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Abstract

For stereopsis, images of a given scene must be captured at the same in-

stant to ensure temporal consistency. For sequences of images (i.e. video

streams) this requires the potentially costly and technically complex process

of synchronizing cameras. We present a simple but effective method for auto-

matically recovering the sub-frame temporal offset between image sequences

taken using unsynchronized cameras. Having recovered the offset, we obtain

the affine structure of a non-rigid motion. The technique is demonstrated for

the application of human motion capture.

1 Introduction

In stereopsis applications, two views of a dynamic, non-rigid scene must be taken at the

same instant in order that triangulation be used for scene reconstruction. Corresponding

pairs in an image sequence from each viewpoint can then be used to reconstruct the scene

at each instant in time. A prime application of this is in human motion capture where typ-

ical commercial systems [7] use multiple cameras, synchronized by hardware. While this

is neither difficult nor expensive for two or three analogue cameras, there are more com-

plex issues to be dealt with when using many cameras or with current digital technology.

Moreover such synchronization cannot be relied upon in many interesting applications

involving less controlled environments such as surveillance or sporting analysis.

In this paper we present a simple but effective method of recovering the temporal

offset, at sub-frame accuracy, between two sequences of non-rigid motion recorded with

unsynchronized cameras (see Fig. 1). We apply the algorithm to sequences of human

motion capture data to recover the affine structure of a running person and compare this

with ground-truth data to demonstrate the efficacy of the method.

For reconstruction algorithms in which the relief of the scene is small compared to the

depth of the scene, it is sensible (both from the point of view of simplicity and in terms

of computational accuracy) to approximate the viewing projection as an affinity. In their

seminal work Tomasi and Kanade [9] showed that, under affine projection, a 2V�N ma-

trix of N image points in V views (the so-called “measurement matrix”) could be written

as a product of a 2V�3 projection matrix and a 3�N structure matrix. In consequence,

they showed that the rank of a noiseless measurement matrix is bounded above by 3 and

that the “best” approximation to this could be achieved by factorizing the measurement

matrix using the Singular Value Decomposition. Reid and Murray [6] qualified “best”
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Figure 1: Two sequences of non-rigid motion for which the sub-frame temporal offset is

to be recovered, as indicated by the arrow

by showing that the structure and motion computed using the TK factorization method

(under suitable assumptions about the errors) minimized the reprojection error and could

therefore be interpreted as a maximum likelihood estimate for the structure and motion.

If more than three frames of a rigid body are seen then there exist sufficient constraints

to perform self-calibration. This was noted by Tomasi and Kanade (though not in this

context) and subsequently formalized by Quan [5] for all affine projection models. In our

case we consider only two cameras and non-rigid motion. We therefore have sufficient

information to compute affine structure using factorization but in the present work we

do not attempt to upgrade this to Euclidean (though see Section 4). The assumption of

non-rigid motion is of crucial importance since our algorithm works by identifying the

temporal alignment for which the “most consistent structure” can be identified.

Our work is inspired by the similar method proposed by Wolf and Zomet [10]. Since

the factorization algorithm of Tomasi and Kanade relies on consistent structure, it can-

not be applied to whole sequences of non-rigid motion but can be applied to each pair

of frames. Over the sequence of images, the rank 3 constraint is valid only at pairs of

corresponding frames where structure is consistent. Wolf and Zomet used this fact to de-

fine the “energy” of a measurement matrix above an expected rank bound. This energy

is lowest when structure is consistent (i.e. at corresponding frames). In their algorithm,

feature correspondence is not assumed between the two sequences although it is assumed

that each tracked point in the second sequence can be expressed as a linear combination

of points tracked in the first. In the sense that we presently assume the same point set is

tracked in each view, our work is less general than theirs but ours is distinguished by the

fact that we recover sub-frame accurate alignment for sequences of differing, unknown

frame rates. This temporal offset is then used to recover structure at a higher temporal

resolution than either sequence taken individually, with reduced reprojection errors.

The temporal alignment of image sequences has also been extensively studied in [1,

2, 3]. Their methods enable both temporal and spatial alignment of sequences, without

explicit feature correspondence. Therefore, in some cases sequences can be aligned even

without any spatial overlap. However, crucially this work assumes that the images are

related by a 2D homography which restricts its application to planar scenes or to scenes

viewed by cameras with coincident (or nearly so) optic centres. By contrast, we are



concerned with spatially separated cameras viewing 3D scenes.

The remainder of the paper is structured as follows: Section 2 describes the formula-

tion of the problem and outlines the algorithm used for the recovery of the offset. Section 3

discusses implementation details and results while future development of the algorithm

and conclusions are presented in Section 4.

2 Problem formulation

2.1 Rank constraints of the measurement matrix

Assuming only two sequences are to be aligned, we can compose a 4�N measurement

matrix W as follows:
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n
)T is the vector of image coordinates of the nth feature in the ith view.

This measurement matrix is then normalized with respect to its centroid such that

each row has zero mean. As shown by Tomasi and Kanade, assuming affine projection

and exact feature correspondence, this new measurement matrix can then be factorized

into a 4�3 projection matrix P and a 3�N structure matrix X such that:

W = PX =
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Where each Pi is the 2�3 affine projection matrix associated with the ith view and each

Xn is the 3�1 vector of coordinates in 3D space of the nth feature.

It is clear that W is rank 3 under ideal conditions. However, under practical condi-

tions the effects of noise and inexact feature correspondence result in W having rank >3

(i.e. the fourth singular value is non-zero). When W is composed of points measured at

the same instant in time, the fourth singular value depends only on the noise in the mea-

surements. However, this rank constraint is violated if W is composed from two images

corresponding to different instants in time since the structure, X, is inconsistent between

the two frames and the fourth singular value will be relatively high. The relative magni-

tude of the fourth singular value can therefore be used as a measure of the synchronization

between frames, reaching a minimum at the correct offset. This suggests a straightforward

way of obtaining the synchronization as discussed in the following sections.

2.2 Recovery of frame correspondences

Given two sequences of the same dynamic scene, we assume that corresponding frames

in the target and reference sequences ( ftgt and fre f , respectively) are related by:

ftgt = α fre f +δ t (3)

where α is the target:reference frame rate ratio and δ t is the offset between the 0th frames

in each sequence. We seek to recover δ t and in some cases α . We define a frame window



as a sequence of M consecutive frames from a given sequence. For every frame F in the

reference sequence the algorithm attempts to recover the frame, F’, corresponding to the

same instant in time in a target sequence of T frames as follows:

1. Define the 2�MN measurement matrix, W, as:

W( f ) =

2
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where (uk

re f ;n
;vk

re f ;n
)T is the image location of the nth feature in the kth frame of the

reference sequence and (uk

tgt;n
;vk

tgt;n
)T is the image location of the nth feature in the

kth frame of the target sequence.

2. Normalize W( f ) with respect to the centroid such that each row has zero mean.

3. Normalize the 4-vector of singular values of W( f ) and define sF( f ) as the value of

the fourth singular value after normalization.

In the case where α is unknown (or known to be non-unity) we should set M = 1

since M > 1 will span different time intervals in each sequence, although for α � 1, it is

reasonable and beneficial to use a small frame window. The aim of the algorithm is then

to minimize sF( f ) over all f in the range 0. . . T-M. This minimum should occur at frame

F’, the frame in the target sequence corresponding to frame F in the reference sequence.
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Figure 2: (left) s95( f ) using frame window sizes of 1 frame and 5 frames (right) s95( f )
using interpolated feature locations within the interval [90,100]

Fig. 2(left) shows s95( f ) evaluated using two sequences, part of which can be seen in

Fig. 1. A minimum can clearly be seen at frame 95, as desired, although a local minimum

is also apparent at frame 42 as a result of the periodic motion of the subject. It can be

seen that increasing M reduces the effect of this local minimum. The occurence of local

minima in the case of periodic motion was also noted by Wolf and Zomet [10].

2.3 Recovery of synchronization to sub-frame accuracy

Once frame correspondence has been recovered between the sequences robust estimation

methods (e.g. RANSAC) can be used to fit a line to the correspondences, recovering α and



δ t (the gradient and y-intercept, respectively). However, correspondences between frames

are accurate only to within one frame and data is also discarded in the outlier rejection

process. Therefore, it is desired to improve these estimates using every frame in the

reference sequence at sub-frame accuracy in order to reduce reprojection (and therefore

reconstruction) errors.

If the sequences are captured at a sufficiently high frame rate, it is reasonable to as-

sume that the motion of a point from one frame to the next is approximately linear. As a

result, ftgt can be estimated for any fre f using Equation 3 and W( f ) can be generated for

non-integer values of f by using linear interpolation of the frames either side of f . Eval-

uation of sF( f ) is then possible for a range of values around the expected value, ftgt , at an

arbitrary resolution as shown in Fig. 2(right). As a result, the minimum of sF( f ) can be

determined to sub-frame accuracy for every frame in the reference sequence. Improved

estimates of α and δ t can then be obtained using a least squares linear approximation.

3 Implementation & Results

To compare results with ground truth data, two 300 frame sequences featuring a subject

running within a room were captured using accurately calibrated cameras, hardware syn-

chronized at 60Hz. The locations of 12 joints (shoulder, elbow, wrist, hip, knee and ankle

on each side) were labelled by hand in each frame of the first and second sequences (see

Fig. 1). Except where stated, α was fixed at 1 since the frame rates of the cameras were

known to be equal. To establish ground truth the calibration of the cameras was used to

“correct” image locations to be consistent with the known epipolar geometry. At no other

time was the calibration of the cameras exploited.

3.1 Performance using perfectly matched sequences

Using a pair of perfectly matched sequences (i.e. α = 1 and δ t = 0), the algorithm de-

scribed in Section 2.2 was applied to each reference frame to recover the corresponding

frame, F’, in the target sequence. Fig. 3 shows a plot of the error, F - F’, for the first

100 frames of the 300 frame sequence using 3 frame window sizes. Although in most in-

stances this error is very small, in some cases (e.g. frames 42 and 95) the absolute offset

error is large due to the ambiguity caused by local minima (Fig. 2). It can be seen that

increasing the size of the frame window reduces errors, as would be expected since the

amount of data supplied to the algorithm increases.
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Figure 3: Single frame offset error using frame windows of (left) 1 frame (centre) 3 frames

(right) 5 frames



3.2 Performance over varying temporal offset

To test the algorithm at different offsets, unsynchronized sequences were formed by tak-

ing interleaved frames from the available synchronized sequences (e.g. sequences with an

offset of 0.5 frames were generated by taking frames 0, 2, 4,. . . from the target sequence

and frames 1, 3, 5,. . . from the reference sequence). For the purposes of this test, the tar-

get sequence was created using frames 0, 10, 20,. . . (an effective frame rate of 6Hz). For

some integer k, the reference sequence can be composed of frames k, 10+k, 20+k,. . . to

simulate an offset of k/10 frames. The algorithm was applied for the range k = 0. . . 10 and

Fig. 4 compares the recovered offsets with the ideal values.
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Figure 4: Recovered offset over a range of values

It can be seen that the recovered offsets are typically accurate to within a few hun-

dreths of a frame, a result which is especially encouraging in light of the fact that (i)

the assumption of linear motion between frames degrades as frame rate decreases (ii) us-

ing every 10th frame drastically reduces the number of points for line fitting. Both of

these problems are associated with short sequences of low frame rate whereas a typical

application would utilize long sequences at a relatively high frame rate.

3.3 Robustness in the presence of noise

We now show how noise affects the performance of the algorithm when used to recover

the offset at sub-frame accuracy. The image points in both the reference and target se-

quence of a typical, perfectly matched pair were perturbed by random noise distributed

as N(0;σ) with σ in the range 1. . . 8 pixels. The algorithm was then used to determine

δ t for each σ . Typical results of the initial pass of the algorithm (to determine frame

correspondence) are shown in Fig. 5.

It is clear that the number of incorrect frame correspondences increases with noise,

up to a point where the desired line fit is no longer detectable. This results in a greater

likelihood of an incorrect recovery of δ t. Of course, this somewhat naive implementation

discards all local minima of sF( f ) in favour of the global minimum. A better method

(currently not implemented) would use not the number of inliers (as in the “standard”

RANSAC) but would seek a minimum of ∑i si(αi+δ t) as the best consensus.
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Figure 5: Frame correspondence results with added noise: (left) σ = 2 pixels (centre) σ

= 4 pixels (right) σ = 8 pixels

3.4 Reprojection errors

In this work we are considering affine, rather than Euclidean, structure so a direct com-

parison of the reconstruction errors is not straightforward. Instead, we measure the total

reprojection error for the case of (i) interpolation using the known δ t and known α , (ii)

interpolation using the recovered δ t and known α , (iii) interpolation using the recovered

δ t and recovered α and (iv) no interpolation. We then compare these errors to the repro-

jection error as a result of assuming affine projection, for exactly matched frames.

In the case where no interpolation is used the measurement matrix is composed of the

reference frame and the nearest corresponding frame from the target sequence. This is

effectively the case when δ t is recovered to the nearest frame, although in the case where

the sequences are offset by exactly 0.5 frames this represents the worst case error. The

total reprojection error can be trivially computed as:

E = kWgroundtruth�Wrepro jectedkF (5)

Table 1 shows the four reprojection errors for a typical sequence pair, showing that

using sub-frame accuracy offers a substantial improvement in results over single frame

accuracy. Fig. 6 shows the affine reconstruction seen from a novel view.

Reprojection method Total reprojection error

Exactly matched frames 5.1188

Interpolated (known δ t, known α) 10.0045

Interpolated (recovered δ t, known α) 10.0114

Interpolated (recovered δ t, recovered α) 10.4089

No interpolation 14.4676

Table 1: Reprojection errors

3.5 Sequences of differing frame rates

In previous experiments, α was fixed at 1, effectively constraining the minimization when

determining δ t. We now use sequences of different frame rates and seek to recover δ t and

α best satisfying Equation 3. A target sequence was constructed, consisting of frames

0, 2, 4,. . . from the first sequence and a reference sequence of frames 1, 4, 7,. . . from



Figure 6: (top) Frames from target sequence (middle) Frames from reference sequence

(bottom) Novel view of the affine reconstruction using the recovered offset

the second (i.e. a target:reference frame rate ratio of 1.5 with an offset of 0.5 frames).

Applying the algorithm recovered values of 1.4987 and 0.5836 for α and δ t, respectively.

For comparison, the algorithm was also applied with α fixed at 1.5, recovering an offset

of 0.5298.

3.6 Aligning NTSC and PAL

While in the previous experiment we simulated non-unity in α by selectively interleav-

ing frames, here we demonstrate the method for the temporal alignment of a juggling

sequence captured from different viewpoints using uncalibrated NTSC and PAL cameras.

The reference sequence, captured using a digital camera, consisted of 150 colour frames

at 30Hz with a resolution of 320�240 pixels whilst the target sequence, captured using an

analogue camera, contained 250 greyscale frames at 25Hz with a resolution of 720�576

pixels, shown in Fig. 7(top). Feature correspondences were determined manually and

were not exact since the calibration (and hence epipolar geometry) was unknown. By in-

spection, it was seen that frame 1 of the reference sequence corresponded approximately

to frame 115 of the target sequence. Fig. 8 shows the plot of the minima of sF( f ) for all

F from which we recover values of α and δ t as 0.8378 (� 25/30) and 113.3209, respec-

tively. The parallel bands, offset from the main band, are a result of the local minima due

to the periodicity of the juggling motion (see Fig. 2). These bands are less evident from

approximately frame 75 onwards, at which point the juggling motion was varied.



Figure 7: (top) Corresponding frames from the new sequence (bottom) Reconstruction of

the juggling sequence seen from a novel view
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Figure 8: Frame correspondences and the least squares linear approximation

4 Conclusion

We have presented a method for recovering the temporal offset between unsynchronized

sequences of non-rigid motion to sub-frame accuracy. Our work improves on [10] in that

(i) we determine the offset to sub-frame accuracy and (ii) the algorithm can be applied

to sequences of different frame rates. We assess the benefits of determining sub-frame

offsets by considering reprojection errors and show that these are significantly reduced.

The method is successfully applied to sequences of human motion capture using cameras

of different formats (NTSC and PAL).

The algorithm could be extended in a number of ways. For example, the offset could

be recovered for more than two sequences by synchronizing each pair separately, under

the constraint that the recovered offsets are consistent.

As mentioned in section 1, affine structure is recovered rather than Euclidean (Fig. 6).

If the structure of the subject is known, constraints can be placed upon the 3D recon-

struction to maintain consistency across the sequence and enable an upgrade to Euclidean



structure. For example, it is straightforward to apply the constraint that rigid links are

constant in length between frames, as proposed by Liebowitz [4]. Taking this further, a

more model-based approach may be applied such that actual ratios of lengths between

links are enforced, as in Taylor [8].
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