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Abstract

We propose here a new detector paradigm based on synchronous detection.
Unlike standard energy detectors, this kind of detector uses the pseudo-cyclo-
stationarity properties of blood Doppler signals. The new detector, that is
synchronized with cardiac rhythm, was compared to a gold standard and
a standard energy detector. Detectors were evaluated according to clinical
recordings from patients with carotid stenoses. The results showed that it was
possible to detect inaudible microemboli. The detection rate was improved
by 30% and the false alarm rate was below 2%.
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1. INTRODUCTION

Early detection of cerebral microemboli is of great importance since cere-
bral vascular accidents represent more than two thirds of all ischemic strokes
([1]).

Cerebral embolism is the result of migration of insoluble microparticles
(pieces of fat for example) in the blood circulation. When these microemboli
block an arteriol, ischemia occurs ([2]). Cerebral embolism covers a wide
variety of clinical entities revealed by cerebral angiography ([5]), prosthetic
heart valve insertion ([6]), and carotid surgery ([7]), to name but a few.

Transcranial Doppler (TCD) is currently used to detect microemboli ([3,
4]). This real time ultrasound system, also used to assess blood flow velocity
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for intracranial arteries, is a low-cost and non-invasive modality.
In most studies, commercial TCD detectors seem to be sufficient to detect

most microembolic events ([8]). However, clinical practitioners sometimes ob-
serve previously undetected microembolic signatures that are present on the
spectrogram displayed on the TCD screen during clinical examination (see
Fig.1c). These undetected microemboli that are not visible on observation of
the amplitude of the Doppler signal (see Fig. 1a) are sometimes unaudible.
The main explanations for the inability of existing detectors to detect the
smallest microemboli may be either: a threshold level adjusted by the user
that is too high (see Fig. 1b) and microembolic signals of lower magnitude
than that of the blood Doppler signal located at the systolic phase, i.e. the
maximum amplitude level during the cardiac cycle (see Fig. 1b).

To solve the problem of inability of commercial systems to detect, a search
for the implementation of reliable and robust methods was initiated. With-
out attempting to draw up an exhaustive list of existing methods, it should
be noted that a wide variety of methods have been proposed during the last
ten years such as those based on detection of sudden changes ([9]), match-
ing pursuit ([10]), expert systems ([11]), wavelets ([12]), spectral correlation
([13]), fuzzy logic ([14, 15]), GARCH models ([16]), and neural networks
([17]).

The starting point of this study was based on the concept of spectral
correlation ([13]) that can be viewed as a process of synchronization. Unlike
the simulation studies previously presented by [13], this study evaluated the
levels of performance of the synchronous detector from clinical recordings.

This new class of detector uses the fact that the nature of the microem-
bolic Doppler signal is different from that of the blood Doppler signal. Here
we contrast the cyclic nature of the blood Doppler signal to the unpredictable
nature (i.e. uncyclic) of the Doppler signal of microemboli.

Our new class of detector was compared to the most frequently used
commercial detectors, i.e. non-synchronized energy detectors, to demonstrate
its relevance.

2. STANDARD METHOD

The energy of the Doppler signal seems to provide the best information
from which the presence of microemboli can be detected. This can mainly
be explained by the fact that the energy of the backscattered Doppler signal
is proportional to the size of the microembolus to the power of 6 while the
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Figure 1: Doppler signal with two inaudible microemboli recorded in a patient with steno-
sis. (top) Time representation of the Doppler signal. (middle) Instantaneous energy of
the Doppler signal. (bottom) Spectrogram of the Doppler signal.

Rayleigh scattering holds, in other words larger the microembolus, the higher
the intensity of the Doppler signal.

Two kinds of energy detector can be used, those based on time estimators
and those based on spectral estimators. As spectral estimators are presented
in the next section, only the time estimator is presented in this section. The
time estimator of the instantaneous energy can be obtained by:

E(t) =
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where g(t) is a Hanning sliding window and ∗ stands for the conjugation
operation.
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As previously explained, in commercial devices the decision information
(DI) on which detection is based is currently the instantaneous energy E(t).
This DI is then compared to a constant threshold. Two strategies are then
possible:

• the constant threshold is fixed empirically by the user for the entire
examination. This arbitrary threshold is patient-, operator- and device-
dependent. As this threshold level is not the same at each examination,
comparison is difficult;

• the constant threshold is set automatically from the instantaneous en-
ergy. This threshold is often evaluated as a mean value derived from
previous energy over a few seconds. This threshold is thus a statistical
threshold.

Whatever the method, DI is then compared to a non-time-varying thresh-
old λ. If the decision information DI = E(t) is greater than the threshold λ

then an embolus is considered to be detected (hypothesis H1), otherwise no
embolus is detected (hypothesis H0). This can be expressed as follows:

H1

E(t) ≷ λ. (1)

H0

In this study only statistical thresholds were taken into consideration.
This means that a training period was required to extract statistics. After
observing that the statistics of the instantaneous energy followed gaussian
law, the following threshold λ was proposed:

λ = µ+ ασ,

where α was a parameter to be adjusted, and µ and σ were the mean value
and the standard deviation of the instantaneous energy, respectively.

From our experience, a training period of 5 seconds and α ranging from
3 to 5 seemed to be optimal values.

3. NEW METHOD

The new type of detector that we propose is based on the use of a detec-
tor synchronized with the cardiac rhythm. The solution that we proposed
consisted of four parts (Fig.2):
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Figure 2: Function diagram of the new system detector without artefact rejection.

1. Evaluation of the instantaneous energy of the Doppler signal (function
A in Fig.2);

2. Evaluation of the cardiac rhythm and identification of each time index
representing the beginning of each cardiac cycle (function B in Fig.2);

3. Evaluation of the cardiac statistical threshold by extracting the Doppler
energy signal of each cardiac rhythm from previous time indices, and
by resampling each Doppler energy signal in order to provide the same
length (function C in Fig.2);

4. Detection and enumeration of events outside statistics (function D in
Fig.2).

Note that for standard commercial detectors introduced in the previous sec-
tion, there is no step 2, and step 3 may or may not be present.
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3.1. Energy estimator

Several estimators can be used to assess the instantaneous energy of
Doppler signals. Here we focus on the spectral estimator since it is already in-
cluded in the spectrogram calculation of commercial TCD systems (function
A in Fig.2).

The instantaneous energy is obtained from the spectrogram by:

Sx(t, f) =

∣

∣

∣

∣

∫

+∞

−∞

x(τ)g∗(t− τ))e−j2πfτdτ

∣

∣

∣

∣

2

,

where g(t) is a Hanning sliding window and ∗ stands for conjugation opera-
tion.

An illustration of the spectrogram of a recorded Doppler signal is pre-
sented in Fig. 1c. The instantaneous energy over the entire spectrum for a
fixed time t, can be obtained by:

E(t) =

∫

+∞

−∞

Sx(t, f)df.

An illustration of the instantaneous energy of a Doppler signal with microem-
boli is presented in Fig.1b.

As expected, the instantaneous energy fluctuated considerably since it
revealed the stochastic nature of billions of red blood cells randomly located
in the artery. Furthermore, repetitive patterns for each cardiac cycle can be
seen. The pattern shape describes each part of the cardiac cycle, such as the
systolic and the diastolic phases.

3.2. Cardiac rhythm estimator

The instantaneous cardiac rhythm can be obtained using different modal-
ities (ultrasound and EKG) and different estimators based on the instanta-
neous frequency or on the instantaneous energy of the Doppler signal, esti-
mators being temporal or spectral.

Many temporal algorithms based on the correlation function of the Doppler
signals have been proposed to evaluate the fetal heart rate (e.g. [18]). How-
ever, as the instantaneous energy had already been evaluated in the previous
steps, it seemed preferable to use the instantaneous energy to evaluate the
cardiac rhythm (function B in Fig.2).

To determine the cardiac rhythm from the instantaneous energy E(t), we
proposed extracting the fundamental component E0(t) of the instantaneous
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energy. This fundamental component was extracted from the spectrogram
Sx(t, f) by using a low pass filter :

S0(f, t) = Sx(f, t)G(f, t),

where G(f, t) is the square modulus of the time-varying transfer function of
the low pass filter. This latter transfer function can be simply a rectangular
function centered around the null frequency:

G(f, t) = G(f) = RectFc
(f),

where Fc is the cut-off frequency of the low pass filter. By using the inverse
Fourier transform and an appropriate value of Fc, the filtered energy signal
is written simply as:

E0(t) = A0cos(2πf0t),

where f0 corresponds to the cardiac frequency. This kind of filter extracted
the fundamental component f0 of the Fourier series of the cardiac rhythm.

By detecting the maxima of the fundamental component of the instanta-
neous energy E0(t), it was possible to index each cardiac cycle. Note that it
would also be possible to index each cardiac rhythm by detecting the minima
or the zero-crossings.

As an illustration, we report on Fig.3 the histograms of normalized car-
diac rhythms obtained from two different recordings. The first histogram
with a gaussian shape had a relatively smaller variance compared to the sec-
ond histogram. The difference was due to the large number of ventricular
extra-systoles in the second recording. This could be problematic, since our
synchronous detector was based on the regularity of the cardiac rhythm. To
overcome this problem, all cardiac cycles that exceeded 20% of the mean
value of the normalized cardiac rhythm were removed. Derived from the
analysis of our database, this value seemed to be the best trade-off between
i) keeping enough cardiac cycles to maintain the rate of non-detection of mi-
croemboli at its lowest and ii) removing sufficient outlier cardiac cycles so
that the synchronization process was not too disturbed.

3.3. Statistical threshold

This step was probably the most crucial. It consisted of determining the
cardiac statistical threshold by extracting each Doppler energy signal from
previous time indices (function C in Fig.2). However, as the cardiac rhythm
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Figure 3: Histograms of normalized cardiac rhythms obtained from two different record-
ings. a) Narrow gaussian histogram obtained for one patient. b) Wide gaussian histogram
obtained for another patient.

can fluctuate slightly , each extracted energy signal was resampled in order
to give them all the same length. For a gaussian statistic, the statistical
threshold can be evaluated as follows:

λ(t) = µ(t) + ασ(t),

where α is a parameter to be adjusted, and µ(t) and σ(t) the mean value
and the standard deviation of the energy signal, respectively.

From study of our data set it seemed best to set α ranging from 3 to
5. Note that to maintain a certain degree of adaptativity, accuracy and
robustness in our approach, a sufficient duration to determine the statistical
threshold was required. It was obvious that the longer the duration of the
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Figure 4: Microembolus signature superimposed on the Doppler energy. (a) Doppler
energy signal of 12 seconds estimated from our data set. (b) After indexing and resampling
of each energy signal, energy signals were superimposed on each other. Each energy signal
had a normalized duration.

training phase, the more accurate the detection. On the other hand, the
shorter the duration, the easier it is for the system to adapt to the presence
of artefacts or any other changes. Our experience indicated that a duration
of 5 seconds was a good trade-off to evaluate the statistical threshold. Note
that the threshold was updated for each cardiac cycle. This involved an
overlap of four cardiac cycles since the duration was of five cardiac cycles.

An illustration is given in Fig.4 where the instantaneous energy was eval-
uated over 12 seconds. A high intensity transient signal was observed in
the tenth cardiac cycle. After indexing and resampling, energy signals Ei(t)
of normalized duration were superimposed on each other. i represents the
index of the cardiac cycle. The tenth cardiac cycle is superimposed in red
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in both Fig.4a and Fig.4b. The microembolus signature is highlighted in
Fig.4b. This type of example explains why our detector has the potential
to detect the smallest microemboli even though their energy signatures were
below the systolic energy.

3.4. Detection and enumeration

In addition to the other previously introduced strategies, a third strategy
consisting of determining a time-varying threshold during the cardiac cycle
can be proposed. Detection is said to be ”synchronized” if comparison of the
energy E with the threshold λ is performed at the same time position t0 in
the normalized cardiac cycle T , i.e. periodically for all t = t0+kT . For a time
position t0 in a normalized cardiac cycle and the normalized cardiac duration
T = 1, synchronous detection consists of comparing an energy value E(t0)
at time t0, to a threshold λ(t0). This statistical threshold, set for example at
λ(t0) = µ(t0)+5σ(t0), is therefore obtained from a preliminary setting. µ(t0)
and σ(t0) are the mean and the standard deviation taken at time position t0
of the energy cycle, respectively. For example, µ(t0) is obtained by adding
the energy for each time value t = t0 + kT as described below:

µ(t0) =
1

N

N−1
∑

k=0

E(t0 + kT ).

A setting phase (of a few seconds) is therefore necessary during the exam-
ination to evaluate statistics. Statistics are updated periodically thereafter
during the examination. Note that this synchronized detection is equivalent
to detection based on an adaptive threshold λ(t0), this adaptive threshold
itself being based on the statistics of the signal being analyzed:

H1

E(t, T ) ≷ λ(t, T ). (2)

H0

As the comparison is performed periodically with the normalized cardiac
period T , E(t) and λ(t) become E(t, T ) and λ(t, T ). This latter point is very
important, because now the threshold is no longer obtained from an empirical
study but rather from a statistical study of a non-stationary process.
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Parameters Gold Standard Synchronous
standard detector detector

N̄ 4.2 3.1 5.5
Pct 100% 75% 130%

Table 1: (First line) Mean number N̄ of microemboli detected from clinical recordings of
30 minutes. (Second line) Percentage of detection Pct comparison to the Gold standard.
Around 8% of cardiac cycles were unusable.

4. RESULTS AND DISCUSSION

4.1. Protocol

The new kind of detector proposed here was tested on 20 clinical record-
ings. These 30-minute recordings were carried out in the Ultrasound De-
partment of Bretonneau Hospital in Tours, France . The waky-TCDTM of
Atys Medical was used. A 2 MHz ultrasound probe was used to explore the
middle cerebral artery. The pulse repetition frequency was mostly set at 6.4
kHz and the US power did not exceed 150 mW/cm2. Volunteer patients with
carotid stenoses took part in the measurement protocol which was approved
by the Clinical Investigation Center CIC-IT 806 CHRU of Tours.

The gold standard corresponded to visual and audible detection of mi-
croemboli by both non-hospital practitioners and hospital practitioners. The
automatic thresholds were set in order to guarantee the detection of all mi-
croemboli obtained with the gold standard.

4.2. Results

The first interesting findings showed that the false alarm rate for all au-
tomatic detectors was less than 2%. The second important result, shown in
Table1, demonstrated that about 25% of microemboli were not detected with
the automatic standard detector compared to the gold standard. The third
interesting result was that the synchronous detector counted about 30% of
detections more than the gold standard and about 75% of detections more
than the standard energy detector. Note that such results were obtained
from 92% of the whole recording. Indeed, 8% of cardiac cycles were unus-
able according to our validity criterion for cardiac cycles. This means that
8% of cardiac cycles were outside the authorized range of 20% around the
mean cardiac rhythm. Most of these unusable cardiac rhythms corresponded
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to ventricular extra-systoles. The percentage of unusable cardiac rhythms
reached 37% for some patients and sometimes 1%. This means that the
quasi-cyclostationarity hypothesis was validated on the whole, but prudence
is required.

In order to be sure that the 30% of over-detections were true microemboli
undetected by the gold standard procedure, recordings were listened to again
at a playing speed reduced by a factor of two and visualized twice on the
spectrogram. One spectacular case is reported in Fig. 1.

4.3. Discussion

The results summarized in Table 1 confirmed that the standard detector
was not a good automatic detector since it missed 35% of microemboli de-
tected by visualizing the spectrogram on the TCD screen and by listening
to audible signatures of microemboli. However, these levels of performance
were not too bad since detection was performed automatically, i.e. without
operator-dependent pre-setting. The levels of performance of our new kind
of detector were therefore very encouraging since it made it possible to detect
inaudible microemboli. The results confirmed that the human auditory sys-
tem is not perfect. However, although our new type of detector surpassed the
standard detector, these good results must be confirmed on a larger dataset.

One short term prospect for this work would be to improve further the
levels of performance of the automatic detectors tested. Several approaches
might be explored, the first being proposing other values for the training and
updating periods, and the second proposing other values of α. These two
approaches seem to be relevant since their are patient-dependent.

Finally, note that no microemboli were detected with the gold standard
or the standard energy detector in the unusable cardiac rhythms. However,
there is no guarantee that microemboli might not sometimes appear in un-
usable cardiac cycles. There is currently no solution to this possibility and
this will be the objective of further research.

5. CONCLUSION

Automatic detectors that were not operator-dependent were tested in this
study. The levels of performance of the new proposed detector surpassed
those of the gold standard and the standard detector. However, although
the synchronous detector demonstrated the best levels of performance, it is
clear that this detector based on pseudo-cyclo-stationary properties might
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sometimes fail for certain patients with high levels of variations in cardiac
rhythm. Further quantitative study should be planned to disprove or con-
firmed this possibility.
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