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Abstract 

Experimental data on transient errors from several digital computer systems is presented and 

analyzed. This is the first large scale public study on the statistical distribution of transient errors. 

The systems for which data has been collected are the DEC PDP-10 scries computers, the Cm* 

multiprocessor, and the C.vmp fault tolerant microprocessor. Statistical tests indicate that transient 

errors follow a decreasing hazard rate distribution. This is at variance with the standard assumption 

of constant hazard rates (exponential distribution) used in reliability modeling, and requires models 

of greater complexity for accurate results. Models of common fault tolerant redundant structures are 

developed using the Weibul! distribution, which has a time-varying hazard rate. Both analytical and 

simulation models arc used to analyze die differences between the reliabilities predicted by Weibull 

based transient error models and those predicted by exponential based models. The analysis 

indicates a significant difference between the models based on the exponential distribution and those 

based on the decreasing hazard rate Weibull distribution. Reliability differences ranging from -0.10 

to +0.20 and factors greater than 2.0 in Mission Time Improvement for Weibull parameters 

equivalent to measured system behavior arc seen in the model results. System designers should be 

aware of these differences. 
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Chapter 1 

Introduct ion 

1.1 B a c k g r o u n d 

The problems posed to digital computers by transient faults have largely been neglected in the 

research literature, except for occasional items of limited scope (e.g., [Wakerly 75]). A general model 

for transient fault occurrence and recovery based on a Markov model with the assumed exponential 

distribution for interarrival times was presented in [Avizienis 77]. This approach is typical of efforts 

to model all types of faults permanent [DoD 74] and intermittent [Spillman 77, Su et al. 78] as well 

as transient. 

The original focus of tliis research was the collection of transient error data for analysis. Many 

studies of actual failure data have supported the use of the constant failure rate (exponential) process 

as an accurate mathematical model for hard failures. No such study has been published for transient 

errors. Without data, there has been no basis for cither .supporting or disputing the extension of 

earlier probabilistic models for hard failures to cover transient errors also. 

Data collected from Cm*, a multi-microprocessor built at Carnegie-Mellon University, indicated a 

decreasing error rate [Tsao 78]. This spurred analysis of data from other systems, notably large 

timesharing computers in use at Carnegie-Mellon, and C.vmp, another experimental microprocessor 

system. When data from these systems was analyzed, similar decreasing error rates were also 

observed [McConnel et al. 79]. These consistent results, which will be developed in detail later in the 

paper, suggested a new goal of investigating reliability models which incorporate time-varying error 

rates. Such models present difficulties which do not arise when constant error rates can be assumed. 
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1 . 2 Significance of Transient Errors 

The importance of transient faults comes from their relatively frequent occurrence. Several studies 

have shown that permanent faults cause only a small fraction of all detected errors. The available 

figures for several systems are given in Table 1-1 below [Fuller & Harbison 78, Morganti et al. 

78, Morganti 78, Sicwiorek et al. 78a]. The last row of figures are estimates comparing the hard and 

soft failure rates for a one megaword by 37 bit memory array composed of 4K MOS RAMs [Geilhufe 

79, Ohm 79]. (Soft failures are transient failures caused by the radioactivity in the packaging material 

of the chips.) 

System 

CMUA PDP-10 

Cm* LSI-11 

C.vmp 

Telettra 

1M x 37 RAM 

Technology 

ECL 

NMOS 

TMR LSI-11 

TTL 

MOS 

Detection 

Mechanism 

Parity 

Diagnostics 

Crash 

Mismatch 

(Parity) 

MTTF 

(transient) 

44hrs. 

128 hrs. 

97-328 hrs. 

80-170 hrs. 

106 hrs. 

MTTF 

(permanent) MTTE/MTTF 

800-1600 hrs. 

4200 hrs. 

4900 hrs. 

1300 hrs. 

1450 hrs. 

0.03-0.06 

0.03 

0.02-0.07 

0.06-0.13 

0.07 

Tabic 1-1: Ratios of Transient Errors to Permanent Failures 

1.3 Overview of Paper 

Chapter 2 presents the data analysis results, showing that a decreasing hazard rate distribution fits 

the collected data much better than the constant hazard rate (exponential) distribution. Techniques 

for modeling the reliability of systems whose modules exhibit nonconstant error rates are described in 

Chapter 3, and the models developed for this paper are given in Chapter 4. The results of the models 

are presented and compared in Chapter 6, and the major results are summarized in Chapter 7. 
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C h a p t e r 2 

D a t a C o l l e c t i o n a n d A n a l y s i s 

2.1 Data Collection 

2.1.1 PDP-10 S y s t e m s 

The PDP-101 is a general purpose 36-bit computer packaged cidicr as a DHCsystem-10 miming a 

time sharing operating system called TOPS-10, or as a DKCsystem-20 running TOPS-20 [Bell et al. 

78]. The main system for the Computer Science Department at Carnegie-Mellon University is a 

DECsystcm-10 which has a KL-10 (ECL) processor, one megaword of memory, eight disk drives 

totaling 1600 megabytes of online storage, and two magnetic tape drives. Data was collected on this 

system between January 15, 1980 and January 2, 1981. 

Another system for which data has been collected in this study is a DHCsystcm-20 operated by the 

university's Computation Center to support the general educational needs of the university. This 

system has 512K words of memory, three disk drives totaling 528 megabytes of online storage, and 

two magnetic tape drives. Data was collected on this system from September 24, 1978 to March 17, 

1979. 

The core of the PDP-10 error reporting system is the online error log file maintained by the TOPS-

10 and TOPS-20 operating systems. Entries arc made in this file for a variety of reasons, most notably 

system reloads, memory parity errors, and I/O errors [DEC 78]. Each entry contains the date and 

time at which it was made, the processor serial number, and information about the type of error or 

other condition being reported. 

To facilitate statistical analysis of transient errors on PDP-10's, a program to derive interarrival 

^HC, POP-10, Dl-rsystun-IO. TOPS 10, Kl IO. I)l ( sysicmOO. TOPS-20, PDP-11, and I.S1-11 are all registered 
trademarks of I )ii.'iial K|ui|>mciil ( orporalion 
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times and time-of-day distributions from the system error log files has been written. This program is 

named SEA US, which stands for Statistical Error Analysis Data Summarization. The outputs 

generated include graphs of the distributions of intcrarrival times for various types of entries and lists 

of those intcrarrival times. 

Two types of entries in die PDF-10 error log files were chosen as being likely to reflect transient 

errors: system reloads and memory parity errors. System reloads were chosen because they are 

commonly caused by the ubiquitous "crash".' In systems with stable hardware and matured software, 

the most frequent cause of crashes appears to be transient errors. Attempts to separate reloads caused 

by transient errors from those caused by permanent failures, software failures, and scheduled 

maintenance, have proven to be unsuccessful due to the paucity of information provided in the 

reload entries. Thus this data is only indicative of transient error behavior. On the other hand, there 

seems to be a general consensus that transients are responsible for the great majority of memory 

parity errors, so these should provide a better measure. 

In scanning die data processed by SEADS, it became clear that the PDP-10 systems frequently 

recorded several errors for one fault. To mask out the effects of this, error entries within five minutes 

of a previous entry were counted as a part of die previous fault. It was felt that five minutes was a 

reasonable threshold for the study. The software allowed any choice for the threshold, facilitating 

examination of the the sensitivity of the data to threshold values1. This process of eliminating very 

short intcrarrival times is referred to as "filtering" in this paper. 

Table 2-1 summarizes the data collected from the PDP-10 systems. Detailed analyses of tfiese data 

sets arc performed later in this section. Unfortunately for purposes of data analysis, too few parity 

errors occurred on the TOPS-20 system to be statistically significant. Thus only three data sets are 

analyzed: system reloads for both die TOPS-10 and TOPS-20 systems, and memory parity errors for 

the TOPS-10 system. 

^ r e s h o l d values of one minute and ten minutes were also tried without signif.ca.Ul> changing the results presented in this 

paper. 

http://signif.ca.Ul
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rops - io 'l'OPS-20 
Total Hours Covered 8.272 3,282' 
Appnnannate Co\erage 0.979 0.790 
Total Fntries - 84,918 19,690 
Total Reloads 748 276 
Reload M i l !� (hours) 11.1 11.9 
"Filtered" Reloads 637 222 
"Fikercd" M'iTE (hours) 11.4 13.0 
Total Parity I-rrors 120 31 
Paritj, MTTF (hours) 68.9 105.9 
"Filtered" Parity Hrrors 103 12 
"Filtered" M'lTF. (hours) 70.7 239.9 

Tabic 2-1: Summary of Collected PDP-10 Data 

2.1 .2 Experimental LS1-11 S y s t e m s 

In'addition to die PDP-IO system error log files, data was also collected from two experimental 

LSI-ll systems at Carncgic-Mellon University. The first of these is a multiprocessor system named 

Cm*, whose structure has been widely reported in the literature [Swan ct al. 77, Swan 78]. Cm* uses 

a network of buses to give processors (slightly modified LSI-l l's) access to a large shared memory. 

The system is built from processor-memory pairs called Computer Modules or Cm's. The memory 

local to a processor is also the shared memory of the system. Kach Cm has a local switch, or Slocal, 

which interfaces its bus to the rest of the system. A mapping controller, or Kmap, is shared by several 

Cm's, which arc connected to it by their Slocafs to form a "cluster". Hach Kmap in the system is 

connected via multiple interclustcr buses to other Kmaps, completing the interconnection scheme. 

The Kmaps perform all the functions necessary for meeting both intracluster and interclustcr 

memory requests. 

The configuration of Cm* for which data was collected contained ten Cm's connected to three 

Kmaps to form three clusters, two with four Cm's and one with two Cm's. Hach Cm had a serial link 

to the Cm* host computer, a message switching PDP-11 [Sccl/a 77], to facilitate user access and 

program loading. 

Automatic diagnostic software was developed to exercise idle modules in Cm*. One such idle 

module was used to run the master control program CM 1)1 AO. This module operated in a special 

mode which enabled it to control other Cm's as though it was a user at a terminal. With this ability, 

CM I MAG acquired control of all unassigned modules and continuously cycled each of them through 

a series of four diagnostic tests. The program was able to dynamically acquire and release modules in 

response to the changing needs of the other users. 
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The automatic diagnostic system for Cm* was exercising at least sonic of the modules for almost 

50% of the time between May 1977 and April 1978. A total of 104 separate transient errors were 

recorded during a total diagnostic session time of 4223 hours. Some of these transients caused 

multiple errors on single modules, and several produced simultaneous errors in more than one 

module [Tsao 78]. 

The second experimental system for which data was collected is C.vmp, a triplicated NMOS 

LSI-11 microprocessor with voting at the bus level [Sicwiorck ct al. 78a, Sicwiorck et al. 78b]. There 

are three processor-memory pairs, each pair connected via a voter circuit. During the time that data 

was collected, C.vmp contained 12K words of dynamic MOS memory and a dual floppy disk drive 

per processor. 

The transient error data from C.vmp was gleaned from the system maintenance notebook entries 

for August 1977 to April 1978. During this period, C.vmp was used for several months under actual 

load conditions with students doing projects for an introductory real time programming course. The 

students were supplied with a standard system software manual and a small pamphlet on information 

specific to C.vmp (i.e., location of the power switches, a reminder to load three diskettes, etc.). 

Because of the disparate nature of the user community and the complexity of the system, the causes 

of many crashes remain ambiguous. During die 4921 hours of recorded operation, at least 15 crashes 

were definitely due to transient hardware errors; however, the actual number of crashes caused by 

transient errors may have been as high as 51. The only transients which should cause C.vmp to crash 

arc those occurring simultaneously in more than one module. According to the data from Cm*, such 

transients make up 17% of the total, occurring roughly every 250 hours [Sicwiorck ct al. 78b]. The 

mean time to crash for C.vmp should equal or exceed this figure. Indeed, the "best case" and "worst 

case" figures for MITE fall around this value, as shown in Table 2-2 below. Note that crashes which 

may have been software or user caused arc included only in the worst case data for C.vmp. 

Cm* C.vmp (best) C.vmp (worst) 

Siandaiu Deviation 

Total Hours 

Total Errors 

MITE (hours) 

4223 

104 

40.6 

59.8 

4921 

15 

328.1 

470,8 

4921 

51 

96.5 

167.8 

Table 2-2: Summary of Collected Cm* and C.vmp Data 
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Two questions must be answered by examining the data: 

1. Which probability distribution best fits the data? 

2. What are reasonable parameter values for die collected data and chosen distribution? 

In theory, the second question is meaningless until die first question is answered. In practice, 

parameter values must be estimated'in order to test the applicability of different distributions. The 

choice of which probability distributions to test is based on such evidence as the distribution 

histogram of interarrival times produced by SEADS. The general shape of these histograms 

indicated that perhaps some generalized form of the exponential distribution would be appropriate. 

The Weibull distribution is one such extension of die exponential, and is widely used in reliability 

modeling and analysis. 

2.2.1 Review of thè Weibull Distribution 

The Weibull distribution has two parameters: a (die shape parameter) and X (the scale parameter). 

The probability density function, cumulative distribution function, reliability function, and hazard 

(error rate) function, of the Weibull distribution are shown in Equations (2.1) through (2.4) (a > 0, 

X>0): 

pdf = f ( t ) = aMXt)"" 1 e ' ( X t > a

 (2.1) 

CDE - F( t ) - 1 - e " ( U > a

 (2.2) 

Reliability = R(t) = e ' ( X t > a

 (2.3) 

Hazard Function = z(t) = a\(\t)a'1 (2.4) 

Note that the values of all these functions depends on time only through the product of the scale 

actor and time \ t . 

The shape parameter directly influences the error rate: 

o if a < 1, the error rate is decreasing with time; 

� if a = 1, die error rate is constant with time, resulting in an exponential distribution; and 

� if a > 1, the error rate is increasing with time. 

If t takes only the discrete times 0,1,2 then the discrete Weibull distribution is obtained fi 
om 

2.2 Data Analysis 
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the Wcibull distribution by substituting q for e~A

 , and n for t [Nakagawa & Osaki 75]. The 

probability mass function, cumulative distribution function, reliability function, and hazard function 

of the discrete Weibull distribution are shown in Equations (2.5) through (2.8). (0 < q < 1): 

pmf = f (n) = q
n <

* - q<
n + 1

>" = q
n

" ( 1 - q<»+«
a

-n
a

 ) (2.5) 

CDF = F(n) = 1 - q
n

" (2.6) 

Reliability = R(n) = q
n

" (2.7) 

Hazard function = z(n) = 1 - q (
n + 1

)
a

"
n a

 (2.8) 

The mean \i of the discrete Weibull function is given by 

ix = E(k) = I J q
k

" (2.9) 

k=0 

In this paper, the only use of the discrete Weibull distribution is to approximate the Weibull 

distribution. 

2 .2 .2 Maximum Likelihood Estimation and Goodness of Fit Tes t s 

A common technique for estimating parameter values is maximum likelihood estimation. The 

maximum likelihood estimator (M.L.E.) of a parameter 0 is the value 0 which maximizes the 

probability ("likelihood") of the observed data sample. For the exponential distribution, the M.L.E. 

of X is given by 

N 

X = N / Yl t (2.10) 

j = l 

The maximum likelihood estimators (MLE) a and X for the Weibull distribution satisfy the 

following equations [Thoman et al. 69]: 

N N N 

(N / a) + E logc(tj) = N x ( E t ; x log t̂p ) / ( E t ,
f l

) (2.11) 

j = l j = l j = l 

N 

(X)° = N / E t « (2.12) 

� j = l 

Once the value of the shape parameter a, is known, Equation (2.12) can be used to calculate the scale 

parameter X. Equation (2.11) can be used to derive a difference equation in the form 
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a i + 1 = Function (a t ,T- N ) 

where T N is the vector of observed data. A quickly converging solution can be found using the 

Newton-Raphson method, as was presented in [Thoman et al. 69]. 

The problem of fitting a.suitable probability distribution to a random sample of N observations, 

{tv t 2 , t N } , is addressed by the x 2

 goodness of fit test. For data taken from a continuous 

distribution (such as the exponential and Wcibull distributions), the real number line is divided into 

K intervals, and the deviations between the observed and expected number of data points within 

each interval is recorded by the following statistic: 

¡ = 1 E, 

where 

O. = observed number of samples in i
t h

 interval; 

= expected number of samples in Xth
 interval. 

The statistic Q approximately follows a x distribution (hence the name of the test). For meaningful 

results, the expected number of samples in any interval should be at least five. 

The level of significance of a goodness of fit test is the prespecified probability of erroneously 

rejecting the hypothesis that the data is from die given distribution. (Typical values chosen for the 

level of significance range between 0.01 and 0.10.) However, a different quantity called die p-value is 

frequently reported for goodness of fit tests. The p-value is the empirical probability that rejection of 

the hypothesis under test would be erroneous. In other words, a reported p-value of 0.25 means that 

the hypothesis being tested would pass the goodness of fit test for any a priori level of significance 

less than or equal to that figure. A large p-value is generally considered to be good evidence that the 

data fits die given distribution. 

Typically, the value of E in the expression above is calculated for each interval using the M.L.E. 

parameter values. If this is die case, then only lower and upper bounds for the test p-value can be 

found. For a distribution under test with n estimated parameters, the lower bound is given by the x 2 

distribution with K-n-1 degrees of freedom. The upper boynd is given by the x 2

 distribution with 

K-l degrees of freedom. 
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For data drawn from an unknown continuous probability distribution, an alternative means for 

testing die goodness of fit of a proposed distribution is provided by the Kolmogorov-Smirnov test. 

Let the empirical cumulative distribution function be defined as 

F N ( t ) = -L- fort, < t < t i + 1 

and the cumulative distribution function under test 

F*(t) = F ( t ; 6) 

where 0 is the M.L.E. parameter derived from the data sample { t ^ t 2 , t N > . Define the following 

statistic: 

D N = sup | F N ( t ) - F * ( t ) | 

where "sup" denotes the supremum, or least upper bound, of its argument. This statistic D N is called 

the two-sided Kolmogorov-Smirnov statistic, and follows a probability distribution of the same name. 

D N is the maximum difference between the empirical F N ( t ) and the hypothesized F*(t). Values of 

D N tend to be smaller (for given sample size N) for hypothesized distributions which fit the data 

better. The p-value for this test can be calculated by evaluating the cumulative distribution function 

of the Kolmogorov-Smirnov distribution. 

Table 2-3 presents the M.L.E. parameter values and goodness of fit test results for applying the 

exponential distribution to the transient error data described earlier. Table 2-4 contains the same 

information for testing the Wcibull distribution. In all cases, the Weibull distribution shows a much 

better fit to the data than does the exponential distribution. 

TOPS-10 

Reload 

M.L.E. X 0.0875 

X
2

 test p-value / degrees of freedom 

lower bound for worst fit 0.000 / 1 

upper bound for worst fit 0.000 / 2 

lower bound for best fit 0.000 / 1 

upper bound for best fit 0.000 / 2 

Kolmogorov-Smirnov test p-value 0.000 

Table 2-3: Test of Exponential Distribution 

The presentation of four numbers for the p-value of the x
2

 test is due to a combination of two 

factors. First is the problem mentioned earlier that only upper and lower bounds are obtainable when 

TOPS-20 . TOPS-10 

Reload Parity Cm* C.vmD
1 

0.0771 0.0141 0.0246 0.0104 

0.000 / 4 0.006/4 0.013 / 3 0.001 / 1 

0.000 / 5 0.012 / 5 0.029 / 4 0.005 / 2 

0.007 / 38 0.090 / 1 2 0.299 / 1 3 0.010/2 

0.009 / 39 0.126 /1-3 0.369 / 1 4 0.027 / 3 

0.001 0.054 0.056 0.002 

]

T h e "worst case" data for C.vmp is used here because there arc too few crashes it, the "best case" data. Even that limited 

data supports the major conclusions of this section. 
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TOPS-10 TOPS-20 TOPS-10 

M.L.E. a 
Reload ' Reload Parity Cm* C.vmp 

M.L.E. a 0.778 0.793 0.751 0.779 0.654 
M.L.E. X 0.101 0.0882 0.0166 0.0288 0.0146 
X test p-value / degrees of freedom 

lower bound for worst fit 0.000 / 40 0.043 / 2 0.169/1 0.239 / 1 0.121/3 
upper bound for worst fit 0.000 / 42 0.179/4 0.595 / 3 0.709 / 3 0.324 / 5 
lower bound for best fit ' 0.134/8 0.691 / 6 0.822 / 10 0.934 / 12 0.813 / 7 
upper bound for best fit 0.258 / 10 0.867 / 8 0.920/ 12 0.975 / 14 0.930 / 9 

Kolmogorov-Smirnov test p-valuc 0.330 0.687 0.756 0.935 0.690 

Table 2-4: Test of Weibuli Distribution 

the M.L.E. parameter values are used in this test. The second problem is die choice of how many 

intervals to use in dividing up the data. The decision made was to treat this as another upper 

bound/lower bound problem, and to present the values indicating the best fit to the data and the 

worst fit. It is especially significant that the worst fit to die Weibuli distribution is almost always 

much better tiian the best fit to the exponential distribution. This emphasizes diat the decreasing 

hazard rate distribution describes the data more accurately than the constant hazard rate distribution. 

2 .2 .3 Confidence Intervals and Consonance S e t s 

Point estimates, such as those obtained by maximum likelihood estimation, are only 

approximations which very rarely match exactly the values dicy arc intended to estimate. Because of 

diis, interval estimates are often desirable. These are intervals for which it can be asserted with some 

certainty that they contain the actual value of the parameter under consideration. The most common 

use of this idea is expressed in "confidence intervals". For 0 < p < 1, a p-level confidence interval is a 

range within which die actual value of the estimated parameter would fall with probability p, if die 

experiment were repeated many times. To restate this, saying that a certain range of values is a 0.90 

confidence interval for a parameter means that in repeated sampling, 90% of die confidence intervals 

so constructed would contain die actual parameter values [Miller & Freund 65]. 

The concept of "consonance sets" has been developed in an effort to simultaneously answer both 

of the basic questions of statistical data analysis: whether a particular probability distribution F ( t ; 8) 

describes the data sample, and (if so) which values for the parameter 6 are reasonable [Easterling 76]. 

A p-level consonance set has much the same properties as a p-lcvcl confidence interval, in that, for 

repeated sampling from a given distribution, die fraction p of the sets (intervals) calculated would 

contain the true valuc(s) of the parameters). For a fixed sample size and significance level, data 

which is more consonant widi a proposed distribution produces a larger consonance set. This is due 

to the goodness of fit considerations involved with constructing consonance sets. 
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The general method for constructing consonance sets proceeds as follows [Salvia 79]. 

1. Choose an appropriate goodness of fit statistic, such as the Kolmogorov-Smirnov statistic 

D N . (Evidence shows that the x
2 statistic is not a good choice [Salvia 80].) 

2. Set K equal to the value at which the cumulative distribution function of D N (in this case, 

the Kolmogorov-Smirnov distribution) reaches die probability level p. (This is sometimes 

called the fractile of the distribution of D N . ) 

3. Consider the statistic D N as a function of the parameter Q of the distribution under 

consideration. The consonance set C is defined as those values of 0 for which D N < K. 

(Recall that the calculation of D N depends on the value of 6.) 

A consonance set obtained in this way plots as a line segment for one-parameter distributions, and as 

a bounded area for distributions with two parameters. Specific techniques for constructing 

consonance sets for the Weibull and two-parameter exponential distributions are given in [Salvia 79]. 

Figure 2-1 displays 90% consonance sets for the Weibull parameters constructed from each of the 

five sets of data. As explained above, these sets contain all values of the parameters for which the 

Kolmogorov-Smirnov goodness of fit test passes the data at a significance level less than or equal to 

0.10 (i.e., 1-p). The TOPS-10 and TOPS-20 reload data yield no parameter values consistent with the 

exponential distribution (a = l) . The other three data sets, however, do produce some parameter 

values for which the exponential distribution is plausible. Because of this, 90% confidence intervals 

were constaicted for these particular data sets using techniques developed in [Thoman et al. 69]. 

These confidence intervals are given in Table 2-5. 

TOPS-10 Parity Cm* C.vmp 

Confidence Interval for a [0.655 , 0.844] [0.680, 0.875] [0.531, 0.767] 

Confidence Interval for X [0.0132 , 0.0209] [0.0231,0.0359] [0.0099 ,0.02141 

Table 2-5: 90% Confidence Intervals for Weibull Parameters 

As seen in the table, none of the confidence intervals for the shape parameter a includes the value 

one, i.e., the constant hazard rate (exponential) function. Also, it should be noted that none of the 

corresponding consonance sets contains the M.L.E. scale parameter X for the exponential distribution 

(indicated in lower case on the graphs). Thus, even though the exponential distribution cannot be 

ruled out absolutely, it docs seem most unlikely. The decreasing hazard rate Weibull distribution, OK 

the other hand, provides a good fit to these three dara sets as we
1

! us to the PD1M0 reload data. 
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2.-2.4 Conclusions of the Data Analysis 

Data collected from several different systems has been presented and analyzed. These systems 

range in size from an NMOS microprocessor with 12K words of memory to ECL mainframes with 

one megaword of memory, and range in redundancy from nonrcdundant to parity to triplication. In 

every case, the data shows an acceptable fit to a decreasing hazard rate Weibull distribution. In fact, 

most of the data sets show excellent fits to the Weibull family of distributions. For only two sets of 

data (TOPS-10 memory parity errors and Cm* transient errors) does the exponential distribution 

appear to be even plausible. In each case, the fit to the exponential distribution is poor, while the fit 

to the decreasing hazard rate Weibull distribution is extremely good. 

This result completely upsets the common assumption of constant hazard rates for transient errors 

used in reliability modeling. The impact of time-varying hazard rates on system reliability models is 

the topic of the remainder of this paper. 
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Chapter 3 

Modeling Techniques 

3.1 Markov Models 

A powerful tool for analyzing complex probabilistic systems is the Markov process model. The 

two central concepts of such models are "state" and "state transition". The slate of a system 

represents all that must be known to describe the system at any instant of time. For reliability 

models, each state represents a distinct combination of working and failed modules. If each module 

is in one of two conditions working or failed -- then the complete model for a system of n modules 

has 2 n states. As time passes, the system goes from state to state as modules fail and recover. These 

changes of state are called state transitions. Discrete time models require all state transitions to occur 

at fixed time intervals, and assign probabilities to each possible transition. Continuous time models 

allow state transitions to take place at varying, random intervals, with differential transition rates 

assigned to possible transitions. For reliability models, the transition rates arc based on the module 

error hazard rates and recovery hazard rates. 

3.1.1 Time Invariant Markov Models 

The basic assumption underlying Markov models is that the probability of a given state transition 

depends only on the current state. For continuous time Markov processes, it is also assumed that the 

length of time already spent in a state does not influence either the probability distribution of the 

next state or the probability distribution of remaining time in the same state before the next 

transition. These are very strong assumptions, and imply that the waiting time spent in any one state 

is geometrically distributed in die discrete time case, or exponentially distributed in the continuous 

time case [Howard 71]. Thus, the Markov model naturally fits in with the standard assumption that 

error rates are constant, leading to exponentially distributed interarrival times for errors. 



18 
Transient Error Reliability Models Based on Data Analysis 

3 .1 .2 Time Varying Markov Models 

A useful generalization of the Markov model for reliability, modeling is to allow state transition 

probabilities to change over time. This causes difficulties in obtaining solutions, since it generally 

makes the use of transform analysis impossible [Howard 71]. Nevertheless, if error rates are functions 

of time, the techniques discussed in this section can be used. 

Define q.j(m,n) as the probability that the .system is in state j at-time n given that it was in state i at 

time m (m < n). For consistency, Q(m,m) = I (the identity matrix). With this notation, in matrix 

form the "Chapman-Kolmogorov" equation is 

Q(m,n) = Q(m,k) Q(k,n) for m'< k < n 

Letting k = n - 1 

Q(m,n) = Q(m,n-1) Q(n-l,n) 

Defining P(n) = Q(n,n+1) 

Q(m,n) = Q(m,n-1) P(n-l) (3.1) 

This equation can be expanded recursively 

Q(m,n) = Q(m,n-2) P(n-2) P(n-l) 

Q(m,n) = Q(m,n-3) P(n-3) P(n-2) P(n-l) 

The solution finally becomes 

n-1 

Q(m,n) = H P(0 (3.2) 

i = m 

For m = 0 and all P(i) = P, this becomes P n , the classical solution for discrete time Markov models. 

Corresponding equations can be derived for the continuous time case. This is usually done for 

time invariant models, as the the model is easily set up in terms of differential rates. However, the 

solution of time-varying models requires the use of numerical integration techniques due to their 

complexity [Stiffler et al. 79]. An alternative method is to approximate the continuous time processes 

with discrete time equivalents. Since numerical integration involves some degree of approximation 

anyway, this is frequently a good choice. The major difficulty is that many transition rates which are 

effectively zero in the continuous time differential transition rate matrix assume small but nonzero 

probabilities in the discrete time transition probability matrix. For the systems modeled in this 

paper, the number of states (and therefore the number of state transitions), is-small enough to 

encourage the use of discrete time Markov models. 
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For converting from continuous time hazard functions (error and recovery rate functions) to 

discrete time hazard functions, a discrete time probability distribution corresponding to the 

continuous time distribution defined by that hazard function must be found. The corresponding 

parameters can then be calculated for the desired time step. Recall that the Weibull distribution 

hazard function 

z(t) = aX(Xt)"" 1 

has a corresponding discrete distribution hazard function 

z ( k ) = l - q <
k + ]

>
a

-
k

" 

Assuming a unit time step, the correspondence between these two functions is given by 

q = e K 

The continuous time hazard function represents a differential rate of change from one state to 

another. The discrete time hazard function is a probability of changing state at the next time step. 

3.2 Monte Carlo Simulation 

The techniques considered thus far are insufficient to obtain results when even quite reasonable 

changes are made in the modeling assumptions. Consider the issue of error process renewal. It seems 

rather intuitive that a recovered module should be "as good as new", but that is not the assumption 

behind the Markov models discussed above. In those models, die error processes are not reset to 

time t = 0 (n = 0) when a module recovers. This can make a dramatic difference in the error rates. In 

die Weibull hazard function, for a less than one, the error rate asymptotically approaches zero; for a 

greater than one, it grows without limit. The error rate immediately following recovery can thus vary 

tremendously depending on which assumption regarding renewals is made. (Of course, for constant 

error rates, there is no difference in effect between the two assumptions.) Consider the discrete 

Weibull hazard function z(n) 

z(n)= l - q
( n + 1 )

 "
n 

If this error process is "renewed" (reset to time zero) whenever a recovery occurs, then th* 

conditional hazard function of the process given the renewal time N R is ' 

z ( n ) = l - q ( n - N R + 1 ) a - ( n - N R ) a 

In general, the hazard function of the error process with renewal is given by 

n 

z ( n ) = l - E ( q
( n

-
k + 1 ) a

-
( n

-
k ) a

. ) P r { N R = k|n} 

k=0 

The second term in the summation is the conditional probability that the renewal time has any 
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particular value given the current time. Calculation of this value depends on the entire past history of 

die system, which makes it rather intractable to compute in practice. Therefore a new technique to 

attack the problem of reliability modeling is needed. 

A standard method of studying the reliability of systems which are too complex to model 

analytically is to simulate their performance and examine the results [Almassy 79, Yakowitz 77]. The 

basis of such "Monte Carlo" simulation schemes is a pseudo-random number generator, which 

produces a sequence of numbers between zero and one (0,1) that approximately follow the uniform 

distribution. For good results, simulations should be run using two or more independent pseudo-

random number generators, and the generators used should be thoroughly tested [Knuth 69]. This 

was done for the simulation-based models of this chapter. Details of the generators chosen, and their 

test performance, are given in [McConnel 81]. Three separate generators were chosen after extensive 

testing. 
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Chapter 4 

System Models 

Four system organizations are modeled in this paper: 

1. A nonredundant system (simplex) 

2. A symmetric reconfigurable dual redundant system (duplex) 

.3. A triple modular redundant system with majority voting (TMR) 

4. A hybrid redundant system which has a triple modular redundant core plus a standby 
spare module (hybrid). 

Two types of models are developed for each of these systems. The first is a time-varying Markov 

model with uniform discrete Weibull error rate functions. In this model, all time-varying error rates 

and recovery rates follow a single global monotonic time scale. The second type of model allows 

independent renewals of the different error processes and recovery processes. This means that each 

individual error process is reset to time t = 0 whenever a recovery occurs. (Recovery processes are 

reset whenever errors occur.) With diis assumption, Monte Carlo simulation is used to solve for the 

system reliability. These simulations require two ancillary functions: a pseudo-random number 

generator RANDOMQ and mission time function MT(r ; a,X). For the simple Weibull reliability 

function 

R(t) = e "
( A t

>
a 

the corresponding mission time function is 

MT(r) = Ŝ  (4.1) 
X 

Essentially, the mission time function is used to change the uniformly distributed pseudo-random 

numbers to follow the desired Weibull function. 

z i 
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4.1 Simplex Models . 

These models are trivial, as shown in Figures 4-1 and 4-2. Virtually the same model applies 

regardless of die assumption concerning process renewals, because die first module error causes the 

system to fail. 

For the first model, that without error process renewals, the discrete time-varying Markov solution 

method using matrix multiplications is utilized. For the second model, although the results should be 

identical, a Monte Carlo simulation is performed. This allows a check on whether or not the 

simulation results (including those for other models) arc reasonable. For diis model (and the others 

described following), a total of 3000 simulations was performed, using three different pseudo-random 

number generators for 1000 simulations each. Each simulation of the simplex system consists only of 

generating r as the next pseudo-random number in sequence (r = RANDOM()), and transforming 

it via the mission time function MT(r ,a e , \ e ) to a time which follows the Weibull distribution. 

Figure 4-1: Simplex Model Without Error Process Renewal 

© - - - 0 

/.(t) = a c X e ( X e t ) V
l 

Figure 4-2: Simplex Model With Krror Process Renewal 
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The duplex system modeled in this thesis is organized as a symmetric dual system which 

reconfigures to a simplex system when eitiier of die two modules fails to work properly. The first 

model (without error process renewal) has identical error and recovery processes for both modules at 

all times. Therefore the two states with one module working and one module crashed have been 

merged into one state. In this model, the states are labeled with the number of erring modules. State 

2 thus represents the system failed state. The coverage factor c reflects the probability that a single 

error will cause the system to fail, (c is always assumed to equal 0.99 in this study.) The function s(n) 

is the time-dependent probability that an error will not occur at time step n, and the function r(n) is 

the probability that a module which has crashed will not recover at time step n. 

The reliability of redundant systems is considerably more complex to simulate than for the simplex 

system. Consider die state transition diagram of a duplex system shown in Figure 4-4. Because of the 

need to distinguish between transient errors (and recovery from same) of individual modules, a four-

state model is required. Otherwise, this models the same system as Figure 4-3, albeit with continuous 

rather than discrete time. Simulation of the duplex system reliability follows the algorithm given 

below. The algorithm assumes that the two modules are labeled 1 and 2. STATE records which 

module has an active error (0 if neither). The two times T[l] and T[2] record the (randomly 

generated) times of the next event, either error or recovery, for the corresponding module. NEXT 

records which module has the earlier occurring event to cause a state transition. 

1. Global initialization 

STATE «-0 

T[l] <- MT( RANDOMO, a , X ) 

T[2] <r MT( RANDOM(), a*, A^) 

2. Loop: choose next state transition 

if (T[l] < T[2]) then NEXT <- 1 else NEXT <- 2 

3. Choose next state 

case STATE of 

0: if (RANDOMO < C) then STATE <- NEXT else goto step 6; 

1: if (NEXT = 1) then STATE <- 0 else goto step 6; 

2: if (NEXT = 2) then STATE <- 0 else goto step 6; 

end case 

4. Calculate new transition time 

if (STATE = 0) 

then T[NEXT] <- T[NFXT| + MT( RANDOMQ, a , A ) 

elseTfNIXl] «- T[NEXT| 4 MT( RANI)OM(), « r ! A J 

4.2 Duplex Models 
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5. Repeat loop -- goto step 2 

6. Return simulated mission time 

' TIME *- T[NEXT] 

1.0-[C(n) + D ( n ) ] 

A(n) = 2c s(n)[l-s(n)] 

B(n) .= 2[l-c]s(n)[l-s(n)] + [l-s(n)]
2 

C(n) = s(n)[l-r(n)] � 

D(n) = [l-s(n)]i(n) 

s ( n ) = q e ( "
+

l )
a e

- n
a e 

s(n) is the probability of not having an error occur within a module at time step n, and r(n) is the 

probability of not having a recovery occur at that time. 

Figure 4-3: State Diagram of Duplex Model Without Error Process Renewal 

4.3 TMR Models 

The diird structure modeled is a triple modular redundant (TMR) system. Th without 

error process renewal is shown in Figure 4-5. As with the duplex model, the multr vith one 

module not working have been merged into one state. 

The state transition diagram of the TMR model with error process renewal is shown in Figure 4-6. 

The simulation algorithm is similar in outline to that presented for the duplex system model. Details 

can be found in [McConnel 81]. 



System .Models 
25 

z(t) = aA^tA"
1 

r(t) = a / ^ t A "
1 

figure 4-4: State Diagram of Duplex Model With Error Process Renewal 

1.0-[C(n) + D ( n ) ] 

A(n) = [s(n)]\l-s(n)] . 

B(n) = 3s(n)[l-s(n)p + [l-s(n)]
3 

C(n) = (s(n)]
?

[l-r(n)] 

D(n) = 2s(n)[l-s(n)]r(n) + [l-s(n)]
2 

s ( n ) = q c (
n + 1

)
a e

- "
a e 

r(n) = q r (
n + 1

)
V n a r 

Figure 4-5: State Diagram of TMR Model Without Error Process Renewal 
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'z(t-tD 

z(t-t2) 

z ( t t 3 ) 

r(t-ti) 

r(t-t2) 

N 

r(t-t3) 

z(t) = a ^ C X ^ V
1 

r(t) =" a ^ D V
1 

Figure 4-6: State Diagram of TMR Model With Error Process Renewal 

4 .4 Hybrid Models 

The last type of system modeled is a hybrid redundant structure, with a triple modular redundant 

core and a single standby replacement module. As in die other models without error process renewal, 

the multiple states widi one module crashed, and with two modules crashed but the spare switched 

in, have been merged into single states. This results in the model shown in Figure 4-7. As with the 

other models, the states are labeled with the number of erring modules. State 3 is the system failed 

state. The coverage factor c is the probability tiiat the spare module successfully replaces a module in 

which an error is detected. (As with the duplex model, c is always equal to 0.99 in this study.) The 

state transition probabilities are otherwise similarly defined to those for the other system models. 

Figure 4-8 displays the state transition diagram of the hybrid system model with error process 

renewals. The simulation of this system proceeds similarly to that of the duplex and TMR systems. 
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1 . 0 - [D (n ) + E (n ) + F (n ) ] 

A(n) = (3c + l)[s(n)]
3

[l-s(n)] 

B(n) = 3(l-c)[s(n)]
3

[l-s(n)] + 3(l+c)[s(n)]
2

[l-s(n)]
2 

C(n) - 3(l-c)[s(n)]
2

[l-s(n)]
2

 + 4s(n)[l<n)]
3

 + [l-s(n)]
4 

D(n) = [s(n)]
3

[l-r(n)] 

E(n) = 3[s(n)]
2

[l-s(n)]r(r.) + 3s(n)[l-s(n)]
2

Jl-r(n)] 

F(n) = 3s(n)[l-s(n)]
2

r(n) + fl-s(n)]
1 

G(n) = [s(n)]
2

[l-r(n)]
5 

H(n) = 2s(n)[l-s(n)][l-r(n)]
2

 + 2[s(n)]
2

r(n)[l-r(n)] 

J(n) = 2s(n)[l-s(n)][r(n)]
2

 + [l-s(n)]
2

[r(n)]
2

 + 2[l-s(n)]
2

r(n)[l-r(n)] 

s ( n ) = q e ( "
+ 1

J
V

n
a e 

r(n)= q r ( n + l )
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- n
a r 

Figure 4-7: State Diagram of Hybrid Model Without Error Process Renewal 
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Chapter 5 

Modeling Results and Comparisons 

5.1 Parameter Values 

For purposes of comparison, error processes of equal means arc used throughout. The values of X 

are changed along with the values of a to maintain a constant value for die mean of each process. 

This is done because the mean value of a probabilistic system is one of the commonest statistics used 

to describe system reliability. For simplicity, recovery processes are assumed to be exponential. 

The parameter values for this experiment are chosen to result in a module mean time to error of 

100 time steps, and a mean time to recovery for a module of 10 time steps. The corresponding values 

of q for each value of arc calculated by finding values of X^ in the Wcibull function which result 

in the same mean lime to error, and then defining q c - e~ ( V c . The values obtained are shown in 

Table 5-1 below. Their accuracy was checked by performing the summation of Hquation (2.9) for 

several thousand terms. In each case, the sum came to within less than 1% of the desired value of 100. 

0.6 

0.8 

1.0 

1.2 

0.01505 

0.01133 

0.01000 

0.00941 

% a r A 
r 

% Coverage, c 

0.922543 1.0 0.100 0.904837 0.99 
0.972624 1.0 0.100 0.904837 0.99 
0.990050 1.0 0.100 0.904837 0.99 
0.996308 1.0 0.100 ' 0.904837 0.99 

Table 5-1: Parameter Values for Experiment 

5.2 System Reliability 

Figures 5-1 through 5-4 display the reliability curves for each of die four system models under the 

two different modeling assumptions. The general effect noticed is that systems with a decreasing 

hazard rate ( « e < 1) initially arc less reliable than die one with a constant hazard rate (aQ = 1), but 
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]

T h c crossover points for some systems arc not shown bcau.se they occur at reliabiliu levels hclow.0.5: 

eventually reach a crossover point and become more reliable1. An opposite effect is evident for the 

systems with an increasing hazard rate (a > 1). Frror process renewal delays the crossover points to a 

later time and lower reliability. This is most evident in Figure 5-2. 

In order to judge the validity of the system reliability simulations, available analytical model results 

can be compared to the simulation results using the Kolmogorov-Smirnov goodness of fit test. The 

simplest model (for the simplex system) also provides a general test of how well die uniform number 

generator produces pseudo-random numbers'following the Wcibull distribution. The test results for 

the simplex system, and also die duplex and TMR systems with « c equal to one, are given in Table 5-

2. All of the tests produce acceptable results. This is encouraging for the studies in the remainder of 

this paper. 

System a e Fit Significance 

Simplex 0.6 0.998 

' Simplex 0.8 0.362 

Simplex 1.0 0.235 

Simplex 1.2 0.434 

Duplex ' 1.0 0.657 

TMR 1.0 0.409 

Table 5-2: Test Results for Validating Simulations 

5.3 Reliability Difference Relative to Constant JHazard Rate Systems 

Many methods exist for comparing the reliability results of different systems or different models. 

One of die simplest metrics is the reliability difference function RD(t) , which is defined as 

RD(t) - R( t ) - R b ( t ) 

where R b ( t ) is a baseline system reliability. The impact of decreasing (aQ < 1) or increasing (a e > 1) 

hazard rates is directly shown in Figures 5-5 through 5-8. Plotted in these figures arc the reliability 

differences relative to the same system with a constant (aQ = 1) hazard rate. Large differences are 

seen in these plots, especially for die redundant structures. For regions of high system reliability, 

these deviations can be as great as 30-40%. For the. redundant structures in regions of lower 

reliability, the deviation can be several orders of magnitude if the decreasing hazard rate systems 

without error process renewal arc compared to the constant hazard rate system. For the simplex 

system, and for die redundant systems with error process renewal, the largest effects of nonconstant 

http://bcau.se
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Number of Time Steps 

(a) Analytic Model Results 

Number of Time Steps 

(b) Simulation Model Results 

Figure 5-1: Simplex System Reliability 
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5 0 0 

N u m b e r of T i m e S t e p s 

(a) Analytic Model Results (Without Renewal) 

5 0 0 

N u m b e r of T i m e S t e p s 

(b) Simulation Model Results (With Renewal) 

Figure 5-2: Duplex System Reliability 
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Number of Time Steps 

(a) Analytic Model Results (Without Renewal) 

Number of Time Steps 

(b) Simulation Model Results (With Renewal) 

Figure 5-3: TMR System Reliability 
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(b) Simulation Model Results (With Renewal) 

Figure 5-4: Hybrid System Reliability 
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hazard rales occu r .with uveros t i imuion of rel iabil i ty fur dec reas ing hazard rate systems and 

u n d e r e s t i m a t i o n of rc!i. eiluy for increas ing hazard rate systems. 

Comparing the results of the two types of redundant system models, in general for the the models 

with error process renewal, the initial differences are slightly greater while the later differences are 

much smaller. For example, the T.MR system without error process renewal has maximum reliability 

differences of about -0.20 and 1-0.22 for a ~ 0.6. The same system and parameter values with error 
c 

process renewals show maximum differences of roughly -0.24 and -i-0.02. 

Something which is obvious from all the figures shown in this section dius far is that die 

magnitude of the reliability difference is directly related to the distance or is from one. For example, 

in Figure 5-7, the rcliabilitv difference for a - 0.8 ranees between -0.08 and +0.11; while for 

a - 0.6, it ranees between -0.20 and +0.22. These figures arc for the TMR model without error 
e ^ 

process renewal. Similar results hold for the other models, including those with error process 

renewal. 

5 . 4 M i s s i o n T i m e I m p r o v e m e n t R e l a t i v e t o C o n s t a n t H a z a r d R a t e 

S y s t e m s 

F o r systems with stringent reliability requirements, the mission time function MT(r) is often used. 

The relationship between reliability R( t) and mission time MT(r) is given by 

R[MT(r)] = r ,MT[R(t)] = t 

F o r comparing two s\stems, die mission time improvement MTI(r) is defined as 

MTl(r) = ^Bl 
MT b(r) 

where MT b(r) is the baseline system mission time. Figures 5-9 through 5-12 plot mission time 

improvement for the different systems. In each case, the baseline system is the corresponding 

structure with a e - 1.0 (constant hazard rate). 

The data used to generate the curves of Figure 5-9 was calculated by inverting the Wcibull 

reliability function to find die values of t corresponding to the desired reliability levels. The curves 

for the other systems without error process renewal are based on the reliability curve points, using 

linear interpolation to obtain non-integer mission times. The mission times on which the error 

process renewal model curves arc were derived by sorting the generated simulation times, and taking 

the k , h entry, for the reliability lcscl equal to (1 - k/3000). 
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The trends observable in the mission time improvement plots are what would be expected from 

examining die reliability graphs. For « e < 1 (i.e., decreasing hazard rates), the mission time 

improvement relative to die constant hazard rate starts out very small for high reliability levels, and 

increases monotonically as the reliability goes down. An opposite effect occurs for increasing hazard 

rates. The important thing to note is diat for both redundant and nonredundant systems, the 

obtainable mission times for high mission reliabilities are much smaller for a < I than for a > 1. 
c e 

This is true even for redundant structures and for a c only a little less than one. 

5.5 Reliability Difference Relative to Simplex System 

In addition to the direct effect on predicted reliability of decreasing (aQ < 1) or increasing ( a e > 1) 

hazard rates, die indirect effect on the reliability difference between redundant and simplex systems 

is also of interest. Figures 5-13 through 5-15 display the reliability differences between the redundant 

systems and die simplex system. The range of values for aQ given earlier is shown for each of the 

three redundant structures: duplex, TMR, and hybrid. For each curve plotted in these graphs, the 

baseline system is die simplex system with die same value of a e-

For the system models without error process renewal, the interesting feature of these graphs is that 

changing the shape parameter does not significantly affect the peak magnitude of the reliability 

difference for the range of parameter values shown. The main effect seems to be that the smaller the 

value of a , die slower the decline from the peak reliability difference. This is true for all three types 

of redundant structure. On the other hand, for the system models with error process renewal, the 

peak magnitude of the reliability difference incrcases-noticeably with increasing values for aQ, but the 

reliability differences all decline quickly from that peak value to converge to a relatively small range 

of values. 

An important fact gleaned from Figures 5-13 through 5-15 is that, for every value of a e , the hybrid 

redundant system has the highest reliability, followed by the duplex system and the TMR system 

respectively. Thus, the relative improvement in reliability due to one redundancy technique 

compared to another is not sensitive to the value of a e > This should be good news for system 

designers. 

The reason that the TMR system, with three modules, is less reliable than the duplex system, with 

only two modules, proceeds as follows. Both the duplex and TMR systems can survive only one 

module crash. In fact, die duplex system has a small probability (1% throughout this thesis) of not 
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Figure 5-13: Reliability Difference Comparing Duplex to Simplex System 
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Figure 5-14: Reliability Difference Comparing TMR to Simplex System 
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Figure 5-15: Reliability Difference" Comparing Hybrid to Simplex System 
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surviving even one module error. Consider therefore the situation of fully operational systems. The 

duplex system has two modules contributing to the system error rate while die TMR system has 

three. One would expect therefore that the TMR system would have an average system error rate 

50% greater than the duplex system. This imbalance is even larger for the situation with one module 

crashed: the TMR system still has two modules contributing to the system error rate while the 

duplex system has only one. Thus one would expect the TMR system to average twice the error rate 

of the duplex system, when each system has one module already crashed. The coverage factor 

(probability of successfully detecting an error and reconfiguring the system) for the duplex system 

directly affects the comparative system error rates of the the duplex and TMR systems when all 

modules are operational. However, the TMR structure is inherently much less reliable when one 

module has already crashed. 

5.6 Mission Time Improvement Relative to Simplex System 

Mission time improvement for each of the three redundant systems is plotted in Figures 5-16 

through 5-18. For these graphs, the baseline for comparison is always die simplex system with the 

same value of a . As would be hoped, die redundant systems all exhibit much greater mission times 

than the simplex system. 

Figures 5-16 through 5-18 show very different patterns for the system models with and without 

error process renewal. For the models without error process renewal, the mission time improvement 

decreases monotonically for aQ> 1; and for a < 1, the mission time improvement falls to a minimum 

and dicn starts rising again. Opposite trends arc apparent (but much less definite) for the system 

models with error process renewal: the mission time improvement is generally decreasing with 

reliability for a < 1, but has an inflection point with a local minimum for a > 1. 

One aspect of all these mission time improvement curves holds true regardless of system structure 

or error process renewal. For high levels of mission reliability, die mission time improvement 

increases as the value of die shape parameter aQ decreases. Thus, even though the absolute mission 

time attainable for a system with aQ < 1 may be very small, die relative gain achieved by redundancy 

is still very much worthwhile. 
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Figure 5-17: Mission Time Improvement Comparing TMR to Simplex System 
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Chapter 6 

Conclusions and Comments 

The focus of diis paper has been a study of transient errors in digital computers. Data collected 

from several different systems has been analyzed with a variety of parameter estimation techniques 

and goodness of fit tests. In every case, the data showed a much better fit to a decreasing hazard rate 

Weibull distribution than to the constant hazard rate (exponential) distribution. Maximum 

likelihood estimates of the Weibull distribution shape parameter for die collected sets of data range 

between 0.6 and 0.8. Any value for the shape parameter less dian one indicates a decreasing hazard 

rate. Thus, it is only reasonable to conclude that transient errors follow a decreasing hazard rate 

distribution rather than the constant hazard rate distribution usually assumed in the past. 

Reliability models of both redundant and nonredundant systems have been developed using the 

decreasing hazard rate Weibull distribution for the module error processes. Constant and increasing 

hazard rate distributions were used as well for purposes of comparison. An initial set of transient 

error reliability models was developed under die assumption that the hazard rates decrease (or 

increase) monotonically from the time that the system begins operation. Discrete time Markov 

processes were used to solve these models for system reliability. A change in assumptions produced a 

second set of models. This second set assumes diat module error processes are renewed (reset to time 

zero) whenever a module recovers from a transient error. This assumption is a more realistic basis for 

extending the nonredundant system results to redundant system models. Unfortunately, this requires 

die use of Monte Carlo simulations to obtain approximate solutions for system reliability. It is more 

realistic because the data analysis (based primarily on nonredundant systems) follows the assumption 

that the error process is renewed at the time of recovery. 

Large variations are noted in the reliability differences and mission time improvements resulting 

from relatively small changes in the value of the shape parameter a e . This is true whether the 

comparisons are made with respect to the same structure having a constant hazard rate (c*e = 1), or 

with respect to the simplex system having the same value for the shape parameter. Consider the 
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duplex system model without error process renewal, for a e = 0.8 (decreasing hazard rate). 

Comparing the reliability of tiiis system with tiiat of the same system for a c = 1.0 (constant hazard 

rate), the 20% change in the value of aQ produces a maximum reliability difference of about 0.22, and 

a 50% decrease in mission time for a mission reliability of 0.99. Comparing the two duplex system 

models (aQ = 0.8 and aQ = 1.0) to the corresponding simplex system models, the reliability 

differences are very close for the first 200 time steps (twice die module mean time to error), after 

which they diverge until, at 1000 time steps, the decreasing hazard rate ( a e = 0.8) system shows twice 

as large a reliability difference as docs the constant hazard rate system. For a mission reliability of 

0.99, the decreasing hazard rate duplex system shows a 65% increase in mission time improvement 

over the the constant hazard rate duplex system (both systems being compared to the corresponding 

simplex system). 

The models with error process renewal produce somewhat different results than those without 

error process renewal. In comparing the former to the latter, the reliabilities of nonconstant hazard 

rate systems converge much more quickly to the reliability of the corresponding constant hazard rate 

system. Despite this long term convergence, the initial peak magnitude for the reliability difference 

due to changes in the value of die shape parameter appears to increase somewhat for the error 

process renewal assumption. Both of these tendencies can be explained by remembering that the 

renewal process serves to limit the range of values which the module hazard function can take. In 

long term averages, the hazard function which is (randomly) renewed periodically resembles a 

constant hazard rate, albeit with randomly varying fluctuations. Over shorter time intervals, the 

periodic (random) renewals of time varying hazard functions emphasize the initial short term values 

of the given hazard function. Thus, the initial high error rate for decreasing hazard rate processes is 

emphasized even more in the effects on a redundant system model; and the initial low error rate for 

increasing hazard rate processes is also emphasized in redundant system models. The major impact 

of varying hazard rates remains the same regardless of error process renewals: attainable mission 

times for high levels of reliability arc severely limited if the error process follows a decreasing hazard 

rate. 

Two lessons for system designers can be drawn from this study of transient errors. First and most 

important, designers have an additional parameter for sensitivity analysis: the shape parameter a f i. 

This is perhaps best illustrated by an example. 

Consider a nonredundant system with a mean time to transient error of ten hours and a six minute 

mean time to recovery from same. Assume that a mission time of sixteen hours is desired, with a 99% 
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probability of success. Table 6-1 shows die mission reliabilities for three sets of systems: a e =1.0, 

« c = 0.8, and a e =0.6 . Note that any of the redundant systems meet die desired mission goals for 

a e = 1.0, but that only the hybrid system achieves the desired reliability for ae<1.0. (If rounding off 

to two decimal places is allowed, the duplex system barely meets the mission reliability requirements 

for a e = 0.8.) This highlights the utility of redundancy with spares for dealing with transient errors, 

which leads to the next point. 

System a = 1.0 a = 0.8 a = 0.6 
J

 e e e 

Simplex 0.8521 0.7748 0.6534 

Duplex 0.9940 0.9878 0.9708 

TMR 0.9914 0.9788 0.9396 

Hybrid 0.9998 0.9992 0.9958 

Table 6-1: Mission Reliabilities for Design Example 

The second lesson for system designers is that, with transient errors being a prominent cause of 

system failure, it is best to design systems with error recovery in mind. For instance, a system which 

switches in a spare module when a failure is apparently found should be designed such that the 

module which is switched out is added to the pool of spares (with lowest priority). This allows 

transient errors with massive effects to be flushed out of the system without unnecessarily discarding 

hardware which is undamaged. All models in this paper assume a structure which can recycle 

modules that have been replaced by a spare. 

Although much remains to be learned about transient errors in digital computers, a solid 

foundation has been laid in this research. Analysis tools have been developed (see [McConnel 81]) 

which can facilitate future studies of transient errors. 
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