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Abstract

Backstepping design is a recursive procedure that combines the choice of a Lyapunov function with the design of a

controller. In this paper it is proposed for synchronizing chaotic systems. There are several advantages in this method

for synchronizing chaotic systems: (a) it presents a systematic procedure for selecting a proper controller in chaos

synchronization; (b) it can be applied to a variety of chaotic systems whether they contain external excitation or not; (c)

it needs only one controller to realize synchronization between chaotic systems; (d) there is no derivatives in controller,

so it is easy to be complemented. Examples of Lorenz system, Chua�s circuit and Duffing system are presented.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Synchronizing chaotic systems and circuits has received great interest in recent years since the seminal paper by Ott–

Grebogi–Yorke [1]. Generally the two chaotic systems in synchronization are called drive system and response system

respectively. The idea of synchronization is to use the output of the drive system to control the response system, so that

the output of the response system follows the output of the drive system asymptotically. Some attempts to solve the

problem have been made recently [2–7]. However, although they derive some methods for solving the problem, some of

them can be only applied to chaotic systems with two dimensions like Duffing system [7] and some of them need several

controllers to realize synchronization [4]. Some focus on the condition with unknown parameters and disturbances [4,6].

This paper focuses on increasing the effectiveness of the method to a wider variety of chaotic systems by using only one

controller. So it has not studied the condition with unknown parameters and disturbances. The method here to use is

backstepping design [8]. It consists in a recursive procedure that links the choice of a Lyapunov function with the design

of a controller. It has been successfully used to stabilize and track chaotic systems by Saverio Mascolo and Giuseppe

Grassi [9]. The paper is organized as follows: In Section 2 the class of chaotic systems considered in this work and the

problem formulation are presented. In Section 3 the tool is utilized for several systems such as Lorenz system, Chua�s
circuit and Duffing system. Numerical simulations are carried out to confirm the validity of the proposed theoretical

approach. In Section 4 conclusion is presented.

2. Problem formulation

In general, typical dynamics of chaotic systems such as Lorenz system, R€oossler system, Chua�s circuit and Duffing
system all belong to the system as following:

*Corresponding author.

E-mail address: xhtan@yahoo.com.cn (X. Tan).

0960-0779/03/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0960-0779 (02 )00153-4

Chaos, Solitons and Fractals 16 (2003) 37–45

www.elsevier.com/locate/chaos

mail to: xhtan@yahoo.com.cn


_xx1 ¼ f1ðx1; x2Þ
_xx2 ¼ f2ðx1; x2; x3Þ

..

.

_xxn ¼ fnðx1; x2; . . . ; xnÞ þ fnþ1ðtÞ

ð1Þ

where f1 is a linear function and fi ði ¼ 2; 3; . . . ; nþ 1Þ are nonlinear functions and when it comes to Lorenz system,
R€oossler system and Chua�s circuit, fnþlðtÞ ¼ 0.

Assume that drive system is expressed as Eq. (1). Then response system which is coupled with system (1) by u is as

following:

_yy1 ¼ f1ðy1; y2Þ
_yy2 ¼ f2ðy1; y2; y3Þ

..

.

_yyn ¼ fnðy1; y2; . . . ; ynÞ þ f 0
nþ1ðtÞ þ u

ð2Þ

where f 0
nþ1ðtÞ has similar characteristics as fnþ1ðtÞ.

By properly choosing u, synchronization between drive system and response system can be achieved.

Let us define the state errors between the response system and the drive system as

e1 ¼ y1 � x1 e2 ¼ y2 � x2 � � � en ¼ yn � xn ð3Þ

namely,

y1 ¼ e1 þ x1 y2 ¼ e2 þ x2 � � � yn ¼ en þ xn ð4Þ

Subtract (1) from (2). Notice Eqs. (3) and (4), finally error system can be derived as

_ee1 ¼ g1ðe1; e2Þ
_ee2 ¼ g2ðx1; x2; x3; e1; e2; e3Þ

..

.

_een ¼ gnðx1; x2; . . . ; xn; e1; e2; . . . ; enÞ þ f 0
nþ1ðtÞ � fnþ1ðtÞ þ u

ð5Þ

where g1 is a linear function and gi ði ¼ 2; 3; . . . ; nÞ are nonlinear functions with input ðx1; x2; . . . ; xnÞ from system (1).

Apparently gi ði ¼ 2; 3; . . . ; nÞ depends not only on state variables but also on time t. The problem to realize the

synchronization between two chaotic systems now transforms to another problem on how to choose a control law u to

make ei ði ¼ 1; 2; . . . ; nÞ generally converge to zero with time increasing. Here backstepping design is used to achieve the
objective.

3. Adaptive synchronization via a backstepping design

In this section, Lorenz system, Chua�s circuit and Duffing system are presented for synchronizing by backstepping

design.

3.1. Lorenz system

In Lorenz system, external excitation does not exit and drive Lorenz system and response Lorenz system can be

described respectively as (6) and (7)

_xx1 ¼ rðy1 � x1Þ
_yy1 ¼ qx1 � y1 � x1z1
_zz1 ¼ �bz1 þ x1y1

ð6Þ
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_xx2 ¼ rðy2 � x2Þ
_yy2 ¼ qx2 � y2 � x2z2

_zz2 ¼ �bz2 þ x2y2 þ u

ð7Þ

where r; q; b > 0. Let

ex ¼ x2 � x1 ey ¼ y2 � y1 ez ¼ z2 � z1 ð8Þ

namely,

x2 ¼ ex þ x1 y2 ¼ ey þ y1 z2 ¼ ez þ z1 ð9Þ

Subtract Eq. (6) from Eq. (7) and consider Eqs. (8) and (9)

_eex ¼ rðey � exÞ
_eey ¼ qex � ey � exez � exz1 � x1ez
_eez ¼ �bez þ exey þ exy1 þ x1ey þ u

ð10Þ

variables x1, y1, z1 in error system (10) can be considered as input signals from system (6). If system (10) did not have u,

it would have an equilibrium (0,0,0). If we choose a u which would not change the equilibrium (0,0,0), problem of

synchronization between drive and response system can be transformed into a problem on how to realize the as-

ymptotical stabilization of system (10). Now the objective is to find a control law u for stabilizing the error variables of

system (10) at the origin.

First we consider the stability of system (11)

_eex ¼ rðey � exÞ ð11Þ

where ey is regarded as a controller. Choose Lyapunov function V1 as following:

V1ðexÞ ¼
1

2
e2x ð12Þ

The derivative of V1 is as following:

_VV1 ¼ �re2x þ rexey ð13Þ

Assume controller ey ¼ a1ðexÞ, Eq. (13) can be rewritten as
_VV1 ¼ �re2x þ rexa1ðexÞ ð14Þ

if a1ðexÞ ¼ 0 (controller must be as simple as possible), then

_VV1 ¼ �re2x < 0 ð15Þ

makes system (11) asymptotically stable. Function a1ðexÞ is an estimative function when ey is considered as a controller.
The error between ey and a1ðexÞ is

w2 ¼ ey � a1ðexÞ ð16Þ

Study ðex;w2Þ system (17)

_eex ¼ rðw2 � exÞ
_ww2 ¼ qex � w2 � exez � exz1 � x1ez

ð17Þ

Consider ez as a controller in system (17). Assume when it is equal to a2ðex;w2Þ, it makes system (17) asymptotically

stable. Choose Lyapunov function V2ðex;w2Þ ¼ V1ðexÞ þ ð1=2Þw2
2. The derivative of V2 is

_VV2 ¼ �re2x � w22 þ w2ðrex þ qex � z1ex � exez � x1ezÞ ð18Þ

If a2ðex;w2Þ ¼ ðr þ q � z1Þex=ðex þ x1Þ (according to paper [10] we have already known that x1 and z1 have boundaries
respectively), _VV2 is

_VV2 ¼ �re2x � w22 < 0 ð19Þ
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negative definite. Define the error variable w3 as

w3 ¼ ez � a2ðex;w2Þ ð20Þ

Study full dimension ðex;w2;w3Þ system

_eex ¼ rðw2 � exÞ
_ww2 ¼ qex � w2 � exðw3 þ a2Þ � exz1 � x1ðw3 þ a2Þ

_ww3 ¼ �bðw3 þ a2Þ þ exw2 þ exy1 þ x1w2 þ u� da2
dt

ð21Þ

where

da2
dt

¼ rðr þ q � z1Þðw2x1 � exy1Þ þ ðbz1 � x1y1Þðe2x þ exx1Þ
ðex þ x1Þ2

Choose Lyapunov function V3ðex;w2;w3Þ ¼ V2ðex;w2Þ þ ð1=2Þw23. The derivative of V3 is

_VV3 ¼ �re2x � w2
2 þ w2½rex þ qex � z1ex � ðx1 þ exÞa2	 þ w3

�
� bðw3 þ a2Þ þ exy1 þ u� da2

dt

�
ð22Þ

Considering rex þ qex � z1ex � ðx1 þ exÞa2 ¼ 0, Eq. (22) can be rewritten as

_VV3 ¼ �re2x � w2
2 þ w3

�
� bðw3 þ a2Þ þ exy1 þ u� da2

dt

�
ð23Þ

Fig. 1. The control of Lorenz system is switched off: (a) comparison of time waveform of x; (b) comparison of time waveform of y; (c)

comparison of time waveform of z.
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Let u ¼ ba2 � exy1 þ ðda2=dtÞ, and _VV3 can be described as

_VV3 ¼ �re2x � w22 � bw23 < 0

negative definite.

Substitute ðba2 � exy1 þ da2=dtÞ for u in Eq. (10), equilibrium is still (0,0,0) and has not been changed. So following

above procedure we can conclude that equilibrium (0,0,0) of system (10) is asymptotically stable. As for an arbitrary

initial error between systems (6) and (7), after a finite period of time, the initial error will converge to zero and syn-

chronization between two Lorenz systems will be achieved.

By taking r ¼ 10, b ¼ 8=3, q ¼ 28 and giving initial condition (x1ð0Þ ¼ 20, y1ð0Þ ¼ 5, z1ð0Þ ¼ 2, x2ð0Þ ¼ 24,

y2ð0Þ ¼ 20, z2ð0Þ ¼ 28) and the numerical resolves are reported in Fig. 1. Fig. 1 shows the time waveforms of x, y and z

without u and Fig. 2 shows the waveforms of x, y and z with u.

3.2. Chua’s circuit

In order to further test the effectiveness of the method Chua�s circuit, which was the first physical dynamical system
capable of generating chaotic phenomena in the laboratory, is proposed for synchronizing. The circuit considered here

contains a cubic nonlinearity and the drive system (24) and response system (25) are described by the following set of

differential equations:

_xx1 ¼ aðy1 � x31 � cx1Þ
_yy1 ¼ x1 � y1 þ z1
_zz1 ¼ �by1

ð24Þ

Fig. 2. The control of Lorenz system is switched on: (a) comparison of time waveform of x; (b) comparison of time waveform of y; (c)

comparison of time waveform of z.
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_xx2 ¼ aðy2 � x32 � cx2Þ þ u

_yy2 ¼ x2 � y2 þ z2

_zz2 ¼ �by2

ð25Þ

where a, c and b are the circuit parameters.
Subtract (24) from (25) and rearrange the order of the equations, the error system can be written as

_eez ¼ �bey

_eey ¼ ex � ey þ ez

_eex ¼ aey � aexðe2x þ 3x1ex þ 3x21Þ � acex þ u

ð26Þ

where ex ¼ x2 � x1; ey ¼ y2 � y1; ez ¼ z2 � z1. The objective is to find a control law u so that system (26) is stabilized at

the origin. Starting from the first equation of system (26), an estimative stabilizing function a1ðezÞ has to be designed
for the virtual control ey in order to make the derivative of V1ðezÞ ¼ ð1=2Þe2z , namely _VV1 ¼ �beza1ðezÞ, negative definite
when a1ðezÞ ¼ ez. Define the error variable w2 as

w2 ¼ ey � a1ðezÞ ð27Þ

Study ðez;w2Þ system (28)

_eez ¼ �bðw2 þ ezÞ
_ww2 ¼ ex � w2 þ bðw2 þ ezÞ

ð28Þ

Consider ex as a controller in system (28). Assume when it is equal to a2ðez;w2Þ, it makes system (28) asymptotically

stable. Choose Lyapunov function V2ðez;w2Þ ¼ V1ðezÞ þ ð1=2Þw22. The derivative of V2 is

_VV2 ¼ �be2z � w2
2 þ w2ðex þ bw2Þ ð29Þ

If a2ðez;w2Þ ¼ �bw2, _VV2 is

_VV2 ¼ �be2z � w2
2 < 0 ð30Þ

negative definite. Define the error variable w3 as

w3 ¼ ex � a2ðez;w2Þ ð31Þ

Study full dimension ðez;w2;w3Þ system

_eez ¼ �bðw2 þ ezÞ
_ww2 ¼ w3 � w2 þ bez

_ww3 ¼ aðw2 þ ezÞ þ bðw3 � w2 þ bezÞ � aexðe2x þ 3exx1 þ 3x21Þ � acðw3 � bw2Þ þ u

ð32Þ

Choose Lyapunov function V3ðez;w2;w3Þ ¼ V2ðez;w2Þ þ ð1=2Þw23. The derivative of V3 is

_VV3 ¼ �be2z � w2
2 þ w3bw2 þ aðw2 þ ezÞ þ bðw3 � w2 þ bezÞ � aexðe2x þ 3exx1 þ 3x21Þ � acðw3 � bw2Þ þ uc: ð33Þ

Let u ¼ �w2 � w3 � aðw2 þ ezÞ � bðw3 � w2 þ bezÞ þ aexðe2x þ 3x1ex þ 3x21Þ þ acðw3 � bw2Þ, and _VV3 can be described
as

_VV3 ¼ �be2z � w2
2 � w23 < 0

negative definite.

Following above procedure we have chosen a control law u. As for an initial error between systems (24) and (25),

after a finite period of time, the initial error will converge to zero and synchronization between two Chua�s circuits will
be achieved (Fig 3).

By taking a ¼ 10, b ¼ 16, c ¼ �0:143 and giving initial condition ðx1ð0Þ ¼ 1, y1ð0Þ ¼ 2, z1ð0Þ ¼ 1, x2ð0Þ ¼ 10,

y2ð0Þ ¼ 5, z2ð0Þ ¼ 5), the numerical resolves such as time waveforms of x, y and z are reported in Fig. 1. The control law

u is switched on at t ¼ 5.

42 X. Tan et al. / Chaos, Solitons and Fractals 16 (2003) 37–45



3.3. Duffing system

Lorenz system and Chua�s circuit discussed above can generate chaotic phenomena under no external excitation
condition while Duffing system can generate chaotic phenomena only under external excitation. So here we classify

Duffing system to another chaotic system and make Duffing system an example to illustrate how to use this method to

synchronize chaotic systems with external excitation. The following set of differential equations formulates two Duffing

systems. The first is drive system and the second response system

_xx1 ¼ y1

_yy1 ¼ ax1 þ by1 � x31 þ c cosð0:4tÞ
ð34Þ

_xx2 ¼ y2

_yy2 ¼ ax2 þ by2 � x32 þ c cos t þ u
ð35Þ

where a, b and c are known parameters.

Subtract (34) from (35), the error system can be written as

_eex ¼ ey
_eey ¼ aex þ bey � exðe2x þ 3x1ex þ 3x21Þ þ c½cos t � cosð0:4tÞ	 þ u

ð36Þ

where ex ¼ x2 � x1; ey ¼ y2 � y1; ez ¼ z2 � z1. The objective is to find a control law u so that system (36) is stabilized at

the origin. Starting from the first equation of system (36), an estimative stabilizing function a1ðexÞ has to be designed for
the virtual control ey in order to make the derivative of V1ðexÞ ¼ ð1=2Þe2x , namely _VV1 ¼ exa1ðexÞ, negative definite when
a1ðezÞ ¼ �ex. Define the error variable w2 as

w2 ¼ ey � a1ðexÞ ð37Þ

Fig. 3. Synchronization for Chua�s circuit using the backstepping design. The control is switched on at t ¼ 5: (a) comparison of time

waveform of x; (b) comparison of time waveform of y; (c) comparison of time waveform of z.
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Study ðex;w2Þ system (38):

_eex ¼ w2 � ex

_ww2 ¼ ðbþ 1Þw2 þ ða� b� 1Þex � exðe2x þ 3x1ex þ 3x21Þ þ c½cos t � cosð0:4tÞ	 þ u
ð38Þ

Choose Lyapunov function V2ðex;w2Þ ¼ V1ðexÞ þ ð1=2Þw2
2. The derivative of V2 is

_VV2 ¼ �e2x þ w2bðbþ 1Þw2 þ ða� bÞex � exðe2x þ 3exx1 þ 3x21Þ þ c½cos t � cosð0:4tÞ	 þ uc ð39Þ

Let u ¼ �ðbþ 2Þw2 � ða� bÞex þ exðe2x þ 3exx1 þ 3x21Þ � c½cos t � cosð0:4tÞ	, and _VV2 can be described as

_VV2 ¼ �e2x � w22 < 0

negative definite.

Following above procedure we have chosen a control law u. As for an initial error between systems (34) and (35),

after a finite period of time, the initial error will converge to zero and synchronization between two Duffing systems will

be achieved.

By taking a ¼ 1:8, b ¼ �0:1, c ¼ �1:1 and giving initial condition ðx1ð0Þ ¼ 1, y1ð0Þ ¼ 1, x2ð0Þ ¼ 2, y2ð0Þ ¼ 2), the

numerical resolves such as time waveforms of x and y are reported in Fig. 4. The control law u is switched on at t ¼ 5.

4. Conclusion

In this paper, backstepping design has been used to synchronize chaotic systems. The advantages of this method can

be summarized as follows: (a) it is a systematic procedure for synchronizing chaotic systems; (b) it can be applied to a

variety of chaotic systems no matter whether it contains external excitation or not; (c) it needs only one controller to

realize synchronization no matter how much dimensions the chaotic system contains; (d) there is no derivatives in

controller, so it is easy to be complemented. The technique has been successfully applied to the Lorenz system, Chua�s
circuit and Duffing system. Numerical simulations have verified the effectiveness of the method.
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