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Abstract: The influence of synchronous and asynchronous migration on the per-
formance of adaptive differential evolution algorithms is investigated. Six adaptive
differential evolution variants are employed by the parallel migration model with
a star topology. Synchronous and asynchronous migration models with various
parameters settings were experimentally compared with non-parallel adaptive al-
gorithms in six shifted benchmark problems of dimension D = 30. Three different
ways of exchanging individuals are applied in a synchronous island model with
a fixed number of islands. Three different numbers of sub-populations are set
up in an asynchronous island model. The parallel synchronous and asynchronous
migration models increase performance in most problems.
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1. Introduction

A lot of fields of research and industry hide problems that need to be optimized.
Such optimization can be performed by several methods. In the case of problems
where analytical solutions are not possible, biologically inspired optimization algo-
rithms are often able to find an acceptable solution. A major group of biologically
inspired algorithms are evolutionary algorithms (EA), which use several natural
properties of the individuals. EA are typified by using randomization and, thus,
EA can be successful in problems where a deterministic solution is not possible. On
the other hand, solving problems by EA can last unexpectedly long. The search
process of EA is managed by control parameters, and setting of the values of these
control parameters is crucial for computational costs and precision of the algorithm.

Optimization in EA is generalized to search the global minimum of the problem,
which is simply defined (1). The global minimization problem is formed as follows:
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minimize f(x), x ∈ Ω, f(x) : Ω→ R, Ω ⊆ RD, (1)

where f(x), x = (x1, x2, . . . , xD) is the real-value objective function and D is the
dimension of the problem.

The search space is boundary-constrained (2) for many continuous problems,
i.e. the domain Ω is defined by:

Ω =
D∏
i=1

[ai, bi], ai < bi , (2)

and the goal is to find such a point x∗ fulfilling condition:

f(x∗) ≤ f(x), ∀x ∈ Ω . (3)

In difficult optimization tasks where deterministic algorithms are not able to find
the solutions with acceptable time demands, solutions can be searched heuristi-
cally. By application of stochastic algorithms, the area of potential solutions Ω
is heuristically explored. One of the simplest and efficient stochastic algorithms
is the differential evolution (DE) [20]. Standard DE and its adaptive variants are
frequently used to solve very hard problems of practice. Although differential evo-
lution is a very efficient algorithm, time requirements for a good solution in high-
dimensional tasks are often too high, see e.g. [31]. Parallel models of evolutionary
algorithms are able to distribute computations into several processes and thus re-
duce the total time demands of the search. Compared to standard non-parallel
DE, migration applied in parallel models brings a new feature to the evolutionary
process, which can increase the performance of the DE algorithm.

The aim of this paper is to study the influence of migration in various parallel
models on the performance of adaptive DE algorithms. An increase of search per-
formance is crucial in large-dimension problems [19, 33]. Any possible improvement
of the search speed is important for getting an acceptable solution in reasonable
time. That is why the influence of migration in EA is worth studying. We do
not focus on possible increase of efficiency by parallel implementation but on the
influence of migration. Thus, comparative experiments are carried out on a single-
processor PC in a pseudo-parallel mode.

This paper is organized as follows. The differential evolution algorithm and
its state-of-the-art adaptive variants are described in Section 2. Parallel models in
evolutionary algorithms in brief and a novel asynchronous parallel island model of
an adaptive differential evolution algorithm with a ring topology are summarized
in Section 3. Experimental settings and test functions are presented in Section 4.
Results of experimental comparison are summarized in Section 5. Benefits of the
parallel synchronous and asynchronous island model are outlined in the last section.

2. Differential Evolution Algorithm

Differential evolution is one of the most frequently used evolutionary optimization
techniques introduced in the 1990s by Storn and Price [26, 27]. In DE, the pop-
ulation of potential solutions is developed by evolutionary operators in order to
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find the global minimum of the problem x∗. A pseudo-code of the DE algorithm is
depicted in Algorithm 1. The population of individuals P is randomly initialized
in Ω and the 0 generation is completed. For next generations, for each individual
xi of the population a new trial vector y is created by using the evolutionary op-
erators (mutation and crossover). A better point of the couple of {xi,y} is then
selected to the new generation of population, i.e. a new trial point (y) replaces the
old one (xi) if f(y) ≤ f(xi). The mutation is controlled by the input parameter
F , F ∈ (0, 2], another input parameter CR, CR ∈ (0, 1), controls the intensity of
crossover. A combination of mutation and crossover is called DE strategy, usually
abbreviated by DE/m/n/c, where m stands for the kind of mutation, n for the
number of differences in mutation, and c for the type of crossover.

Algorithm 1 Differential evolution algorithm

initialize population P = {x1,x2, . . . ,xN}
while stopping condition not reached do
for i = 1, 2, . . . , N do

create a new trial vector y
if f(y) ≤ f(xi) then
y → Q

else
xi → Q

end if
end for
P ← Q

end while

The choice of the DE strategy, population size N and [F,CR] control pa-
rameters settings are crucial for the speed and the quality of the evolutionary
process. Setting of DE control parameters by a trial-and-error method is time-
consuming. Many studies and experimental comparisons have been carried out
in order to find a proper control parameters setting for a wider class of prob-
lems [7, 12, 13, 20, 23, 27]. However, their results have not lead to unique recom-
mendations that could be commonly applied. Due to this fact a great effort has
been expended to develop some adaptive mechanisms of DE parameters to make
the applications more effective, for a summary see [10]. Several efficient variants of
DE were proposed or applied in [14, 15], three DE variants were successfully used
for the artificial neural network learning in [4].

2.1 Adaptive differential evolution variants in comparison

Four self-adaptive DE variants (jDE [5], JADE [35], SaDE [21], and EPSDE [16])
are currently considered as the state-of-the-art DE variants. Along with these four
variants, a variant of competitive DE [29], and a variant of DE based on composite
trial vector generation strategies and control parameters [32] are also included in
the algorithms for experimental comparison. The principles of the adaptive DE
variants used in the experiments are described below and sorted according to the
year of their publishing.
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jDE [5]: DE strategy DE/rand/1/bin with self-adaptation of F and CR. Other
control parameters are set to the values recommended by authors of the algorithm,
i.e. the ranges of F and CR values are [0.1, 0.9] and [0, 1], respectively. Mutation
probabilities of F and CR are set to τ1 = τ2 = 0.1.
Competitive b6e6rl [29]: Twelve strategies differing in the type of crossover or
the values of F and CR from the strategy pool compete to be selected for the gene-
ration of a new trial vector. The probability of a strategy selection is proportional
to the previous performance of the strategy. Additional parameters controlling the
competition are set to their recommended values, n0 = 2 and δ = 1/60.
SaDE [21]: Four mutation strategies and the parameter CR are self-adapted, where
the parameters performance in the previous LP generations influences their follow-
ing values. Parameter F is generated randomly from the normal distribution with
a mean and standard deviation of 0.5 and 0.3, respectively. The value of LP = 50
is used in our experiments.
JADE [35]: DE variant using a newly proposed current-to-pbest mutation with
external archive and self-adaptation of the values of F and CR. The size of the
archive is set to N, xpbest is randomly chosen from 100p% best individuals. The
value of p = 0.05 is used in our experiments, c = 0.1 is used for adaptation of the
F and CR.
EPSDE [16]: Self-adaptive DE using an ensemble of mutation strategies and pa-
rameter values. The triplet (strategy, F, CR) is encoded along with each individual
of the population. If the current vector produces a successful trial vector enter-
ing next generation, its triplet (strategy, F, CR) survives to next generation and
the successful triplet is also stored in auxiliary memory. Otherwise, the triplet
(strategy, F, CR) is randomly re-initialized from the respective pools or from the
stored successful triplets. The length of memory with the successful triplets is set
to LP = N.
CoDE [32]: Composite DE variant used in experiments published in [32]. Three
mutation strategies with parameters assigned randomly from respective pools are
used in each attempt to generate an individual for next generation. The best point
of the triplet is used as a new trial point. A modified CoDE0 variant performing
better than the original CoDE [30] is used in experiments.

3. Parallel Island Model Applied to Differential
Evolution

The parallel models enable exploring the decision space and decrease the risk of
trapping at the local minima. Over the past years several parallel models based
on approaches of parallelization of evolutionary algorithms have been developed:
master-slave, neighborhood, island and their hybrid variants [1].

Different types of topologies can be used on the island model for DE. The most
frequently used topologies on the island model are ring and star. These topologies
applied in the DE environment were compared in [6]. The control parameters of
the island models with coarse-grained distributed population were studied in [22].
There are several parameters controlling migration of information among sub-po-
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pulations: number of migrants, selection policy, integration policy (adopt policy),
migration criterion and selection the islands [9, 11, 25].

The selection policy defines selection of the individuals in donor sub-popula-
tion. The selected individuals are located according to the integration policy into
the sub-population of the selected recipient island. The migration criterion defines
the condition when the migration is performed. There are two types of migration
determined by the migration criterion: synchronous and asynchronous migration.

In this work, the island model is applied and six different variants of adaptive
differential evolution algorithms are used. The population of potential solutions on
the island model is initialized randomly in Ω and divided into k independent sub-
populations P1, P2, . . . , Pk. Each sub-population is associated to one island. The
population of N individuals is divided, which means that all the sub-populations
are of the same size Np = N/k. After initialization, each sub-population is deve-
loped independently by differential evolution until the condition for the migration
is reached, the islands exchange information about their sub-populations. In this
experimental comparison, two types of migration are used, i.e. a synchronous
and an asynchronous type. After the migration, independent development of the
sub-populations continues until next condition of the migration. These processes
are repeated until the total stopping condition (4) is satisfied, in other words the
evolution continues until the whole stopping condition is met. The total stopping
condition in all the compared algorithms is considered as:

nfe < D ×maxnfe AND worstf − bestf > ε, (4)

where (bestf) and (worstf) are the best and the worst function values in the whole
model (unified all the sub-populations), nfe is the current number of function evalu-
ations, ε and maxnfe are the input parameters. We suppose that such a distributed
approach might allow to reduce the time demands of searching an acceptable ap-
proximation of the global minimum point.

3.1 Synchronous migration

In a synchronous migration, all islands send and adopt migrants at one moment,
which happens after a specified number of generations of the evolutionary process.
Migration in the synchronous mode is centrally controlled, i.e. all the islands wait
until the slowest island finishes evolution of its sub-population. Such a model
is very simple, but a drawback is that any slow-converged sub-population causes
slowdown of the whole algorithm.

A pseudo-code of a synchronous island model of DE is depicted in Algorithm 2.
At first, the whole pseudo-randomly initialized population is divided into k sub-po-
pulations placed to the islands. Several generations of each sub-population (nde)
are performed, where nde is the input parameter and its value is crucial for the
efficiency of a synchronous model. After nde generations all the islands exchange
the selected individuals, i.e. the migration is performed and one epoch is done. In
a synchronous model in our experiments, three different ways of selecting migrants
on islands are compared and described in Section 4.

After the migration of all islands, an epoch is done (counter of the epochs is
increased by one) and the development of the sub-populations by DE continues
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Algorithm 2 Synchronous island model of DE with ring topology

initialize sub-populations Pj , j = 1, 2, . . . , k
epoch = 1
while stopping condition (4) not reached do
for j = 1, 2, . . . , k do

perform nde generations of each island by DE
end for
migrate selected individuals between islands by the unidirectional ring
epoch = epoch+ 1

end while

until the total stopping condition (4) is met. A synchronous parallel model of DE
in the experiment is linked by the ring topology with an unidirectional communi-
cation Fig. 1a.
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Fig. 1 The ring topology of a) synchronous, b) asynchronous island model.

3.2 Asynchronous migration

In an asynchronous migration, each island sends and adopts determined individuals
if its own migration criterion is achieved. In other words, the individuals from the
island migrate independently on the other islands and evolution processes of fast
islands are not hindered by slow islands. The migration condition, i.e. definition
of the evolution level when the island adopts and sends individuals from/to the
specified islands, plays an important role in an asynchronous migration. Thus,
migration condition provides each island with an ability to migrate if its sub-popula-
tion is ready for migration independently of other islands. An island with a mature
subpopulation does not wait for slower islands and this is a dynamic form of the
communication. It has been shown that asynchronous migration operation can
increase the convergence rate of evolutionary algorithms compared to a synchronous
migration [2, 28].

A pseudo-code of the asynchronous island model tested in this study is shown
in Algorithm 3. The initialized population is divided among k islands according
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to the ring topology depicted in Fig. 1b. Contrary to synchronous migration, no
centrally controlled migration of all the islands is performed. An island whose sub-
population is sufficiently mature migrates (i.e. sends and adopts) the chosen indi-
viduals with other selected island. Maturity of a certain subpopulation is compared
with the migration condition (5). For easier implementation of the asynchronous
communication among the islands, an auxiliary buffer memory is used (depicted
as small squares in Fig. 1b). This buffer is used to hold current migrants of all
islands, i.e. buffer has size ‘number of migrated individuals‘ × ’number of islands‘
and it contains only the last migrants of each island.

When migration of the island is completed, the current epoch of the island ends
and the counter of epochs of the island is increased by one. It is obvious that the
number of the DE generations in one epoch can vary from island to island AND
the number of the DE generations on the island in the epochs may be different as
well. The epoch on the jth island is finished if the following condition is fulfilled:

worstnew − bestnew < max( 1
exp(epochj−1) , 1× 10−4) AND bestold − bestnew > ε

100

OR
newgenj − oldgenj ≥ N,

(5)
where worstnew and bestnew are function values of the currently worst and the
currently best individuals, bestold is the function value of the best individual in the
preceding generation, ε is an input parameter, difference of (newgenj − oldgenj)
means the number of generations completed till now in the current epoch, and
epochj is the value of the epoch counter. All the values except for ε and N are
related to the jth island.

Condition (5) defines two ways how to finish the epoch on the jth island:

a) the maximum difference in the function values on the island has become small
and there is at least a small progress in the quality of the sub-population
development when two last generations are compared,

b) or the number of generation in the current epoch is large without reaching
any significant progress in the sub-population development.

Algorithm 3 Asynchronous island model of DE with ring topology

initialize sub-populations Pj , j = 1, 2, . . . , k
initialize migration counter of length k, epoch = (1, 1, . . . , 1)
while stopping condition (4) not reached do
for j = 1, 2, . . . , k do

while migration condition (5) of jth sub-population is not reached do
perform generation of jth island by DE

end while
select best and replace old best on buffer
adopt best of neighbor from buffer
epochj = epochj + 1

end for
end while
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4. Experiments

Synchronous and asynchronous parallel algorithms are compared with six state-
of-the-art non-parallel adaptive DE. One hundred runs are performed for all the
algorithms and test functions. The main control parameters for all DE variants are
set up: population size N = 60, maxnfe = 20000 and ε = 1× 10−6. The settings of
parameters controlling the parallel models are mostly based on author’s previous
experiments [6, 8]. Synchronous parallel variants used in the experiments differ in
various ways of the migrants’ selection. Asynchronous variants differ in the number
of islands resulting in different sub-population sizes.

In the synchronous variants, the individuals are distributed by an unidirectional
ring topology to 6 islands and the sub-populations sizes are N/6 = 10. A fixed
number of DE generations nde = 5 is performed before the migration occurs. Three
labels in Tab. I specify how the individuals are selected for migration between the
islands in the unidirectional ring. In the first (synch1) variant, the best individ-
uals are exchanged between next immediate islands where they replace the worst
individuals and, moreover, mig randomly chosen individuals are exchanged, where
mig = 4 is the input parameter. In (synch2) variant, the best individuals are also
exchanged between immediate individuals where they replace the worst individu-
als. Moreover, the function values of the best individuals in the neighboring islands
are compared and a better island sends mig+1 randomly chosen individuals to the
worse island and the worse one island sends mig − 1 randomly chosen individuals
to the better one. In the last (synch3) synchronous variant, a half of individuals
in the neighboring sub-populations are randomly chosen and exchanged.

In the asynchronous algorithms, the individuals are distributed to islands linked
into an unidirectional ring. Asynchronous migration is implemented using a buffer
memory. Algorithms with three different numbers of islands and sub-populations
sizes are compared, the same condition of migration (5) is used in all algorithms. In
these three variants, individuals are distributed to the islands in the following man-
ner: two islands 30 individuals per island (this variant is called asynch1 hereafter),
three islands, 20 individuals per island (asynch2) and four islands, 15 individuals
per island (asynch3), see also Tab. I.

When the asynchronous migration occurs, the best individual of the migrated
island is copied to the buffer and the worst individual is replaced by the best
individual from the previous island in the unidirectional ring. In more detail,
the best individual from the migrated island is sent to the buffer memory for the
previous island and the best individual of the next island is adopted from the buffer
memory to the worst position in the migrated island. In other words, the migrants
are selected according to the following rules:

• The individual with the least function value in migrating sub-population on
the jth island replaces the individual on jth position in the buffer and waits
to be adopted by the (j − 1)th island.

• The individual on the (j +1)th position in the buffer is sent to the currently
migrating island (j), where it replaces the worst individual.

The numbering of islands by j is considered in a circular manner.
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synchronous asynchronous
abbr. description abbr. description
synch1 1 best and 4 random asynch1 2 islands × 30 individuals
synch2 1 best and 5 or 3 random asynch2 3 islands × 20 individuals
synch3 half population random asynch3 4 islands × 15 individuals

Tab. I Labels of parallel DE variants used in the presentation of results.

In this study, six non-parallel, three synchronous parallel and six asynchronous
parallel adaptive DE algorithms are compared. The abbreviated labels of algo-
rithms used in the presentation of results are shown in Tab. I. Thus, we can clarify
if the parallel model is able to reduce time demands with keeping the level of
reliability.

Six well-known scalable test functions [3, 18, 20, 27] shown in Tab. II are used
as benchmark at level of problem dimension D = 30. In the case of four following
test functions their global optimum point in a non-shifted form is in the center of
solution area Ω, x∗ = (0, 0, . . . , 0), which makes the search for solution easier for
many stochastic algorithms. Therefore, we use them in their shifted version. The
shifted function is evaluated at the point z = x− o, o ∈ Ω, o ̸= (0, 0, . . . , 0). The
shift o is generated randomly from uniform D-dimensional distribution before each
run of algorithm. The global optimum of the test problem is x∗ = o for all the
shifted functions.

problem abbr. function decision space

Ackley f1 −20 exp
(
−0.2

√
1
D

∑D
j=1(xj − oj)2

)
− [−30, 30]D

− exp
(

1
D

∑D
j=1 cos 2π(xj − oj)

)
+ 20 + exp(1)

DeJong f2
∑D

j=1(xj − oj)
2 [−5.12, 5.12]D

Griewank f3
∑D

j=1
(xj−oj)

2

4000
−

∏D
j=1 cos

(
(xj−oj)√

j

)
+ 1 [−400, 400]D

Rastrigin f4 10D +
∑D

j=1

[
(xj − oj)

2 − 10 cos(2π(xj − oj))
]

[−5.12, 5.12]D

Rosenbrock f5
∑D−1

j=1

[
100(x2

j − xj+1)
2 + (1− xj)

2
]

[−2.048, 2.048]D

Schwefel f6 418.98288727 D −
∑D

j=1 xj sin(
√

| xj |) [−500, 500]D

Tab. II Test problems.

5. Results

The results of the comparison are in Tab. III and Tab. IV. Each table contains the
results of the non-parallel adaptive DE algorithms and the adequate parallel island
algorithms for a better comparison.
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non-parallel DE synch1 synch2 synch3
alg fcn nfe fnr R nfer fnrr R nfer fnrr R nfer fnrr R

b6e6rl f1 230179 213310 100 -8 -7 100 -9 -7 100 -11 -9 98
CoDE0 f1 600000 0 0 -10 92 -11 88 -13 84
EPSDE f1 600000 212880 0 0 0 0 0 0 0
jDE f1 600000 0 0 0 0 0 0 0 0
JADE f1 302861 279637 95 -14 -10 96 -17 -13 94 -19 -16 96
SaDE f1 600000 0 0 0 0 0 0 0 0
b6e6rl f2 37472 27004 100 -27 -28 100 -27 -28 100 -30 -30 100
CoDE0 f2 47670 34928 100 -68 -68 100 -68 -68 100 -68 -68 100
EPSDE f2 23818 17255 100 19 19 100 9 -71 100 16 16 100
jDE f2 32559 23194 100 -20 -19 100 -20 -18 100 -21 -20 100
JADE f2 13470 9832 100 20 19 100 19 19 100 21 21 100
SaDE f2 20947 15611 100 10 9 100 10 9 100 11 10 100
b6e6rl f3 51934 41482 100 -29 -30 98 -28 -29 100 -30 -32 96
CoDE0 f3 68010 55261 100 -68 -69 98 -69 -69 100 -69 -69 100
EPSDE f3 32438 25851 100 15 14 100 7 -77 92 14 13 96
jDE f3 43690 34458 100 -20 -19 98 -21 -20 98 -21 -21 98
JADE f3 22759 15977 93 22 13 98 7 10 96 31 15 96
SaDE f3 28312 19833 87 10 25 100 6 23 100 11 28 92
b6e6rl f4 73402 62829 100 -10 -8 100 -11 -8 100 -13 -10 100
CoDE0 f4 268062 255236 100 -67 -67 100 -67 -67 100 -67 -67 100
EPSDE f4 251678 245034 100 102 104 100 85 77 100 96 98 100
jDE f4 137343 125573 98 -3 0 100 -3 1 100 -5 -1 100
JADE f4 67801 60428 100 9 6 100 9 7 100 8 6 100
SaDE f4 79901 73594 100 85 105 28 88 108 22 86 108 30
b6e6rl f5 147185 134946 100 17 20 98 19 23 100 33 37 94
CoDE0 f5 359860 338333 100 -57 -57 100 -57 -57 100 -54 -54 100
EPSDE f5 163082 151356 100 59 60 98 65 12 100 70 71 100
jDE f5 377216 332957 97 59 0 59 0 59 0
JADE f5 76440 72055 93 85 85 96 83 82 100 99 97 98
SaDE f5 241504 210633 95 148 0 148 0 148 0
b6e6rl f6 64243 53669 100 -18 -17 100 -18 -16 100 -19 -17 100
CoDE0 f6 149849 137044 100 -68 -68 100 -68 -68 100 -68 -68 100
EPSDE f6 74555 67297 99 68 74 100 48 33 100 63 70 100
jDE f6 60093 50229 99 -13 -10 100 -12 -9 100 -14 -11 100
JADE f6 57994 52400 77 17 13 100 16 12 96 15 10 98
SaDE f6 53004 46724 100 22 26 96 20 23 100 22 25 100

Tab. III Results of experimental comparison of synchronous variants with non-
parallel DE.

The values of non-parallel DE in the tables:

• Reliability rate (R) is the number of the algorithm runs, where the function
value of the best find solution xmin is: f(xmin) < 1× 10−4.

• Number of the function evaluations in non-parallel DE when the algorithm
firstly approximates to the global minima point under the value 1 × 10−4

(fnr).

• Total function evaluations of non-parallel DE (nfe).

For the parallel models, the relative number of function evaluations (in percent)
with respect to non-parallel DE, computed by equation (6) is given in nfer column.

nfer =
nfep − nfes

nfes
× 100, (6)

where nfep is the number of function evaluations for the parallel version and nfes
for the non-parallel one. The relative number of function evaluations (fnrr) for
the parallel variants when the algorithm firstly approximates to the function value
in the global minimum point with difference less than 1 × 10−4 is computed by
equation (7).

fnrr =
fnrp − fnrs

fnrs
× 100, (7)
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where fnrp denotes the number of the function evaluations of parallel version DE
and fnrs for the non-parallel DE. Other measures for the comparison of stochastic
methods are proposed in work [17].

The results of the parallel models are compared with the corresponding non-
parallel variants in Tab. III and Tab. IV. The results of parallel models are em-
phasized as follows. If the parallel variant keeps or increases the reliability R of
the non-parallel variant, the parallel R value is underlined. If the speed of the
parallel variant (equations (6) and (7)) is better than of the non-parallel variant,
the parallel values (nfer, fnrr or both) are underlined. When the parallel variant
outperforms non-parallel in speed and value of reliability R is at least the same,
the values of the parallel variant are printed in bold. For easier evaluation of the
migration benefit, the number of cases in which the parallel models achieve a higher
speed and reliability than the non-parallel variants (complete results are presented
in Tab. III and Tab. IV) are summarized in Tab. V. The parallel models achieve
a higher performance than the non-parallel variants in almost half of all the test
problems.

non-parallel DE asynch1 asynch2 asynch3
alg fcn nfe fnr R nfer fnrr R nfer fnrr R nfer fnrr R

b6e6rl f1 230179 213310 100 -56 -46 45 -59 -39 18 -66 -44 6
CoDE0 f1 600000 0 0 -55 30 -59 27 -66 4
EPSDE f1 600000 212880 0 -17 0 -32 0 -82 -27 1
jDE f1 600000 0 0 -49 0 -57 0 -40 0
JADE f1 302861 279637 95 -30 -29 89 -61 -37 2 -25 0
SaDE f1 600000 0 0 -21 0 -40 0 -50 0
b6e6rl f2 37472 27004 100 3 -1 100 3 0 100 3 1 100
CoDE0 f2 47670 34928 100 -69 -67 100 -68 -66 100 -67 -65 100
EPSDE f2 23818 17255 100 20 25 100 17 23 100 20 29 100
jDE f2 32559 23194 100 -17 -12 100 -19 -14 100 -15 -7 100
JADE f2 13470 9832 100 7 11 100 17 23 100 34 44 100
SaDE f2 20947 15611 100 5 11 100 24 26 100 32 37 100
b6e6rl f3 51934 41482 100 95 6 100 60 9 100 40 5 100
CoDE0 f3 68010 55261 100 -67 -69 100 -65 -68 100 -64 -68 100
EPSDE f3 32438 25851 100 23 23 99 21 23 97 28 31 97
jDE f3 43690 34458 100 -16 -13 100 -16 -13 95 -9 -4 100
JADE f3 22759 15977 93 27 -31 98 42 19 97 69 41 100
SaDE f3 28312 19833 87 12 34 90 29 47 98 38 60 100
b6e6rl f4 73402 62829 100 -23 -32 100 -22 -31 100 -21 -30 100
CoDE0 f4 268062 255236 100 -69 -70 100 -70 -70 100 -72 -73 100
EPSDE f4 251678 245034 100 -19 -19 56 -25 -23 34 -30 -30 30
jDE f4 137343 125573 98 -19 -17 100 -21 -19 97 -26 -25 79
JADE f4 67801 60428 100 -2 -5 100 -2 -5 100 -1 -5 100
SaDE f4 79901 73594 100 59 71 8 34 46 14 17 28 11
b6e6rl f5 147185 134946 100 308 0 308 0 308 0
CoDE0 f5 359860 338333 100 -58 -58 100 -50 -48 100 -42 -40 99
EPSDE f5 163082 151356 100 46 49 99 87 93 99 129 137 99
jDE f5 377216 332957 97 59 0 59 66 4 59 72 1
JADE f5 76440 72055 93 53 50 94 124 111 97 200 185 100
SaDE f5 241504 210633 95 91 115 68 148 0 148 0
b6e6rl f6 64243 53669 100 -13 -21 100 -12 -19 100 -11 -18 100
CoDE0 f6 149849 137044 100 -68 -69 100 -68 -69 100 -69 -70 100
EPSDE f6 74555 67297 99 36 38 99 33 35 98 34 36 99
jDE f6 60093 50229 99 -11 -8 100 -13 -10 100 -7 -4 98
JADE f6 57994 52400 77 9 3 90 16 4 1 13 5 97
SaDE f6 53004 46724 100 25 31 98 11 8 97 10 5 99

Tab. IV Results of experimental comparison of asynchronous variants with non-
parallel DE.

model type 1 type 2 type 3
synchronous 16 17 16
asynchronous 16 13 13

Tab. V Summary of variants with higher performance of migration models.
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6. Conclusion

The experimental results show that the new proposed parallel island models are
able to increase the performance of adaptive variants of DE. On the other hand,
no algorithm employing heuristics methods solves all problems better than the
remaining algorithms [34]. Based on the results in Tab. III, Tab. IV and Tab. V,
we can conclude:

• Synchronous parallel variants perform better on average than asynchronous
migration variants.

• Compared to non-parallel variants, the highest increase in performance for
both the synchronous and the asynchronous variants was achieved in the
case of CoDE0 algorithm. The parallel variants of jDE, b6e6rl and JADE
algorithms exhibited better performance compared to non-parallel versions
only in a part of test problems.

• There is no significant difference in the performance among three synchronous
migration variants.

• There is no relevant difference in the performance among three asynchronous
migration variants but variant async1 outperforms the non-parallel variants
more frequently than the others.

• Increase of the performance by migration occurs frequently in five test prob-
lems out of six. The performance of parallel models in Rosenbrock problem is
better only in the case of CoDE0 algorithm. It may be caused by the nature
of Rosenbrock function that is very hard for many search algorithms, which
was found in many previous studies. Rosenbrock problem represents a case
of a non-separable function with the narrow valley in which the gradient is
very small. The fact that the function is not uni-modal for D > 3 has been
proved recently [24].
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toušek (ed.) MENDEL 2011, 17th International Conference on Soft Computing, University
of Technology, Brno, 2011, pp. 48–55.

[8] Bujok P., Tvrd́ık J.: Parallel migration model employing various adaptive variants of dif-
ferential evolution. In: Lecture Notes in Computer Science, 7269, Springer-Verlag, Berlin
Heidelberg, 2012, pp. 39–47.
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