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Experimental data on transient errors from several digital computer systems is presented and
analyzed. This is the first large scale public study on the statistical distribution of transient errors.
The systems for which data has been collected are the EC PDP-10 series computers, the Cm*
multiprocessor, and the C.vmp fault tolerant microprocessor. Statistical tests indicate that transient
errors follow a decreasing hazard rate distribution. This is at variance with the standard assumption
of constant hazard rates (exponential distribution) used in reliability modeling, and requires models
of greater complexity for accurate results. Models of common fault tolerant redundant structures are
developed using the Weibul! distribution, which has a thme-varying hazard rate. Both analytical and
simulation models arc used to analyze the differences between the reliabilitics predicted by Wetbull
based transient error models and those predicted by exponential based models. The analysis
indicates a significant difference between the models based on the expencntial distribution and those
based on the decreasing hazard rate Weibull distribution. Reliability differences ranging from -0.10
o +0.20 and factors greater than 2.0 in Mission Time Improvement for Weibull parameters
equivalent to measured system behavior are scen in the model results. System designers should be

aware of these differences.
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Chapter 1
Introduction

1.1 Background

The problems posed to digital computers by transicnt faults have largely been neglected in the
research litera.ture, except for occasional items of limited scope (e.g., [Wakerly 75]). A general model
for transient fault occurrence and recovery based on a Markov model with the assumed exponential
dis'lribution for interarrival times was presented in [Avizienis 77]). This approach is typical of efforts
to model all types of faults -- permanent {DoD 74] and intermittent [Spillman 77, Su ct al. 78] as well

as transient.

The original focus of this research was the collection of transient error data for analysis. Many
studies of actual féi]ure data have supported the use of the constant failure rate _(cxponentia]) process
as an accurate mathematical model for hard failures. No such study has been published for transient
errors.  Without data, there has been no basis for cither_supporting or disputing the extension of

earlier probabilistic models for hard failures to cover transient errors also.

Data collected from Cm™, a multi-microprocessor built at Carnegie-Mellon University, indicated a
decreasing error rate [T'sao 78]. This spurred analysis of data from other systems, notably large
timesharing computers in use at Carnegie-Mellon, and C.vmp, another experimental microprocessor
system. When data from these systems was analyzed, similar decreasing error rates were also
observed [McConnel et al. 79]. These consistent results,' which will be developed in detail later in the
paper, suggested a new goal of investigating reliability models which incorporate time-varying error

rates. Such models present difficuities which do not arise when constant error rates can be assumed.
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1.2 Significance of Transieni Errors

The importance of transient faults comes from their rclatively frequent occurrence. Scveral studics
have shown that permanent faults cause bnly a small fraction of all detcctcd errors. The available
figures for scveral systems are given in Table 1-1 below [Fuller & Harbison 78, Morganti et al.
78, Morganti 78, Sicwiorck et al. 78a). The last row of figures are estimates comparing the hard and
soft failure rates for a one megaword by 37 bit memory array composed of 4K MOS RAMs [Geilhufe

79, Ohm 79). (Soft failures arc ‘transient failures caused by the radioactivity in the packaging material

of the chips.)
Detection MTTF MTTF

System Technology Mechanism (transient)  (permanent) MTTE/MTTE
CMUA FDP-10 ECL Parity 44 hrs,  800-1600 hrs. 0.03-0.06
Cm* LSI-11 : NMOS Diagnostics 128 hrs. 4200 hrs. 0.03
C.vimp TMR LSI-11 Crash 97-328 hrs. 4900 hrs. 0.02-0.07
Teletira ) TTL Mismatch 80-170 hrs. 1300 hrs. 0.06-0.13
1M x 37 RAM MOS8 (Parity) 106 hrs. 1450 hrs, 0.07

Table 1-1: R-atios of Transient Errors to Permanent Failures

1.3 Overview of Paper

Chapter 2 presents the data analysis results, showing that a decreasing hazard rate distribution fits
the collected data much better than the constant hazard rate (exponential) distribution. Techniques
for modeling the reliability of systems whose modules exhibit nonconstant error rates are described in
Chapter 3, and the models developed for this paper are given in bhapter 4. The results of the models

are presented and compared in Chapter 6, and the major results are summarized in Chapter 1.



Dta Collection and Analysis 5

Chapter 2
Data Colizsctlion and Analysis

2.1 Data Collection

2.1.1 PDP-10 Syslems

The PRP-10" is a general purpose 36-bit computer packaged cither as a DECsystem-10 running a
time sharing operating system called TOPS-10, or as a DECsystem-20 running TOPS-20 [Bell ot al.
78], The main system for the Computer Science Department at Carncgic-Mellon University is a
DECsystem-10 which has a KI.-10 (ECL) processor, one megaword of memory, cight disk drives
totaling 1600 megabytes of online storage, and (wo magnetic tape drives. Data was collected on this

system between Junuary 15, 1980 and January 2, 1981,

Another system for which data has been collected in this study is a DECsystem=20 operated by the
university’s Computation Center to support the general educational needs of the university. This
system has 512K words of memory, three disk drives totling 538 megabyles of online storage, and
two magnetic tape drives. Data was collccléd on this systenm from September 24, 1978 to March 17,

1979.

The core of the PDP-10 error reporting system is the online error log file maintained by the T'OPS-
10 and 'TOPS-20 operating systems. Entrics are made in this file for a variety of reasons, muost notably
system reloads, memory parity crrors, and 1/0 errors [DEC 78] Each entry contains the date and
time at which it was made, the processor serial number, and information about the type of error or

other condition being reported.

To facilitate statistical analysis of transient errors on PDP-10's, a program to derive interarrival.

]l)l-'.( LOPDP-16 DECsysian-10, TOPS 10, K11, iR Systen-MUTOPS-200 PUWP- 1L and SN e all registered

taclemizths of Digital Fquipment Cormporanon.
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dimes and time-of-day disteibutions from the system erroy log files has been written. This program is
named SEADS, which stands for Swistical Erroe Analysis Data Sununarization.  The outputs
generated include graphs of the disiributions of interarrival times for various types of entrics and lists

of those interarrival tmes,

Two types of entries in the PDP-10 erver log files were chosen as being likely to reflect transient
errors: system reloads and memory parity errors. System reloads were chosen because they are
commonly caused by the ubiquitous "crash™ In systems with stable hardware and matured software,
the most frequent cause of crashes appca:'::. to be transient errors. Attempts to separate reloads caused
by transient errors from those caused by permanent failures, software failures, and scheduled
maintenance, have proven (o be unsﬁcccssful due to the paucity of information provided in the
reload entrics. Thus this data is only indicative of transient error behavior. On the other hand, there
scems to be a general consensus that transicnts are responsible for the great majority of memory

parity errors, o these should provide a better measure.

In scanning the data processed by SEADS, it became clear that the PDP-10 systems frequently
recorded several errors for one fault. To mask out the effects of this, error entries within five minutes
of a previous entry were counted as a part of the previous fault. It was felt that five minutes was a
reasonable threshold for the study. The software allowed any choice for the threshold, facilitating
examination of the the sensitivity of the data to threshold values!, This process of climinating very

short interartival times is referred to as "filtering™ in this paper.

Table 2-1 sunmarizes the data coliceted from the PDP-18 systems. Detailed analyses of these data
sets are performed later in this section. Unfortunately for purposes of data analys.is, 100 ﬂ:w-parity
errors occurred on the TOPS-20 system to be statistically significant. Thus only three data sets are
analyzed: system reloads for both the TOPS-10 and 'TOPS-20 systems, and memory parity errors for

the 'TOPS-10 system.

l'l'hrc:;hold vitlues of one minule and ten minutes were ttso tried withoul significantly changing the results presented in this

paper.
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1OPS-10 TOPs-20

Tutal Hours Covered 8,272 32827
Approvimate Coveragze 0.979 0.790
Towal Bntries - 34,918 19,690
Toral Reloads 743 276
Reload MTTE thours) 1.1 11.9
"Fiitered” Releads 637 222
"Filtered” MITE (hours) 114 13.0
ol Pardty Errors 120 31
Partts ML Grears) 68.9 105.9
Hiltered” Parity irrors 103 12
"Filtered” MTTE (hours)  70.7 239.9

Table 2-1: Summary of Collected PDP-10 Data

2.1.2 Experimental LSI-11 Syslems

In-addition to the PDP-10 system error log files, data was also collected from two experimental
LSI-11 systems at Carnegic-Melion University, The first of these is a multiprocessor system named
Cm*, whase structure has heen widely reported in the literature [Swan ct al. 77. Swan 78]. Cm* uses
a nictwork of buses o give processors {slightly modified [.5]-] F's) access o a large sharcd memory.
The system is built from processor-memaory pairs called Computer Modules or Cm's. The memory
local tn a processer s also the shared memuory of the system. F.EI(’Zh Cm has a local switch, or Slocal,
which interfaces its bus to the rest of the system. A mabping controtler, or Kmap, is shared by several
Cm’s, which are connected 1w it by their Slocal's to form a “cluster”. I:ach Kmap in the system is
connected via multiple intercluster buses 1o other Kmaps, completing the interconnection scheme,
The Kmaps perform all the functons necessary for meeting both intracluster and intercluster

MCMOory requests.

The configuration of Cm* for which data was collected contained ten Cm's connected to three
Kmaps to form three clusters, two with four Cm's and one with two Cm’s. Each Cm had a serial link
to the Cin™* host computer, a message switching PDP-11 [Scelza 77), to facilitate user access and

program loading,

Automatic diagnostic software was developed w exercise idle modules in Cm*. One such idle
module was used to run the master control program CMDIAG. "This module operated in a special
maode which enabled it to control other Cm's as though it was a uscr at a terminal. With this ability,
CMDIAG acyuired control of all nnassigned modules and continuously cycled cach of them through
aseries of four dingnostic tests, The program was able to dynamically acquire and release modules in

response to the chanzing needs of the other users,
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The automatic diagnostc s‘,:.‘S.[C]n for Cin* was oxercising at least some of {h‘e modules for alm‘ost
50% of the time between May 1977 and April 1978, A total of 104 scparate transient errors were
recorded during a total diagnostic scssion time of 4223 hours.  Some of these transients caused
multiplb errors on single modules, and several produced simultancous errors in more than one

module [1sao 78].

The sccond cxperimental system for which data was collected is C.vmp, a triplicated NMOS
[.SI-11 microprocessor with voting at the bus level [Siewiorek ct al. 78a, Sicwiorek et al. 78b]. 'There
are three processor-memory pairs, each pair connected via a voter cireuit. During the time that data
was collected, C.vmp contained 12K words of dynamic MOS memory and a dual floppy disk drive

pCT processor.

The transicnt error data from C.vmp was gleancd from the system maintenance notebook entries
for August 1977 to April 1978, During this period, C.vimp was used for several months under actual
load conditions with students doing projects for an introductory real time programming course. The
students were supplied with a standard system software manual and a small pamphlet on information
specific to C.vmp (i.e., location of the power switches, a reminder to load three diskettes, etc.).
Because of the disparate nature of the user community and the complexity of the system, the causes
of many crashes remain ambiguous. During the 4921 hours of recorded operation, at least 15 crashes
were definitely due to transient h;\;‘dwax;c errors: however, the actual number of crashes caused by
transicnt errors may have been as high as 51. 'The onty transients which should cause C.vmp to crash
are those occurring simultancously in more than one module. According to the data from Cm*, such
transients make up 17% of the total, occurring roughly every 250 hours [Siewiorck et al. 78b]. The
mean Lime to crash for C.vmp should equal or exceed this figure. Indeed, the "best case” and "worst
case” figures for MTTE falt around this value, as shown in Table 2-2 below. Note that crashes which

may have been software or user caused are included only in the worst case data for C.vmp.

Cm* C.ymp (hest C.ymp (worst)
Total Hours 4223 4921 4921
Total Frrors 104 15 51
MTTE (hours) 40.6 328.1 96.5
Stabdard Deviation 59.8 4708 167.8

Table 2:2: Summary of Collected Cm* and C.vmp Data
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2.2 Data Analysis

Two questions inust be answered by examining the data:
1. Which probability distribution best fits the data?
2. What are reasonable parameter values for the collected data and chosen distribution?

In theory, the second question is meaningless untl the first question js answered. In practice,
paramcter values must be estimated i order to test the applicabifity of difterent distributions. The
choice of which probability disiributions 1o test is based on such evidence as the distribution
histogram of interarrival times produced by SEADS. ‘The general shape of these histograms
indicated that perhaps some generalized form of the cxponential distribution would be appropriate.
The Weibult distribution is one such extension of the exponential, and is widely used in reliability

meodeling and analysis.

2.2.1 Review of thé Weibull Distribution

The Weibull distribution has two parameters: « (the shape parameter) and A (the scale parameter).
The probability density function, cumulative distribution function, reliability function, and hazard
(error rate) function, of the Weibull distribution are shown in Equations (2.1) through (2.4) (a > 0,
A>0):

pdf':. F(t) = ad(At)®) g" A" (2.1)
CDF = F(t) = 1- @AD" 2.2)
Reliability = R(t) = g-At)° @3
Hazard Funciion = #(t) = aA(At)?! 2.4

Note that the values of all these functions depends on time only through the product of the scale

actor and time -- At.

The shape parameter directly influences the error rate:

o if a < 1, the crror rate is decreasing with time:
* if @ = 1, the crror rate is constant with time, resulting in an exponcential distribution: and

e if « > 1, the error rate is increasing with time.

If t takes only the discrete times 0,12, then the discrete Weibull distribution is obtained from
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the Weibull distribution by substituting q for e"}“, and n for t [Nakagawa & Osaki 75]. The
probability mass function, cumulative distribution function, reliability function, and hazard function
of the discrete Weibull distribution are shown in Equations (2.5) through (2.8).(0< q <1):

pmf = f(n) = qn" } q(n+1)“ — qn“ ( 1- q(n+1)“-n°‘ ) (2.5)
CDF = Fn) = 1 - q* @6)
Reliability = R(n) = g™ | PX)
Hazard function = z(n) = 1- q(““)a'na (28)

The mean p of the discrete Weibull function is given by
o8]
a
g = E(k) = RZ—O q* 29)

In this paper, the only use of the discrete Weibull distribution is to approximate the Weibull

distribution.

2.2.2 Maximum Likelihood Estimation and Goodness of Fit Tests

A common technique for cstimating pafamcter values is maximum likelihood estimation. The
maximum likelihood estimator (M.IL.E) of a. parameter & is the valuc 8 which maximizes the
probability ("likelihood™) of the observed data sample. For the exponential distribution, the M.L.E.
of A\ is given by

N
A=N/ 2 t 2.10)
=1

The maximum likelihood cstimators (MLE) a and A for the Weibull distribution satisfy the

following equations [Thoman ct al. 69]:

N N N
N/&)+ 2 log,(t) = N x (2 £ xlogt) ) / (2 t?) @.11)
j=1 j=1 j=1
A~ N ~
R =N/ 2t @.12)
j=1 -

Once the value of the shape parameter a. is known, Fquation (2.12) can be used to calculate the scale

parameter A Fquation (2.11) can be used to derive a difference equation in the form
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ES - . ~
a ;= Function (ai, )

. where ?\ is the vector of observed data. A quickly converging solution can be found using the

Newton-Raphson method, as was presented in [Thoman ct al. 69].

‘The problem of fitting a suitable probability distribution to a random sample of N gbservations,
{tl, b t,\‘}‘ is addressed by the xl goodness of fit test. For data taken from a continuous
distribution (such as the exponential and Weibull distributions), the real number line is divided into
K intervals, and the deviations between the observed and expected number of data points within

each interval is recorded by the following statistic:

K
0= Z (0. - E.)?
i=1 K

where

Oi = observed number of samples in ith interval;

Ei = cxpected number of samples in i interval,
The statistic Q approximately follows a x2 distribution (hence the name of the test). For meaningful

results, the expected number of samples in any interval should be at least five.

The level of significance of a goodness of fit test is the prespecified probability of crroncously
rejecting [hc. hypothesis that the data is from the given distribution. (Typical vatues chosen for the
level of significance range between 0,01 and 0.10.) However, a di.['f‘crem quantity called the p-value is
frequently reported for goodncss of fit tests. The p-value is the empirical probability that rejection of
the hypothesis under test would be crroncous. In other words, a reported p-value of 0.25 means that
the hypothesis being tested would pass the goodness of fit test for any a priori level of significance
less than or cqual to that figure. A large p-value is generally considered to be good evidence that the
data fits the given distribution,

Typically, the value of Ei in the expression above is calculated for cach interval using the M.L.E.
parameter values. If this is the case, then only lower and upper bounds for the test p-value can be
found. For a distribution under test with n estimated parameters, the lower bound is given by the xz
distribution with K-n-1 degrees of freedom. The upper bound is given by the x2 distribution with
K-1degrees of freedom.
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For data drawn from an unknown continuous probability distribution, an alternative means for
testing the goodness of fit of a proposed distribution is provided by the Kolmogorov-Smirnov test.
Let the empirical cumulative distribution function be defined as

1
FN(t)z-I_\I— forti Sto<t

and the cumulative distribution function under test
F'(t) = F(t; 8)
where § is the M.L.E. parameter derived from the data sample {t,. t,, .., tN}. Define the following
statistic: ‘
Dy=_ sup |F(t)-F(t]

N -t <

where "sup” denotes the supremurm, of least upper bound, of its argument. This statistic Dy is ;:alled
the two-sided Kolmogorov-Smirnov statistic, and follows a probability distribution of the same name.

Dy is the maximum difference between the empirical F (t) and the hypothesized F'{t). Values of
Dy, tend to be smaller (for glvcn sample size N) for hypothesized distributions which fit the data
better. The p-value for this test can be calculated by evaluatmg the cumulative distribution function

of the Kolmogorov-Smirnov distribution,

Table 2-3 presents the M.L.E. parameter values and goodness of fit test results for applying the
exponential distribution 1o the transient error data described carfier. Table 2-4 contains the same
information for testing the Weibull distribution. In all cases, the Weibull distribution shows a much

better fit to the data than does the cxponential distribution.

TOPS-10 TOPS-20 . TOPS-10

- Reload Reload Parity Cm* C.vmp!
M [LE.A 0.0875 0.0771 00141  0.0246 0.0104
x test p-value / degrees of frecdom
lower bound for worst fit 0.000/1 0.000 / 4 0.006 / 4 0013/3 000171
upper bound for worst fit 0.000 /2 0.000 /7 5 001275 0.029/ 4 000572
lower bound for best fit 0000/1 0007/3%8 00%0/12 0299/13 0010/2
upper bound for best fit 0.000/2 0.009/39 0126 /13 0369/14 0.027/3
Kolmogorov-Smirnov test p-value 0.000 0.001 0.054 0.056 0.602

Table 2-3: Test of Exponential Distribution

The presentation of four numbers for the p-valuc of the X2 test is due to a combination of two

factors. First is the problem mentioned carlicr that only upper and lower bounds are obtainable when

]T‘nc worst case™ data for C.vmp is used here because there arc oo fow crashes i the “best case” data. Fven that limited
data supports the major conclusions of 1his scctron. :
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TOPS-10 TOPS-20 TOPS-10

Reload Reload Parity Cm* C.vinp
M.L.E. a 0.778 0.793 0.751 0779 0.654
M.E A 0.101 0.0882 0.0166 (0.0288 0.0146

X" test p-value / degrees of freedom :
lower bound for worst fit 0.000 7 40 0.043 /2 0.169 /1 0.239/1 012173
upper bound for worst fit 0.000 / 42 0.179 7 4 0.595/3 070973 0324/5

lower bound for best it 013478 (L6917 6 0822710 0934/ 12 081377
upper bound for best fit (258 7 10 0867 /8 0920712 0975/ 14 0930/9
Kolmogorov-Smirnov test p-value 0330 0.687 0.756 0.935 0.690

Table 2-4: Test of Weibull Distribution

the M.L.E. parameter values are used in this test. The second problem is the choice of how many
intervals to usc in dividing up the data. The decision made was to treat this as another upper
bound/lower bound problem, and to present the valucs indicating the best fit to the data and the
worst fit. It is especially significant that the worst fit to the Weibull distribution is almost always
much better than the best fit to the exponential distribution. This emphasizes that the decreasing

hazard rate distribution describes the data more accurately than the constant hazard rate distribution,

2.2.3 Confidence Ihte rvals and Consonance Sets

Point estimates, such as those obtained by maximum likelihood cstimation, are only
approximations which very rarely matci] exactly the values they arc intended to estimate. Because of
this, interval estimates are often desirable. ‘Ihese are intervals for which it can be asserted with some
certainty that they contain the actual value of the parameter under consideration. ‘I'he most common
use of this idea is expressed in “confidence intervals”, [For0< p <1, ap-level confidence interval is a
range within which the actual valuc of the estimated parameter would fail with probability p, if the
experiment were repeated many times. To restate this, saying that a certain range of values is a 0.90
confidence interval for a parameter means that in repeated sampling, 90% of the confidence intcrvals

so constructed would contain the actual paramcter values [Miller & Freund 65].

The concept of "consonance st;ls" has been developed in an effort to simultancously answer both
of the basic questions of statistical data analysis; whether a.particular probability distribution F(t ; §)
describes the data sample, and (if so) which values for the parameter § arc reasonable [Easterling 76].
A p-level consonance set has much the same properties as a p-level confidence interval, in that, for
repeated sampling from a given distribution. the fraction p of the sets (intervals) calculated would
contain the true valuc(s) of the parameten(s). lor a fixed sample size and significance level, data
which is more consonant with a proposed distribution produces a larger consonance set, This is due

to the goadness of fit considerations involved with constructing ¢consanance sets.
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The general method for constructing consonance scts proceceds as foltows [Salvia 79].

1. Choose an appropriate goodness of fit statistic, such as the Kolmogorov-Smirnov statistic
Dy (Evidence shows that the x2 statistic is not a good choice [Salvia 30].)

2. Set K equal to the value at which the cumulative distribution function of DN (in this case,
the Kolmogorev-Smirnov distribution) reaches the probability level p. (This is sometimes
called the plh fractile of the distribution of 1.

3. Consider the statistic 1Dy, as a function of the parameter 8 of the distribution under
consideration. The consonance set C is defined as those values of @ for which Dy < K.
(Recall that the caleulation of Dy depends on the value of 4.)

A consonance set obtained in this way plots as a line segment for one-parameter distributions, and as
a bounded area for distributions with two parameters. Specific techniques for constructing

consonance sets for the Weibull and two-parameter cxponential distributions are given in {Salvia 79).

Figure 2-1 displays 90% consonance sets for the Weibull parameters constructed from cach of the
five sets of data. As explained above, these sets contain all values of the parameters for which the
Kolmogorov-Smirnov goodness of fit test passes the data at a _signiﬁcancc level less than or equal to
0,10 (i.c., 1-p). The TOPS-10 and TOPS-20 reload data yield no parameter values consistent with the
exponential distribution {a@=1). The other three data sets, however, do produce some parameter
values for which the exponential distribution is plausible. Becausc of this, 90% confidence intervals
were constructed for these particular data sets using techniques developed in [Thoman et al. 69].

These confidence intervals are given in Table 2-5.

TOPS-10 Parity Cm* C.vmp
Confidence Interval for a [0.655 , 0.844) [0.680, 0.875] [0.531,0.767]
Confidence Interval for A [0.0132, 0.0209] [0.0231,0.0359] [0.0099 , 0.02141

Table 2-5: 90% Confidence Intervals for Weibull Parameters

As seen in the table, none of the confidence intervals for the shape parameter a includes the value
one, i.e., the constant hazard rate (cxponential) function. Also, it should be noted that none of the
corresponding consonance sets contains the M.L.E. scale parameter A for the exponential distribution
(indicated in lower case on the graphs). Thus, cven though the exponential distribution cannot be
ruled out absolutely, it does scem most unlikely, The decreasing hasard rate Weibull distributios, oo

* the other hand, provides a good fif 1o these tirey dia seis a8 e e e the PDP-10 reload data.
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2.2.4 Conclusions of the Data Anélysis

Data collected from several different systems has been presented and analyzed. These systems
range in size from an NMOS microprocc'ssor with 12K words of memory to ECL. mainframes with
one megaword of memory, and range in redundancy from nonredundant to parity to triplication. In
every case, the data shows an acceptable fit to a decreasing hazard rate Weibull distribution. In fact,
most of the data sets show excellent fits to the Weibull family of distributions. For only two sets of
data (TOPS-10 memory parity errors and Cm* transient errois) does the exponential distribution
appear to be even plausible. In cach case, the fit to the exponéntial distribution is poor, while the fit

to the dec.reasing hazard rate Weibull distribution is extremely good.

This result completely upsets the common assumption of constant hazard rates for transient errors
used in reliability modeling. The impact of time-varying hazard rates on system reliability models is

the topic of the remainder of this paper.
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Chapter 3
Modeling Techniques

3.1 Markov Models

A powerful tool for analyzing complex probabilistic systems is the Markov process model. The
two central concepts of such models are "state” and “state transition". The stare of a system
represents all that must be known to describe the system at any instant of time. For reliability
models, each state represents a distinct combination of working and failed modules. If each module
is in one of two 'conditjons == working or failed -- then the complete model for a system of n modules -
has 2" states. As time passes, the system goes from state to state as modules fail and recover. These
changes of state are called state transitions. Discrete time modcls require all state transitions to cccur
at fixed time intervals, and assign probabilitics to each possible transition. Continuous time models
allow state transitions to take place at varying, random intervals, with differential transition rates
assigned to possible transitions. For reliability models, the transition rates arc based on the module

error hazard rates and recovery hazard rates,

3.1.1 Time Invariant Markov Models

The basic assumption underlying Markov models is that the probability of a given state transition
depends only on the current state. For continuous time Markov proccsses; it is also assumed that the
length of time aiready spent in a state does not influcnce either the probability distribution of the
next statc or the probability distribution of remaining time in the same state before the next
transition. These are very strong assumptions, and imply that the waiting time spent in any onc state
is gecometrically distributed in the discrete time case, or exponentially distributed in the continnous
time casc [Howard 71]. Thus, the Markov model natu rally fits in with the standard assumption that

error rates are constant, leading to exponentially distributed interarrival times for errors,
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3.1.2 Time Varying Markov Models .

A useful generalization of the Markov model for reliability. modeling is to allow state transition
probabilities to change over ‘ime. This causes difficulties in obtaining solutions, since it generally
makes the use of transform analysis impossible [Howard 71]. Nevertheless, if error rates are functions

of time, the techniques discussed in this section can be used.

Dcﬁne Q (m n) as the probability that the.system is in state _l at-time n given that it was in state i at
time m (m < n). For consistency, Q(m,m) = I (the identity matrix). With this notanon in matrix
form the "Chapman-Kolmogorov" equation is

Q(m,n) = Q(m,x) Q(k,n) form<k<n
Lettlng k=n-1
Q(m,n) = Q(m n-1) Q(n-Ln)
Defining P(n) = Q(n,n+1)
Q(m,n) = Q(m,n-1) P(n-1) 3.])

This equation can be expanded recursively

Q(m,n) = Q(m,n-2) P(n-2) P(n-1)
Q(m,n) = Q(m,n-3) P(n-3) P(n-2) P(n-1)

The solution finally becomes
Q(mn) = H Pa) 3.2)

Form = 0 and all P(i) = P, this becomes P", the classical solution for discrete time Markov models.

Corresponding cquations can be derived for the continuous time case. This is usuaily done for
time invariant models, as the the model is easily set up in terms of differential rates. However, the
solution of time-varying models requires the use of numerical integration techniques due to their
complexity [Stiffler ¢t al. 79]. An alternative method is to approximate the continuous time processes
with discrete time cquiva]ents Since numerical integration involves some degree of approximation
anyway, this is frequently a good choice. The major difficulty is that many transition rates which are
effectively zero in the continuous time differential transmon rate matrix assume small but nonzero
probabilitics in the discrete time transition probability matrix. For the systems modcled in this
paper, the number of states {(and therefore the number of state transitions). is -small enough to

encourage the usc of discrete time Markov models.
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For converting from continuous time harard functions (error and recovery rate functions) to
discrete time hazard functions, a discrcfc time probability distribution corresponding to the
continuous time distrlibution defined by that hazard function must be found. The corresponding
parameters can then be calculated for the desired time step. Recall that the Weibull distribution
hazard function

ft) = aMA )™
has a corresponding discrete distribution hazard function
AK) =1 - q(k+1)“-k“ ‘
Assuming a unit time step, the correspondence between these two furnctions is given by
q=e™
The continuous time hazard function represents a differential rate of change from one state to

another. The discrete time hazard function is a probability of changing state at the next time step.

3.2' Monte Carlo Simulation

The techniques éonsidered thus far are insufficient to obtain results when even quite reasonable
changes are made in the modeling assumptions. Consider the issue of error process renewal. [t seems
rather intuitive that a recovered mfidule should be "as good as new", but that is not the assumption
behind the Markov 1nodels discussed above. In those models, the error processes are not reset to
time t =0 (n=0) when a module recovers. This can make a dramatic difference in the error rates, In
the Weibull hazard function, for « less than one, the error rate asymptotically approaches zero; for a
greater than one, it grows without limit. The crror rate immediately following recovery can thus vary
tremendously depending on which assumption regarding renewals is made. (Of course, for constant
error rates, there is no difference in effect between the two assumptions.) Consider the discrete
Weibull hazard function z(n)

An)=1- q(n+‘1)"—n“
If this error process is "renewed” (resct to time zero) whenever a recovery occurs, then the
conditional hazard function of the process given the renewal time Npis”
' 7(n) = 1- q(n-NR+1)“-(n—NR)“

In general, the hazard function of the error process with renewal is given by

n
z(n_): 1 - Z (q("'“l)a_(“"k)a_)Pr{NR_—.kIn}
k=0 .

‘The second term in the summation is the conditional probability that the rencwal time has any
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particular value given the current time. Calculation of this value depends on the entire past history of
the system, which makes it rather intractable to compute in practice. Thercfore a new technique to

attack the problem of refiability modeling is needed.

A standard method of studying the reliability of systems which are too complex to model
analytically is to simulate their performance and examinc the results [Almassy 79, Yakowitz 77). The
basis of such "Monte Carlo” simutation schemes is a pscudo-random number generator, which
produces a seguence of numbers between zero and one (0,1) that approximately follow the uniform
distribution. For good results, simulations should be run using two or more independent pseudo-
random number generators, and the generators used should be thoroughly tested [Knuth 69]. This
was done for the simulation-based models of this chapter. Details of the generators chosen, and their
test performance, are given in [McConnel 81}. Three separate generators were chosen after extensive

testing.
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Chapter 4
System Models

Four system organizations are modeled in this paper:

1. A nonredundant system (simplex)
2. A symmetric reconfigurable dual redundant syster {duplex)
3. A triple modular redundant system with majority voting (TMR)

4. A hybrid redundant system which has a triple modular redundant core plus a standby

spare module (hybrid).
Two types of models are developed for cach of these systems. The first is a time-varying Markov
model with uniform discrete Weibull error rate functions. In this model, all time- -varying error rates
and recovery rates follow a single global monotonic time scale. The second typc of model allows
independent renewals of the different error processes and recovery processes, Thls means that each
individual error process is reset to time t =0 whenever a recovery oceurs. (Recovery processes are
resct whenever errors occur.) With this assumption, Monte Carlo simulation is used to soive for the
system reliability. These simulations require two ancillary functions: a pseudo-rahdom number
generator RANDOM() and mission time function MT(r ; a,A). For the simple Weibull reliability
function

R(t) = e A D°
the corresponding mission time function is

a

MT(r) = _lf;\_geﬂ @1

Essentially, the mission time function js used to change the uniformly distributed pseudo-random

numbers to follow the-desired Weibull function.



22 Transient Error Reliability Models Based on Data Analysis
4.1 Simplex Models .

These models are trivial, as shown in Figures 4-1 and 4-2. Virtually the same model applies
regardless of the assumption concerning process renewals, because the first module error causes the

system to fail.

¥or the first model, (hat without error process renewals, the discrete time-varying Markov solution
method using matrix multiplications i is utitized. For the second model, although the rcsults should be
identical, a Monte Carlo simulation is pcrformcd This allows a check on whcther or not the
simulation results (including those for other models) are reasonabie. For this model (and the others
described following), a total of 3000 simulations was performed, using three different pseudo-random
number gencrators for 1000 simulations cach. Each simulation of the simplex system consists only of
generating r as the next pseudo-random number in sequence (r = RANDOM() ), and transforming

it via the mission time function M’[‘(r,ae.)\ Joa time which follows the Weibull distribution,

s(n) E z: 10
1.0 - s(n}
o @

Aln) = 1.o-qe(“”)a°‘“ ¢

Figure 4-1: Simplex Model Without Error Process Renewal
2(t)

Aty = a A A D%

Figure 4-2: Simplex Model With Error Process Rencwal
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4.2 Duplex Models

The duplex system modeled in this thesis is organized as a symmetric dual system which
reconfigures o a simplex system when cither of tie two modules fails to work properly. The first
maodel (without error process rencwal) has identical error and recovery processes for both modules at
all imes. Therefore the two states with one module working and onc module crashed have been
merged into one state. In th.is model, the states arc labeled with the number of erring modules. State
2 thus rcprcsenis the system failed state. The coverage factor ¢ reflects the probability that a single
error will cause the system to fail. (¢ is always assumed to equal 0.99 in this study.) The function s(n)
is the time-dependent probability that an error will not occur at time step n, and the function r(n) is

the probability that a module which has crashed will nof recover at time step n.

The reliability of redundant systems is considerably more complex to simutate than for the simplex
systemn. Consider the state transition diagram of a duplex system shown in Figure 4-4. Because of the
need to distinguish between transient errors {and recovery from same) of individual modules, a four-
statc model is required. Otherwise, this models the same system as Figure 4-3, albeit with continuous
rather than discrete time.  Simulation of the duplex Vsystcm reliability follows the algorithm given
below. The algorithm assumes that the two modules are labeled 1 and 2. STATE records which
module has an active error (0 if neither). The two times ‘I{1] and T[2] record the (randomly
gencrated) times of the next cvc—nt. either error or recovery, for the corresponding module. NEXT
records which module has the earlier OCCUITING event Lo cause a state transition,

I. Global initialization
STATE« 0
T[]« MT{ RANDOM(), a.A)
112} « MT{ RANDOM(). a.A)

2. Loop: choose next state transition
if (IT1] < 'T[2]) then NEXT € 1 else NEXT « 2

3. Choose next state
case STATE of
0: H (RANDOM() 2 C) then STATE « NEXT clse goto step 6;
LM (NEXT = 1) then STA'TE €« 0 elsc goto step 6;
20 (NEXT = 2) then STATE + 0 else goto step 6;
end case

4. Calculate new transition time
iNSTATE = ()
then TINEXT) & TINEXT) + MT( RANDOMY(), a, )\e)
clse TINEXT] « TINEXT) + MT{ RANDOM(), a, )\r)
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5, Repeat loop -- goto step 2

6. Return simulated mission time
"TIME € T[NEX'T]

1.0 - [Cln) + D(n)]

AlR) ‘
1.0 - [A(n) + B(n}} 1.0
D{n) .

~Bn S

— "
-.._____>__-_____

A(n) = 2c s(n){1-s(n)]
B(n) = 2[1-cls(m)[1-s(n)] + [1- s(n)]
C(n) = s(n){1-r(n)]

D(n) = [1-s(n)](n})

s(n) =q, ("+1)ae'" ¢
r(n) =q, (n+1)""

s(n) is the probab:hty of not having an error occur within a module at time step n, and r(n) is the
probability of not having a recovery occur at that time.

Figure 4-3: State Diagram of Duplex Model Wlthout Error Process Renewal

4.3 TMR Models

The third structure modcled is a triple modular redundant (T MR) system. Tr- without
error process renewal is shown in Figure 4-5. As with the duplex model, the multi vith one

modulc not working have been merged into one state.

The state transition diagram of the TMR modcl with error process renewal is shown in Figure 4-6.
_ The simulation algorithm is similar in outline to that presented for the duplex system model. Details
can be found in [McConnel 81].
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cz(t-t1)

Qc)[z(t-n) + Z{t-12)] /
— —~

—
-___________H$_____..

at) = a A A )%t

f(t) = a A (A )%
Figare 4-4; State Diagram of Duplex Model With Error Process Renewal

1.0 - [C{n) + D{n}]

A(n)
1.0 - [A(n) + B(n)] : 10
D{n)
T—

~.Bin) - —-‘//

A(n) = [s(n)]zg-s(n)} :
B(n) = 3s(n){1-s(n))? + [1-s(n)]®
C(n) = [s(n)]’[1-r(n)]
D(n) = 2s(n){1-s(n)je(n) + [1-s(n)]2

sy = g, (n+1) o0’
i) = q (1#1) Tn "

Figure 4-5: State Diagram of TMR Model Without Error Process Renewal
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r(t-t2)

r{t-13)

A1) = a AA D%

f(t) = a A (A 1)
Figure 4-6: Statc Diagram of TMR Model With Error Process Renewal

4.4 Hybrid Models

The last type of system modcled is a hybrid redundant structure, with a triple modular redundant
core and a single standby replacement module. As in the other models without error process renewal,
the multiple states with one module crashed, and with two modules crashed but the spare switched
in, have been merged into single states. This results in the model shown in thure 4-7. As with the
other models, the states are labeled with the number of erring modules. State 3 is the system failed
state. The coverage factor c is the probability that the spare module successfully replaces a module in
which an error is detected. (As with the duplex model, ¢ is always equal to 0.99 in this study.) The

state transition probabilitics are otherwise similarly defined to those for the other system models.

Flgure 4-8 displays the state transition diagram of the hybrid system model with error process

renewals. The simulation of this system proceeds similarly to that of the duplex and TMR systems.
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1.0 [D{n} + E{n) + F{n))

~ 1.0 - [G{n} + H(n} + J(n}] /

"”—_.______%_____._—/

A(n) = (3C+1)[8(n)] {1-s(n)}

- Bn) = 3(1- c)[‘:(n)] [1- s(n)] + 3(1+C)[b(ll)] [1-s(n)]?
Cm) = 3(1- Ofs(m)P[L-s(n)* + 4s(n)[l s(n)P + [L-s(n)]*
D(n) = [s(n)]’[1-r(n)]

E(n) = 3[s(n)}*[1-s(n)]r(n) 3 3s(0)[L-s(n)] 3[1 r(n)]

F(n) = 3s(n){1 5(n)] r(n) + gl s¢n)]

G(n) = [s(n)] [1 r(n)|
H(n) = 2s(n)[1-s( : (m)|[1- l(n)] + 2[s(n)]2r(n)[1 -1(n)]

In) = 2*(11)[1 stm))r(n))? + [t smPir(m)}]® + 2[1- -s(n)Pr(n)[1- -(n)]

S(n) = qe(n+1) C

O!r tlr
(n) = qr("+1) -n
Figure 4-7: State Diagram of Hybrid Model Without Error Process Renewal
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¥igure 8. State Diagram of Hybrid Modcl With Error Process Renewal
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5.1 Parameter Values

For purposes of comparison, error processes of equal means are used throughout. The values of A
are changed along with the values of a to maintain a constant value for the mean of cach process.
This is done because the mcan value of a probabilistic system is one of the commonest statistics used

to describe system reliability, For stmplicity, recovery processes are assumed to be cxponential,

The parameter values for this cxpcriﬁ]cnl arc chosen o vesult in a module mean time to error of
160 time steps, and a mean time to recovery for a module of 10 time sweps. The corresponding values
of q. for each value Ufac arc calculated by finding values of )\c in the Weibull function which result
in the same mean time to error, and then defining q, = e’("e’ac. The values obeained are shown in
Table 5-1 below, Their accuracy was checked by performing the summation of Haquation (2.9) for

several thousand terms. In each case. the sum came to within less than 1% of the desired value of 100.

a, )\e Q. ) a )\r q, Coverage, ¢
0.6 0.01505 0.922543 1.0 0.100 (904837 0.99
0.8 0.01133 0.972624 1.0 0.100 0.904837 0.99
i.0 0.01000 0.990050 L0 (.100 0.904337 0.99
1.2 0.00941 0.996308 1.0 0.100 0.904837 0.99

Table 5-1: Parameter Values for Experiment

5.2 System Reliability

Figures 5-1 through 5-4 display the reliability curves for cach of the four system models under the
two different modeling assumptions.  The general effect noticed is that systems with a decreasing

hazard rate (ac < 1) initially are fess reliable than the one with a constant hazard rate (.:::c = 1), but
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eventually reach a crossover point and beeome srore reliablel. An appaosite effect is evident for the
systems with an increasing huzord rate (e 2 1). Liror process renewal delays the crossover points to a

Jater tine and lower reliability, ‘This is most evident in Figure 5-2.

In order to judge the validity of the system reliability simulations, availible analytical model results
can be compared to the siinulation resulis using the Kolmogorov-Smirnov goodness of fit test. ‘The
simplest modet (for the simplex system) also provides a general test of how well the uniform number
generator produces pseudo-random numbers following the Weibull distribution. ;l'l1c test results for
the simplex system, and also the duplex and TMR systems With a, cqual to one, are givén' in Tablc 3-

2. All of the tests produce acceptable results. ‘Fhis is encouraging for the studies in the remainder of

this paper.
System - a, Fit Significance
' Simplex 0.6 0.998
Simplex 0.8 0.362
Simplex 1.0 0.235
Simplex 12 . 0.434
Duplex " 1.0 0.657
TMR 1.0 0,469

Table 5-2: Test Resuits for Validating Simulations

5.3 Reliability Difference Relative to Constant Hazard Rate Systems

Many methods exist for comparing the reliabitity results of different systems or different models,

Onc of the simplest metrics is the refiability difference function RID(t), which is defined as
RD(t) = R(t) - Rb(t)

where Rb(t) is a baseline system reliability. The impact of decreasing (e, < 1) or increasing (a e >1)
hazard rates is dircctly shown in Figures 5-5 through 5-8. Plotted in these figures are the reliability
differences relative to the same sysicm with a constant (a e 1) hazard rate. Large differences are
seen in these plots, especially for the redundant structures. For regions of high system rcliability,
these deviations can be as great as 30-40%. For the. redundant structures in regions of lower
reliability, the deviation can be scveral orders of magnitude if the decreasing hazard rate systemns
without crror process rcncwal- are compared to the constant hazard raic system. For the simplex

system, and for the redundant systems with error process renewal, the largest elfects of nonconstant

| . . .
e crossover points fur sonie systems are nol Jown heeanse they aceur at reliabiling fevels hickow. (L5


http://bcau.se

8

L

iedeling Results and Coinparisons

Reliability

>
Q

O
©

0.8}

0.61

0.5

3l

o8& o @

u
20 e ea
Do N

L

20 40 60 80 100
Number of Time Steps

(a) Analytic Model Results

> 1.0 Co a=1.2
= a=1.0
] - a=0.8
Iy --=~ a=0.6
£ 0.9
0.8}
0.7,
0.6]
0.5 - e ;
0 20 40 60 80 100

Number of Time Steps
(b) Simulation Model Results

Figure 5-1: Simplex System Reliability
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hazard retes cocur avith overestimaten of reliabiliy for decreasing hazard rate systems and

underestinmation af ol Bor increasing hazind rate systems,

Compaiing the resulis ol i teo Gpes of redundant system maodels, in general for the the models
with error process renewal, the initial differences are shightly greater while the later ditferences are
much sinaller. For exampsle, the TMR sy<tem without ecror precess renewal has maximum reliability
differences of hout -2 and 4-0.22 for o, = 0.6.7The same system and paraineter values with error

process reney als show mazisium differences of roughly -0.24 and +0.02.

Somedhing which is obvious from all the figures shown in this section thus far is that the
maanitude of the relizhility difference 1s directly related to the distance @, is from onc. For example,
i Figure 5-7, the reliability difference for a, = 0.8 ranges between -0.08 and +0.11; while for
a, = 0.6, it ranges between -0.20 and 4022, These gures are for the TMR model without error
process renewal.  Similar resulis hold for the other models, including those with crror process

renewal,

5.4 Mission Time Improverncnt Relative to Constant Hazard Rate
Systems

I systems with stringent reliability requirements, the wission time funetion MT(r) is often used.
‘The reliationship between reliability R{t) and mission tisne M1(r) is given by
RIMT(H] = roMIEHR(D] = t
For comparing two systems, the missien ting improvement MTI(r) is defined as
. M(r
MTI(ry = ..____2.
MT (1)
where M'l'b(r) is the bascline system mission time.  Figures 5-9 through 5-12 plot mission time
improvement for the differeat systems.  In cach cuse, the baseline system is the corresponding

structure with a, = L0 (constant hazard rate).

The data used to generate the curves of Figure 5-9 was calculated by inverting the Weibull
reliability function to find the values of ¢ corresponding o the desired reliability levels. The curves
for the other systemns without error process renewal are based on the reliability curve paints, using
lincar interpolation to obtain non-integer mission times.  ‘The mission times on which the error
process renewal model curves are were derived by sorting the generated simulation times, and taking

the k'™ entry, for the reliahility Tevel equat o (1 - k/3000).
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The trends observable in the mission time improvement plots are what \\'()Qld be cxpected from
examnining the reliability graphs.  For a, C 1 (i.c., decreasing hazard rates), the mission time
improvement relative to the constant hazard rate starts out very small for high reliability levels, and
increases monotonically as the reliability gocs down. An opposite effect occurs for increasing hazard
rates, ‘The important thing 1o nete is that for both redundant and nonredundant systems, the
obtainable mission times for high mission reliabilities are much smaller for a < 1 than for a, z 1.

This is true even for redundant structures and for a, only a little iess than one,

5.5 Reliability Difference Relative to Simplex System

In addition to the direct cffcct-on predicted reliability of decreasing (a, < 1) or increasing (a, > 1)
hazard rates, the indirect effect on the reliability difference between redundant and simplex systems
is also of interest. Figures 5-13 through 5-15 display the reliability differences between the redundant
systems and the simplex system. The range of values for a . given earlier is shown for each of the
three redundant structures: duplex, TMR, and hybrid. For each curve plotted in these graphs, the

bascline system is the simplex system with the same value of « -

For the system models without error process renewal, the intercsting feature of these graphs is that
changing the shape parameter does not significantly affect the peak magnitude of the rcliability
difference for the range of parameter values shown. The main cffect seems to be that the smaller the
value of o, the slower the decline from the peak reliability difference. This is true for all three types
of redundant structure. On the other hand, for the system models with error process renewal, the
peak magnitude of the reliability difference ihcrcascs-lnoticeaibly with increasing values for « e but the
reliability differences all decline quickl.y from that peak value to converge to a rclatively small range

of values.

An important fact gleancd from Figures 5-13 through 5-15 is that, for every value of «, the hybrid
redundant system has the highest rcliability, followed by the duplex system and the TMR system
respectively.  Thus, the relative improvement in reliability duc to one redundancy technique
compared to another is not sensitive to the value of de. This should be good news for system

designers.

The reason that the TMR system, with three modules, is less reliable than the duplex system, with
only two modules, proceeds as follows. Both the duplex and TMR systems can survive only one

module crash. In fact, the duplex system has a smatl probability (1% throughout this thesis) of not



Modeling Results and Compasisons

Reliability Difference

©
~

0.6

o
)

0.4

0.3

0.2

45

iy e a=1.2 (Renewal)
---------- o=1.2 (No Renewal) "y

a=1.0 (Simulation) .,
a=1.0 (Analytic) "
- a=0.8 (Renewal) -,

....... a=0.8 (No Renewal)
---- a=0.6 (Renewal)
===« a=0.6 (No Renewal) e

200 300 600 800 1000
Number of Time Steps

Figure 5-13: Reliability Difference Comparing Duplex to Simplex System



46

Reliability Difference’

Transient Error Reliability Models Based on Data Analysis

o
a
Q

0.36

0.30}

0.25 Tteeell
0.20 \\\
- \\
AN
\"\
\-\

0.151 %

(Renewal) 1."'-:\ .

H— a=1.2
0_10-:5' a=1.2 {No Renewal) "'-‘_ T

W —— a«1.0 (Simulation) % RS

[ e a=1.0 (Analytic) "'-.. N

¢ - a=0.8 (Renewal) -°"-

i - a=0.8 (No Renewal} =,
0.05¢ .. oc0.6 (Renewal) ™ _

=== a=0.6 {No Renewal) R ST

o 200 400 600 800 7000
Number of Time Steps

Figure 5-14: Reliability Difference Comparing TMR to Simplex System



Modchng Resuhts and Comparisons 47

Reliability Difference

o
[

o

0.4

0.3

0.2

.- --—-Eewmw - ---

.......... a=1.2 (Renewal)
..... “» a=1.2 {No Renewal)
—— a=1.0 (Simulation)
——— a=1.0 (Analytic)
....... a=0.8 (Renewal)
w=== a=0.8 (No Renewal)
-~-- a=0.6 (Renewal)
==~==- a=0.6 (No Renewal)

A A A n 4

200 400 600 800 1000
Number of Time Steps

Figure 5-15: Reliability Difference Comparing Hybrid to Simplex System



43 Transicnt Error Reliability Models Bused on Data Analysis

surviving cven one module error, Consider therefore the sttuation of fully operational systems. The
duplex system has two modules contributing to the system error vate while the TMR system has
three. One would expeet therefore that the TMR system would have an average systeim errot rate
50% greater than the duplex system. This imbalance is even larger for the situation with one module
crashed: the TMR system still has two modules contributing to the system error rate whilc the
duplex system has only one. ‘['hus one would expect the TMR systemn to average twice the error rate
of the duplex system, when cach system has one module alrcady crashed. 'The coverage factor
{probability of successfully detecting an prrbr and rcconﬁguring"mc systeimn) for the duplex system
dircetly affects the comparative system crror rates of the the duplex and TMR systéms when all
medules are operational. However, the TMR structure is inherently much less reliable when one

module has already crashed.

5.6 Mission Time Improvement Relative to Simplex System

Mission time improvement for cach of the three redundant systems is plotted in Figures 5-16
through 5-18. For thesc graphs, the bascline for comparison is always the simplex system with the
same value of a. As would be hoped, the redundant systems all exhibit much greater mission times

than the simplex system.

Figurcs 5-16 through 5-18 show very different patterns for the systern models with"and without
error process renewal. For the models without error process rencwal, the mission time improvement
decreases monotonically for a2 1; and for «, < 1, the mission time improvement falls to a minimum
and then starts rising again. Opposite trends arc apparcnt (but much less definite) for the éystcm
models with error process rencwal: the mission time improvement is gencrally decreasing with

reliability for a <1, but has an inflection point with a local minimum for a_ > 1.

One aspect of all these mission time improvement curves holds true regardless of system structure
or error process renewal. For high levels of mission reliability, the mission tim¢ improvement
increases as the valuc of the shape parameter a, decreases. Thus, cven though the absolute mission
time attainable for a system with e _< 1 may be very small, the relative gain achieved by redundancy

is still very much worthwhile.
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Chapter 6
Conclusions and Comments

The focus of this paper has been a study of transient errors in digital computers. Data collected
from scveral different systems has been analyzed with a variety of parameter cstimation techniques
and goodness of fit tests. In every case, the data showed a much better fit to a decrecasing hazard rate
Weibull distribution than to the constant hazard rate (exponential) distribution. Maximum
likelihood estimates of the Weibull distribution shape parameter for the collected scts of data range
between 0.6 and 0.8. Any value for the shape parameter less than one indicates a decreasing havard
rate. 'Thus, it is only reasonable to conclude that transient errors follow a decreasing hazard rate

distribution rather than the constant hazard rate distribution usually assumed in the past.

Reliability models of both redundant and nonredundant systems have been developed using the
decreasing hazard rate Weibull distribution for the module error processes. Constant and increasing
hazard rate distributions werc used as well for purposes of comparison. An initial sct of transicnt
error rcliabiiity models was developed under the assumption that the hazard rates decrease {or
increase) monotonically from the time that the system bcgins'opcration. Discrete time Markov
processes were used to solve these models for systerﬁ reliability. A change in assumptions produced a
second set of models. This sccond set assumes that module error processcs are renewed (reset to time
zero) whenever a module recovers from a transient error. This assumption is a more realistic basis for
extending the nonredundant system results to redundant system models. Unfortunately, this requires
the use of Monte Carlo simulations to obtain approximate solutions for system reliability. It is more
realistic becausc the data analysis (based primarily on nonredundant systems) follows the assumptien

that the error process is renewed at the time of recovery,

Large variations are noted in the reliability differences and mission time improvements resulting
from relatively small changes in the value of the shape parameter a,. This is truc whether the
comparisons are made with respect to the same structure having a constant hazard rate (ae = 1}, or

with respect to the simplex system having the same value for the shape paramcter, Consider the
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duplex system model without error process renewal, for a = (.8 (decreasing hazard rate).
Comparing the reliability of this system with that of _thé same system for a, = 1.0 (constant hazard
rate), the 20% change in the value of a produces a maximum reliability difference of about 0.22, and
a 50% decrease in mission time for a mission rcliability of 0.99. Comparing the two duplex systém
models (me = 0.8 and a, = 1.0) 1o the corresponding simplex system models, the reliability
differences are very close for the first 200 time steps (twice the module mean time to error), after
which they diverge until, at 1000 time steps, the decreasing hazard rate (ae = (1.8) system shows twice
as large a reliability difference as does the constant hazard rate s-ystcm. For a mission reliability of
0.99, the decreasing hazard rate duplex system shows a 65% incrcase in mission time .improvement
over the the constant hazard rate duplex system (both systems being compared to the corresponding

simplex system).

The models with error process rencwal produce somewhat different results than those without
error process rencwal. In comparing the former to the latter, the reliabilities of nonconstant hazard
rate systems converge much more quickly to the reliability of the corresponding constant hazard rate
system. Despite this Jong term convergence, the initial peak magnitude for the reliability difference
due to changes in the valuc of the shape paramcter appcears to increasc somewhat for the error
process renewal assumption. Both of these tendencics can be explained by remembering that the
renewal process serves to limit the range of values which the module hazard function can take. In
tong term averages, the hazard function which is (randomly) renewed periodically ‘resembles a
constant hazard rate, albeit with randomly varying fluctuations. Over shorter titne intervals, the
periodic (randon) rencewals of time varying hazard functions cmpﬂasize the initial short term values
of the given hazard function. Thus, the initial high crror rate for decreasing hazard rate procésses is
emphasized cven more in the effects on a redundant system model; and the initial low error rate for
increasing hazard rate processcs is also c_mphasi;f.cd in redundant system models. The major impact
of varying hazard rates remains the same regardless of crror process renewals: attainable mission
times for high levels of reliability are severely limited if the error process follows a decreasing hazard

rate.

Two lessons for system designers can be drawn from this study of transient errors. First and most
important, designers have an additional parameter for sensitivity analysis: the shape parameter a,.

‘This is perhaps best illustrated by an example.

Consider a nonredundant system with a mean time to transient error of ten hours and a six minute

mean time to recovery from same. Assume that a mission time of sixteen hours is desired, with a 99%
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probability of success. Table 6-1 shows the mission reliabilitics for three sets of systemns: a,= 1.0,
«, =038, and ae:O.(). Note Lhat any of lh.c redundant systems mect thé desired mission goals for
a = 1.0, but that only the hybrid system achicvcs the desired reliability for a <L0. (If rounding off
1o two decimal places is allowed, the duplex system barely meets the mission reliability requirements
for a,=0.8.) This highlights the utility of redundancy with sparcs for dealing with transient errors,

which leads to the next point,

Systern ca, =10 a, =08 a, = 0.6
Simmplex 0.8521 0.7748 0.6534
Duplex 0.9940 0.9878 0.9708

TMR 0.9914 0.9788 0.9395

Hybrid 0.9998 0.9992 0.9958

Table 6-1: Mission Reliabilities for Design Example

The second lesson for system designers is that, with transient errors being a prominent cause of
system failure, it is best to design systems with error recovery in mind. For instance, a system which
switches in a spare module when a failure is apparently found should be designed such that the
module which is switched out is added to the pool of spares (with lowest priority). This allows
transient errors with massive effects to be flushed out of the system without unnecessarily discarding
hardware which is undamaged. All models in this paper assume a structure which can recycle

modules that have been replaced by a spare.

Although much remains to be learned about transient errors in digital computers, a solid
foundation has been laid in this rescarch.  Analysis tools have been developed (see [McConnel 81))

which can facilitate future studics of transicnt errors.
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