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We show that the way in which the Shannon entropy of sequences produced by an information
source converges to the source’s entropy rate can be used to monitor how an intelligent agent
builds and effectively uses a predictive model of its environment. We introduce natural measures
of the environment’s apparent memory and the amounts of information that must be (i) extracted
from observations for an agent to synchronize to the environment and (ii) stored by an agent for
optimal prediction. If structural properties are ignored, the missed regularities are converted to
apparent randomness. Conversely, using representations that assume too much memory results in
false predictability.

PACS: 02.50.Ey 05.45.-a 05.45.Tp 89.75.Kd Santa Fe Institute Working Paper 01-03-020

I. UNTANGLING ENVIRONMENTAL

STRUCTURE FROM RANDOMNESS

We examine ways to untangle the different mechanisms
responsible for apparent randomness observed by an in-
telligent agent. For our purposes here “intelligent agent”
simply refers to an observer that (i) actively builds in-
ternal models of its environment using available sensory
stimuli and (ii) takes action based on these models. In
addressing the issue of distinguishing different sources of
environmental noise and structure, we analyze those as-
pects of apparent randomness over which an intelligent
agent may exercise control. These choices include the
amount of data to collect, as well as the choice of statistic
or modeling representation used to quantify the degree
of randomness.
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FIG. 1. The measurement channel: The internal states
{A,B,C} of the system are reflected, only indirectly, in the
observed measurement of 1s and 0s. An observer works with
this impoverished data to build a model of the underlying
system. After Ref. [1].

One of the central questions addressed in the follow-
ing is, How does an agent, apprised of the environment’s
possible states and behaviors, come to know the state
of its environment? We will show that this is related to

another question, How does an agent come to accurately
estimate how random an environment is? In particular,
we investigate how finite-data approximations converge
to an asymptotic measure of randomness by introducing
several quantities that capture the nature of this conver-
gence. We demonstrate that regularities that are unseen
are “converted” to apparent randomness. A more thor-
ough discussion of these results, including proofs of the
following propositions and theorems, is found in [2].

II. MEASUREMENT CHANNEL

We adapt Shannon’s conception of a communication
channel as follows: We assume that there is an environ-
ment (source or process) that produces a sensory data
stream (message)—a string of symbols drawn from a fi-
nite alphabet (A). The task for the agent (receiver or
observer) is to estimate the probability distribution of
sequences and, thereby, estimate how random the en-
vironment is. Further, we assume that the agent does
not know the environment’s structure; the range of its
states and their transition structure—the environment’s
internal dynamics—are hidden from the agent. (We will,
however, relax this assumption in Sec. V below.) Since
the agent does not have direct access to the environ-
ment’s internal, hidden states, we picture instead that
the agent simply collects blocks of measurements from
the data stream and stores the block probabilities in
a histogram (the internal model). In this scheme, the
agent can estimate, to arbitrary accuracy, the probabil-
ity of measurement sequences by observing for arbitrary
lengths of time.

This measurement channel scenario is illustrated in
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Fig. 1. In this case, the environment is a three-state
deterministic finite automaton. However, the agent does
not see the internal states {A,B,C}. Instead, it has ac-
cess only to the measurement symbols {0, 1} generated
on state-to-state transitions by the hidden automaton.
In this sense, the measurement channel acts like a com-
munication channel; the channel maps from an internal-
state sequence . . .BCBAACBC . . . to a measurement
sequence . . . 0111010 . . .. The environment depicted in
Fig. 1 belongs to the class of stochastic process known
as hidden Markov models. The transitions from internal
state to internal state are Markovian, in that the prob-
ability of a given transition depends only upon which
state the process is currently in. However, these internal
states are not seen by the agent—hence the name hidden
Markov model [3,4].

III. ENTROPIES: MEASURING RANDOMNESS

Let Pr(sL) denote the probability distribution over
blocks sL = s0, s1, . . . , sL−1 of L consecutive environ-
ment observations, si ∈ A. Then the total Shannon en-
tropy of these L consecutive measurements is defined to
be:

H(L) ≡ −
∑

sL∈AL

Pr(sL)log2Pr(sL) , (1)

where L > 0. The sum is understood to run over all pos-
sible blocks of L consecutive symbols. The units of H(L)
are bits. The entropy H(L) measures the uncertainty as-
sociated with sequences of length L. (For a more detailed
discussion of the Shannon entropy and related informa-
tion theoretic quantities, see, e.g., Ref. [5].) Below, we
will focus on the behavior of the Shannon entropy curve
H(L). We shall see that examining how H(L) grows with
L leads to several quantities that capture aspects of the
environment’s randomness and structure.

0 L

H(L)

µ+ h  L
E

E

H(L)

0

T

h  Lµ

E

FIG. 2. Total Shannon entropy growth for a finitary in-
formation source: a schematic plot of H(L) versus L. H(L)
increases monotonically and asymptotes to the line E + hµL,
where E is the excess entropy and hµ is the source entropy
rate. The shaded area is the transient information T. For
more discussion, see text.

The source entropy rate hµ is the rate of increase with
respect to L of the total Shannon entropy in the large-L
limit:

hµ ≡ lim
L→∞

H(L)

L
, (2)

where µ denotes the measure over infinite sequences that
induces the L-block joint distribution Pr(sL); the units
are bits/symbol. Alternatively, one can define a finite-L
approximation to hµ,

hµ(L) = H(L) − H(L−1) , (3)

and show [5] that hµ = limL→∞ hµ(L). The entropy rate
hµ quantifies the irreducible randomness in observation
sequences produced by the environment—the random-
ness that persists even after statistics over longer and
longer blocks of observations are accounted for by the
agent.

IV. EXCESS ENTROPY: MEASURING MEMORY

Having looked at length-L sequences, an agent can es-
timate the true randomness hµ by calculating hµ(L), de-
fined in Eq. (3). With enough sensory data it can get
good approximations to hµ by using long sequences. But
what if there is insufficient data to allow this? To an-
swer this we must determine how the estimates hµ(L)
converge to hµ? One measure of convergence is provided
by the excess entropy E:

E ≡

∞∑

L=1

[hµ(L) − hµ] , (4)

The units of E are bits. The excess entropy is not a new
quantity; it was first introduced almost two decades ago
[6,7]. For recent reviews see [2,8,9].

E measures the convergence of hµ(L) and plays a role
in determining how an agent comes to know how random
its environment is. But what exactly does E measure?
The length-L approximation hµ(L) overestimates the en-
tropy rate hµ at finite L by an amount hµ(L)− hµ. This
difference measures how much more random single mea-
surements appear using the finite L-block statistics than
the statistics of infinite sequences. In other words, this
excess randomness tells us how much additional infor-
mation must be gained from the environment in order
to reveal the actual per-symbol uncertainty hµ. Thus,
we can think of the difference hµ(L) − hµ as the redun-
dancy (per symbol) in length-L sequences: that portion
of information-carrying capacity in the L-blocks which is
not actually random, but is due instead to correlations.
The excess entropy E, then, is the total amount of this
redundancy and, as such, a measure of one type of mem-
ory intrinsic to an environment.

The next proposition establishes a geometric interpre-
tation of E and an asymptotic form for H(L).
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Proposition 1 The excess entropy is the subextensive
part of H(L); that is,

E = lim
L→∞

[H(L) − hµL] . (5)

This proposition implies the following asymptotic form
for H(L):

H(L) ∼ E + hµL , as L → ∞ . (6)

Thus, we see that E is the L = 0 intercept of the linear
function Eq. (6) to which H(L) asymptotes. This obser-
vation, also made in Refs. [7,9–11], is shown graphically
in Fig. 2.

Another way to understand excess entropy is through
its expression as a type of mutual information.

Proposition 2 The excess entropy is the mutual infor-
mation between the past and the future:

E = lim
L→∞

I[s0s1 · · · s2L−1; s2Ls2L+1s2L−1] , (7)

when the limit exists.

Eq. (7) says that E measures the amount of historical
information stored in the present that is communicated
to the future. For a discussion of some of the subtleties
associated with this interpretation, however, see Ref. [8].
Prop. 2 also shows that E can be interpreted as the cost
of amnesia: If an agent suddenly loses track of its envi-
ronment, so that it cannot be predicted at an error level
determined by the entropy rate hµ, then the environment
appears more random by a total of E bits.

V. TRANSIENT INFORMATION: A MEASURE

OF SYNCHRONIZATION

We now introduce a quantity that answers the ques-
tion, How does H(L) converge to its asymptote E+hµL?
That is, when has an agent made a sufficient number of
observations that it can determine the complexity of its
environment? The answer to these questions is provided
by the transient information T:

T ≡

∞∑

L=0

[E + hµL − H(L)] . (8)

Note that the units of T are bits × symbols. The tran-
sient information is a new quantity, recently introduced
by us in Ref. [2].

Thus, for finite-memory (E and T finite) processes
H(L) scales as E + hµL for large L. When this scaling
form is attained, we say that the agent is synchronized to
the environment. In other words, when

T(L) ≡ E + hµL − H(L) = 0 , (9)

we say the agent is synchronized at length-L sequences.
As we will see below, agent-environment synchronization
corresponds to the agent being in a condition of knowl-
edge such that it can predict the environmental obser-
vations at an error rate commensurate with to the en-
vironment’s entropy rate hµ. We refer to T as transient
since during synchronization the agent’s prediction prob-
abilities change, stabilizing only after it has collected a
sufficient number of observations.

To ground this interpretation, we can establish a di-
rect relation between the transient information T and the
amount of information required for synchronization to
block-Markovian environments. Assume that the agent
has a correct model M = {V , T } of the environment,
where V is a set of states and T is the rule governing
transitions between states. The task for the agent is to
make observations and determine the state v ∈ V of the
environment. Once the agent knows with certainty the
current state, it is synchronized to the environment, and
the average per-symbol uncertainty is exactly hµ. We are
interested in describing how difficult it is to synchronize
to a directly observed Markov process.

The agent’s knowledge of V is given by a distribution
over the states v ∈ V . Let Pr(v|sL,M) denote the distri-
bution over V , given that the particular sequence sL has
been observed and the agent has internal model M. The
entropy of this distribution measures the agent’s average
uncertainty in predicting v ∈ V . Averaging this uncer-
tainty over the possible length-L sequences, we obtain
the average agent-environment uncertainty:

H(L) ≡

−
∑

sL

Pr(sL)
∑

v∈V

Pr(v|sL,M) log2 Pr(v|sL,M) . (10)

The quantity H(L) can be used as a criterion for synchro-
nization. The agent is synchronized to the environment
when H(L) = 0—that is, when the agent is completely
certain about the state v ∈ V of the mechanism generat-
ing the sequence. When the condition in Eq. (9) is met,
we see that H(L) = 0, and the uncertainty associated
with the prediction of the model M is exactly hµ.

However, while the agent is still unsynchronized
H(L) > 0. We refer to the total average uncertainty
experienced by an agent during the synchronization pro-
cess as the synchronization information S:

S ≡
∞∑

L=0

H(L) . (11)

The synchronization information measures the average
total information that must be extracted from observa-
tions so that the agent is synchronized.

In the following, we assume that the environment is
Markovian of order R. In contrast to the scenario de-
picted in Fig. 1, we assume that the Markov model is
not hidden, in the sense that internal states are directly
observable.

3



Theorem 1 For an order-R Markovian environment,
the synchronization information S is given by:

S = T +
1

2
R(R + 1)hµ . (12)

Thus, the transient information T—together with the
entropy rate hµ and the order R of the Markov process—
measures how difficult it is to synchronize to an environ-
ment. If a system has a large T, then, on average, an
agent will be highly uncertain about the internal state
of the environment while synchronizing to it. Thus, T

measures a structural feature of the environment: how
difficult it is for an agent to synchronize to it.

VI. APPLICATIONS AND IMPLICATIONS

Using hµ, E, and T one can distinguish various types
of entropy convergence and different structural classes of
environment. We can now return to the set of questions
posed in the introduction: How can we untangle differ-
ent sources of apparent randomness? In particular, what
happens to estimates of the environment’s randomness if
we ignore its structure?

Here we show that there are direct and empirically im-
portant consequences for ignoring structural properties.
Namely, missed regularities are converted to apparent
randomness, assumed memory produces false predictabil-
ity, and assumed synchronization leads to memory un-
derestimates. These result in a range of misleading infer-
ences about both the environment’s randomness and its
structure. We consider four different issues:

1. What happens when an agent ignores entropy-rate
convergence?

2. What happens when the environment’s apparent
memory is ignored?

3. What happens if the agent ignores synchroniza-
tion?

4. What happens if the agent assumes it is synchro-
nized to the environment, when it is not?

A. Disorder as the Price of Ignorance

The first two questions are closely related and rather
straightforward to answer. The preceding sections de-
fined several different quantities—hµ, E, and T—that
measure randomness, memory, synchronization, and
other features of a process. For the most part, these
are asymptotic quantities in the sense that they involve
the behavior of the function H(L) in the L → ∞ limit.
Thus, their exact empirical estimation demands that an
infinite number of measurements (for accurate estimates

of sequence probabilities) of infinitely long sequences be
made. Obviously, other than by analytic means, it is
not possible to calculate exactly such quantities. Exact,
L → ∞ results are known for only a few special processes
that are analytically tractable.

This leads one to ask, Even when sequence probabil-
ities are accurately known, how well can these various
environment properties be estimated at finite L? What
errors are introduced, and are these errors related in any
way?

The simplest such question, the first one listed above,
arises when one attempts to estimate source randomness
hµ via the approximation hµ(L). Generally, stopping
the estimate at finite L gives one a rate hµ(L) which is
larger than the actual rate hµ. That is, the environment
appears more random if we ignore correlations between
observations separated by more than L steps. For a dis-
cussion of several methods to improve on the estimator
hµ(L) in the context of dynamical systems, see Ref. [12].

0 L

E(L)

H(L)

h  (L)Lµ′

E = 0

E(L)+h (L)Lµ

E > 0

L-1

FIG. 3. Ignored memory is converted to randomness: Il-
lustration of how ignoring memory, in this case implicitly as-
suming E = 0 as Eq. (2) implies, when actually E > 0, leads
to an overestimate h′

µ(L) (slope of dotted line) of the actual
entropy rate hµ (slope of dashed line).

An agent could also estimate hµ at finite L by us-
ing h′

µ(L) = H(L)/L, as suggested by Eq. (2). Using
this definition to estimate hµ is tantamount to assum-
ing that E = 0, as illustrated by the dashed line h′

µL
in Fig. 2. Now suppose an agent makes measurements
of an environment with entropy rate hµ and excess en-
tropy E > 0. Then, at a given L, we can ask what the
entropy rate estimate h′

µ(L) = H(L)/L is. As shown
in [2], h′

µ(L) ≥ hµ(L) ≥ hµ. But how much more ran-
dom does the environment appear? This is answered in
a straightforward way by the following proposition.

Proposition 3 When the agent is synchronized to the
environment,

h′
µ(L) − hµ =

E

L
. (13)
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In this way, E bits of memory are converted into addi-
tional, apparent randomness. The environment appears
more random due to the agent’s ignoring one of its struc-
tural properties.

Although E is an L-asymptotic quantity, the error E/L
in the entropy-rate estimate dominates at small L. More-
over, being restricted to small L is typical of experimental
situations with limited data or in which drift is present.
One cannot reliably estimate the L-block probabilities
Pr(sL) at large L due to the exponential growth in their
number or the nonstationarity of block probabilities, re-
spectively.

B. Predictability and Instantaneous Synchronization

Conversely, if one assumes a fixed amount of memory
E, we shall see that this leads to an underestimate of
the entropy rate hµ and the environment appears more
predictable than it is. Assuming a fixed excess entropy
is not something that one is likely to do in the particu-
lar setting here, in which an agent empirically measures
entropy density and related quantities from observation
sequences. In a more general modeling setting, however,
one always runs the risk of using too large a model and,
in so doing, “projecting” some particular structure—such
as, additional memory capacity—onto the environment.
Assuming a fixed, nonzero value for the excess entropy
is, in an abstract sense, an example of over-fitting. Given
this, we ask, What is the consequence of assuming a fixed
value for E?

Equivalently, what happens if the agent assumes that
it is synchronized to the environment at some finite L,
implying that H(L) = E + hµL at that L? The geomet-
ric construction for this scenario is given in Fig. 4. In
effect the environment is erroneously considered to be a
completely observable Markovian process in which H(L)
converges to its asymptotic form exactly at some finite
L [2,13]. If the agent then uses its assumed value for E,

one arrives at the estimator ĥµ where

ĥµ ≡
H(L) − E

L
6= hµ . (14)

At a given L the effect is that the agent considers the en-
vironment to have a larger E than it actually has at that

L. The line E+ ĥµL appears fixed at E when that inter-
cept should be lower at the given L. The result, easily
gleaned from Fig. 4, is that the entropy rate hµ is under-

estimated as ĥµ. (The two entropy rates are the slopes
of the two straight lines.) In other words, the agent will
believe the environment to be more predictable than it
actually is.

Proposition 4 An agent monitors an environment
with excess entropy E > 0. If the agent assumes it is
synchronized when it is not, then

ĥµ ≤ hµ . (15)

0 L

E > 0

H(L)
E+h  Lµ

E = 0

E+h  Lµ

^

FIG. 4. Assumed synchronization converted to false pre-
dictability: Schematic illustration of how assuming one is syn-
chronized, leads to an underestimate ĥµ (slope of dotted line)
for an environment with excess entropy E > 0 and entropy
rate hµ (slope of dashed line).

C. Assumed Synchronization Implies Reduced

Apparent Memory

In addition to analyzing the effects on the apparent en-
tropy rate due to assuming synchronization, we can ask
a complementary question: What are the effects of as-

suming synchronization on estimates Ê of the apparent
memory? Figure 5 illustrates this situation.

0 L

E > 0

H(L)
E+h  Lµ

E = 0

E+h  Lµ

Ê

^

FIG. 5. Assumed synchronization leads to less apparent
memory: Schematic illustration of how assuming synchro-
nization to an environment, in this case implicitly assuming
H(L) = E + hµL, leads to an underestimate Ê of the actual
memory E > 0.
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If, at a given L, we approximate the entropy rate es-
timate hµ(L) = H(L) − H(L − 1) by the true entropy
hµ, then the offset between the asymptote and H(L) is
simply E + hµL− H(L). Thus, looking at Fig. 5, we see

that we have a reduced apparent memory Ê ≤ E of

Ê = H(L) − hµL . (16)

In fact, since the estimated entropy rate is larger than hµ,
the reduction in apparent memory is even larger. Thus,
assuming synchronization, in the sense that hµ(L) = hµ,
leads one to underestimate the apparent memory, as mea-
sured by the excess entropy E. And so, the environment
appears less structurally complex than it is.

VII. CONCLUSION

We have reviewed several information theoretic mea-
sures of an environment’s randomness and several of its
structural properties. We also introduced a new quantity,
the transient information T. One of the central results
of this work is contained in Theorem 1, which states that
T is directly related to the total agent-environment un-
certainty experienced while an agent synchronizes to a
Markovian environment.

We then considered various trade-offs between finite-L
estimates of the excess entropy E and the entropy rate
hµ. In particular, we showed that if an agent does not
take one or another into account it will systematically
over- or underestimate an environment’s entropy rate hµ.
For example, there can be an inadvertent conversion of
ignored memory into apparent randomness. The mag-
nitude oa f this effect is proportional to the difference
between environment memory and the upper bound on
memory that the agent store in its internal model. In
a complementary way, one can inadvertently convert as-
sumed memory into false predictability. As a result, an
agent must have some method for accounting for an envi-
ronment’s structural features, even if it’s focus is only on
the apparently simple question of how random a process
is [14].
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