〉 be a DFA
with n states. We say that A is orientable if its states can be indexed by
0, 1, 2, . . . , n− 1 so that all the transformations δ(��, a) : Q → Q induced by the
letters a ∈ Σ are orientation preserving. For instance, Černý’s automata Cn ,
n = 2, 3, . . . , are orientable.

Eppstein’s interest in orientable automata (which he called monotonic) was
motivated by the robotics applications of synchronizing automata. Indeed, in the
problem of sensor-free orientation of polygonal parts one deals with solid bodies
whence only those transformations of polygons are physically meaningful that
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preserve relative location of the faces of these polygons. It was observed already
by Natarajan (1986) that in the “flat” case (when the polygonal parts do not
leave a certain plane, say, the surface of a conveyer belt) this physical requirement
leads precisely to orientation preserving transformations. In (Eppstein, 1990,
Theorem 2) it is proved that, in accordance with the Černý conjecture, every
orientable synchronizing automaton with n states has a reset word of length
(n − 1)2 . An extension of this result to a larger class of synchronizing automata
whose letter actions mimic certain “spatial” transformations of solid polygons
was obtained by Ananichev & Volkov (2004).

Dubuc (1998) has proved the Černý conjecture for yet another natural class
of automata also containing the Černý series: automata in which a letter acts
on the state set Q as a cyclic permutation of order |Q| .

In Kari’s elegant paper (2003) the restriction has been imposed on the un-
derlying digraphs of automata in question, namely, the Černý’s conjecture has
been verified for synchronizing automata with Eulerian digraphs. Moreover, it
has been proved that if the underlying digraph of an n-state synchronizing au-
tomaton is Eulerian then there exists a reset word of length (n − 2)(n − 1) + 1
(Kari, 2003, Theorem 2). It is unknown whether or not this bound is tight.

Recall that the transition monoid of a DFA A = 〈Q, Σ, δ〉 is the monoid con-
sisting of all transformations δ(��, w) : Q → Q induced by the words w ∈ Σ∗ .
Several authors have studied synchronization issues for automata whose tran-
sition monoids satisfy certain abstract properties. An important example of a
property of automata expressed in this language is aperiodicity. A monoid is
said to be aperiodic if all its subgroups are singletons; a DFA is called aperiodic
(or counter-free) if its transition monoid is aperiodic. Aperiodic automata play
a distinguished role in many aspects of formal language theory and its connec-
tions to logic, see the classic monograph by McNaughton & Papert (1971). Thus,
studying synchronization within this important subclass of automata appears to
be well justified, especially if one takes into account that the problem of finding
short reset words is known to remain difficult when restricted to aperiodic au-
tomata. Indeed, inspecting the reductions from 3-SAT used in (Eppstein, 1990)
or (Goralčik & Koubek, 1995) or (Salomaa, 2003), one can observe that in each
case the construction results in an aperiodic automaton, and therefore, the ques-
tion of whether or not a given aperiodic automaton admits a reset word whose
length does not exceed a given positive integer is NP-complete.

Recently Trahtman (2007) has proved that every synchronizing aperiodic au-
tomaton with n states admits a reset word of length at most n(n−1)

2 . Thus,
the Černý conjecture holds true for synchronizing aperiodic automata. However,
the problem of establishing a precise bound for the minimum length of reset
words for synchronizing aperiodic automata with n states still remains open,
and moreover, we do not even have a reasonably justified conjecture for this
case. Denote by CA(n) the minimum length of reset words for synchronizing
aperiodic automata with n states, that is, the restriction of the Černý function
to the class of aperiodic automata. Then Trahtman’s result can be expressed by

the inequality CA(n) ≤ n(n − 1)
2

. However, the only non-trivial lower bound for
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CA(n), which has been established so far, is linear, namely, CA(n) ≥ n+
⌊n

2

⌋
−2

for n ≥ 7. (This bound comes from Ananichev’s paper (2005).) One sees that
the gap between the two bounds is fairly large. We believe that the actual value
of CA(n) is closer to the lower bound.

In (Volkov, 2007) the results from (Trahtman, 2007) have been extended to
a larger class of automata and improved. In particular, it has been proved that
if the underlying digraph of an n-state aperiodic automaton is strongly con-
nected, then the automaton has a reset word of length n(n+1)

6 � (Volkov, 2007,
Corollary 1).

Another large class of finite monoids which is of importance for formal lan-
guage theory is known under the name DS and can be described as follows: a
finite monoid M belongs to DS if and only if for all x, y, z, t ∈ N the following
condition holds:

MxM = MyM = MzM = MtM = MxyM implies MxyM = MztM.

(For the reader acquainted with some basics of semigroup theory, we recall an
equivalent but more standard description of DS: a finite monoid M belongs to
DS if and only if each regular D -class of M is a subsemigroup in M .) Recently
Almeida et al (2008) have proved the Černý conjecture for synchronizing autom-
ata with transition monoids in DS. Again, the problem of establishing a precise
bound for the minimum length of reset words for synchronizing automata in this
class still remains open.
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ing the Černý conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 789–800. Springer, Heidelberg (2006)
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