
 Open access Proceedings Article DOI:10.1109/HICSS.1996.495517

Synchronous distribution of SIGNAL programs — Source link

Pascal Aubry, P. Le Guernic, S. Machard

Institutions: French Institute for Research in Computer Science and Automation

Published on: 03 Jan 1996 - Hawaii International Conference on System Sciences

Topics: SIGNAL (programming language), Code generation, Compiler and Semantics (computer science)

Related papers:

 Distributed Implementation of SIGNAL: Scheduling & Graph Clustering

 The synchronous languages 12 years later

 The synchronous data flow programming language LUSTRE

 Programming real-time applications with SIGNAL

 Synchronous programming of reactive systems

Share this paper:

View more about this paper here: https://typeset.io/papers/synchronous-distribution-of-signal-programs-
32mb1gsj04

https://typeset.io/
https://www.doi.org/10.1109/HICSS.1996.495517
https://typeset.io/papers/synchronous-distribution-of-signal-programs-32mb1gsj04
https://typeset.io/authors/pascal-aubry-4rl232i607
https://typeset.io/authors/p-le-guernic-5d5ba7bo2k
https://typeset.io/authors/s-machard-4cqpsw942b
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/conferences/hawaii-international-conference-on-system-sciences-ajwk6xr4
https://typeset.io/topics/signal-programming-language-2l1t0mnv
https://typeset.io/topics/code-generation-3ieu4dde
https://typeset.io/topics/compiler-1rd4cb0x
https://typeset.io/topics/semantics-computer-science-1y4xeqvu
https://typeset.io/papers/distributed-implementation-of-signal-scheduling-graph-36oieyr3hf
https://typeset.io/papers/the-synchronous-languages-12-years-later-55re7ed5k3
https://typeset.io/papers/the-synchronous-data-flow-programming-language-lustre-2j8zn4zee2
https://typeset.io/papers/programming-real-time-applications-with-signal-4k9855ndbn
https://typeset.io/papers/synchronous-programming-of-reactive-systems-48i3h9fcno
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/synchronous-distribution-of-signal-programs-32mb1gsj04
https://twitter.com/intent/tweet?text=Synchronous%20distribution%20of%20SIGNAL%20programs&url=https://typeset.io/papers/synchronous-distribution-of-signal-programs-32mb1gsj04
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/synchronous-distribution-of-signal-programs-32mb1gsj04
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/synchronous-distribution-of-signal-programs-32mb1gsj04
https://typeset.io/papers/synchronous-distribution-of-signal-programs-32mb1gsj04

HAL Id: hal-00544057
https://hal.archives-ouvertes.fr/hal-00544057

Submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronous distribution of SIGNAL programs
Pascal Aubry, Paul Le Guernic, Sylvain Machard

To cite this version:
Pascal Aubry, Paul Le Guernic, Sylvain Machard. Synchronous distribution of SIGNAL programs.
29th Hawaii International Conference on System Sciences (HICSS-29), Jan 1996, Maui, Hawaii, United
States. pp.656-665, 10.1109/HICSS.1996.495517. hal-00544057

https://hal.archives-ouvertes.fr/hal-00544057
https://hal.archives-ouvertes.fr

In proceedings of the 29th Hawaii International Conference on System Sciences HICSS-29,Hawaii, January 1996, to appear, avaible at http://www.irisa.fr/prive/aubry/hicss/.Synchronous distribution of Signal programsP. Aubry P. Le Guernic S. MachardfPascal.Aubry,Paul.LeGuernic,Sylvain.Machardg@irisa.frIRISA/INRIA, Campus de Beaulieu, F-35042 Rennes CedexAbstractSignal, a synchronous and data-ow oriented lan-gage, allows the user to design safe real-time applica-tions. Its compiler uses a single formalism called \Syn-chronized Data-Flow Graphs1" all along the conceptionchain from speci�cation to proof and veri�cation. Weshow how this formalism can be kept on until distributedcode generation. The implementation described here,called synchronous distribution, respects the semanticsof Signal. We �nally show the limits of SDFGs andconclude on the necessity of another model describingdynamic behaviours of distributed executions.1 IntroductionBased on the hypothesis of a discrete logical time,the synchronous languages [1] (Signal, Lustre [2],Esterel [3]) have proved their e�ciency for the de-sign of critical and safe real-time applications. Theyare characterized by strong semantics that allow theprogrammer to use veri�cation and proof techniques.Signal [4], one of the synchronous languages, is declar-ative and data-ow oriented. In this language, a signalis a sequence of values; the instants of presence of thesignal are called clocks. The Signal compiler [5] isa formal system able to solve equations and to reasonupon logic. All along the compilation process, it ma-nipulates only equations and dependencies �nally struc-tured in an internal representation called SynchronizedData-Flow Graph.SDFGs can be seen as a generalization of DirectedAcyclic Graphs2. Indeed, the signals (vertices of SD-FGs) are present only at some instants (their clock) andthe dependencies (edges of SDFGs) are clock-labelled(i.e. take e�ect only at the instants of a given clock).Each object of SDFGs is located in a hierarchy of clocks,resulting of what is called the clock calculus. Thosegraphs are used in the �nal phases of the compilation toproduce textual outputs, sequential code generation [6]and hardware synthesis [7].For di�erent reasons (delocalization of sensors, faulttolerance, frequency increasement, ...), many real-timeapplications require code distribution. As translationsbetween di�erent representations are error-prone, safe-ty requirements of critical applications are insured inparticular by the perservation of a single formalism allalong the design process. From speci�cation to �nalimplementation, simulation, proof and veri�cation, theSignal compiler uses a single formalism: Signal equa-tions and dependencies.1Called thereafter SDFGs.2also called DAGs.

We intend to prove that this formalism can be kepton even until the �nal phase of distributed code gen-eration, once equations have been assigned on proces-sors, and that this approach allows the preservation ofsemantical properties in a distributed system. The im-plementation uses mixed static/dynamic scheduling.Firstly, we give a short overview of Signal (sec-tion 2) to present the SDFGs. Then we show how com-munications can be introduced in SDFGs (section 3),how the control part of Signal programs can be dis-tributed (section 4) to extract sub-graphs correspond-ing to di�erent processors (section 5). Finally, we showpossible implementations (section 6) and give some per-spectives of this work.2 Signal2.1 The Signal languageAs Signal is a dataow-oriented language, it de-scribes processes which communicate through sequen-ces of (typed) values with an implicit timing: signals.For instance, a signal X denotes the sequence (xt)t2INnf0gof data indexed by time.;Kernel of Signal The kernel of the Signal lan-guage includes the operators on signals and the processoperators. Four kinds of operators act on signals:� instantaneous functions is a class of operatorswhich encompasses all the usual functions (and, <=,+, fft, ...) extended to act on signals. Let f a sym-bol which denotes an n-ary function acting on signalsand [[f]] the corresponding function acting on values,the Signal process Y:=ffX1,: : :,XNg speci�es that8t � 1 yt = [[f]](x1t; : : : ; xnt). In the speci�ed be-havior, one may notice that the value yt carried byY at instant t is equal to the function [[f]] applied tothe values held by X1, : : : , XN at the same instant.This fact is the result of a special speci�cation ap-proach: the (strong) synchronous approach (see [8]for an overview). In the dataow synchronous ap-proach [1], the execution of the operators is assumedof zero duration3, only the logical precedence of val-ues on a signal represents passing time. Therefore,�ring waits and implicit queueing of data are sup-pressed at the speci�cation level.� shift register makes explicit the memorization ofdata; it enables the reference to a previous value ofa signal. For instance, the process Y:=X $ 1 de�nesa basic process such that y1 = v0 and 8t > 1 yt =xt�1 where v0 denotes an initial and constant value3In fact this theorical point of view means that durations arenot taken into account.

associated with the declaration of Y. In contrast tothe last two operators, the signals referred to in in-stantaneous functions or in the shift register must bebound to the same time index, the same clock.� the selectionoperator allows us to draw some data ofa signal through some boolean condition. The processY:=X when B speci�es that Y carries the same valueas X each time X carries a data and B carries the valuetrue (B must be a boolean signal). Otherwise, Y isabsent, i.e. Y carries no value.� the merge operator combines ows of data. The pro-cess Y:=X1 default X2 de�nes Y by merging the val-ues carried by X1 and X2 and giving priority to X1'sdata when both signals are simultaneously present.The four previous operators specify basic processes.The speci�cation of complex processes is achieved withthe parallel composition operator: the compositionof two processes P1 and P2 is denoted (| P1 | P2 |).In the composed process, the common names betweenP1 and P2 refer to common signals; they stand for thecommunication links between P1 and P2. This parallelcomposition is an associative, commutative and idem-potent operator ((| P | P |)� P).The last feature of the kernel is the possibility toreduce the scope of a signal: in the process P()/X,the signal X is set local to the process P.;Extended operators Built on the previous primi-tive operators, some built-in features often used by pro-grammer have been added :� clock extraction makes explicit the clocks of sig-nals. C := event X means that C is the clock of Xand is equivalent to C := (X=X).� synchronization between signals induces new con-straints in programs. synchrofX,Yg means that thetwo signals X and Y have the same clock (i.e. mustbe present at the same instants). synchrofX,Yg is aprocess equivalent to(| C := (event X) = (event Y) |) /C.� the memory cell allows the programmer to keep theprevious values of a signal at the true occurences of aboolean. Y := X cell B is present when X is presentor B is present and true. In the �rst case, it is equalto X; otherwise, it is equal to the last occurence of X.Y := X cell B is equivalent to(| synchro{Y, (event X) default (when B)}| ZX := X $ 1| Y := X default ZX |) / ZXThe speci�cation of Signal programs is architec-ture-independent. This independence comes from thesynchronous speci�cation approach and the dataow/e-quational style of the Signal language. Therefore,the inference of reliable and e�cient implementationsis achieved in two steps. Firstly, we intend to validatethe speci�cation independently from any target architec-tures. The next subsection describes the compilationprocess and describes the �nal representation of thecompiled programs: Synchronous Data-Flow Graphs.Then we show how transformations of these graphs canlead to distributed implementations.

2.2 Synchronous Data-Flow GraphsAs Signal is equational, the Signal compiler is nota simple translator from high-level speci�cations to ex-ecutable code. It is a formal system able to reason uponlogic and clocks.� The �rst step of the compilation is the reductioninto the kernel language of the input source.� Clock-nodes are then created, gathering all the syn-chronous signals of the program. A clock c can be:| the clock of a signal X; it is thereafter notedX̂ and is present when X, which must be an inputsignal of the program, is present.| the positive (respectively negative) sampling of aboolean condition b; it is thereafter noted [b] (resp.[:b]) and is present when b is present and true (resp.false).| the upper bound of two other clocks c1 and c2;it is thereafter noted c1 _ c2 and is present when atleast one of c1 and c2 is present.| the lower bound of two other clocks c1 and c2; itis thereafter noted c1 ^ c2 and is present when c1and c2 are both present.| the complementary of a clock c1 in a clock c2; itis thereafter noted c2	 c1 and is present when c2 ispresent and c1 is absent.� The main phase of the compilation is called the clockcalculus. By analysing all the clocks of the pro-gram, it builds clock trees by placing clocks undertheir father4. For instance, the clocks [b] and [:b] areplaced under the clock b̂, with regard to one another:=)[b] [:b]b̂ b̂ [:b][b]The result of the clock calculus is a forest of trees ofwhich all the roots are free one another. If one singleroot is present, the forest is reduced to a single tree;this means that the compiler has found a main-clock,quicker than any other one in the program. Such pro-grams are called endochronous. During this analysis,circuits in the de�nitions of clocks are detected, andclock constraints are also established.� Each clock c of the hierarchy owns instructions (Sig-nal equations) explaining the computations of thesignals present at the instants of c. An instructioncan be:| a de�nition of signal. It de�nes a signal X by anequation like X := exp.| an external call. It speci�es that an externalfunction P has to be called when c is present.| a delay, which is a special de�nition of signal. Itde�nes a signal ZX by an equation likeZX := X $ n window mwhere X is a signal, n and m are integer values. ZXis an m-array containing at any instant t the valuesXt�(m+n�1), ..., Xt�n.4A clock c in a tree can not be present if its father is absent.2

These instructions induce dependencies between sig-nals. As signals are not always present (as in DAGs),dependencies are clock-labelled: a dependency be-tween two signals X and Y is e�ective only at theinstant of their dependency-clock c: X c�! Y: Theclock c is always included in X̂ and Ŷ, which meansthat the dependency can be e�ective only if X andY are both present. Two additionnal rules apply todependencies, caracterizing serialization:X c1�! Y c2�! Z =) X c1^c2�! Z;and parallelism:X c1�! YX c2�! Y � =) X c1_c2�! Y:A transitive closure on the dependencies of the graphreveals circuits like:X1 c1�! X2 c2�! ::: cn�1�! Xn cn�! X1:Thanks to the rule of serialization, the clock of thiscircuit is c = Vi ci; if c = ; (never present clock),the circuit is never e�ective and the scheduling of thecomputation depends on the clocks ci. Such a circuitis rejected at compile-time, because of the cost of theanalysis needed to �gure out sometimes and never-e�ective circuits5.We see in this short description of SDFGs their twomain aspects. A clock-hierarchy can be used to re-duce control computations, and a data-ow graph inwhich dependencies (edges) between signals (vertices)are clock-labelled. In the sequel of this paper, we con-sider the dual graph: nodes compute signals and clocks.2.3 An exampleLet us consider the following example, specifying inSignal a counter V synchronous with a boolean RSTand reset to zero when RST is true:process P ={ ? boolean RST ! integer V }(| synchro{ RST, V }| V := (0 when RST) default (ZV + 1)| ZV := V $ 1|) where integer ZV init -1endWith such an input, the compiler �nds three di�erentclocks in the program: ^rst, [rst] and [:rst]. The signalsV, ZV and RST are synchronous and their clock is ^rst.The clocks [rst] and [:rst] are sub-clocks of ^rst. The�nal SDFG of this program is:RST 0V[:rst]ZV r̂st[:rst] [rst][rst]^rst^rst5Those circuits are rejected also for historical reasons: thecompiler generates, at the moment, only monoprocessor sequen-tial executable code, statically scheduled at compile-time.

On this SDFG, signal names are bold-faced, clocks areemphasized. Solid and dotted arrows represent respec-tively clock and data dependencies; the clocks labellingthe dependencies are located just next to the arrows.3 Communications in SDFGsWe assume in this section that all the nodes (sig-nals and clocks) of the graph have been located on aset of processors. This point of view �ts well to somerequirements of real-time applications: though speed isan important criterian to appreciate reactive systems,distribution is also needed for speci�c reasons such asthe delocalization of sensors. Readers interested in thedistribution of Signal programs on quantitative crite-ria may refer the Signal/Syndex interface [9]. Theway the nodes of the SDFG are assigned to the proces-sors is not shown here. One can think of directives setby the user at the source level (pragmas for instance)or after the creation of the SDFG with an interactivetool taking place in the design process just before thedistribution itself.3.1 Data communication between two nodesLet us consider a signal x produced by a node p on aprocessor P and consumed by a node q on a processorQ at a clock clk included in x̂:p qx; clkP QIf P = Q, the graph is left unchanged. Otherwise, acommunication is needed between P and Q. We intro-duce a communication node Cx;P!Q:p qCx;P!Q xQ; clkxP ; clkP QThe signal x, produced by the node p and consumedby the node Cx;P!Q at the clock clk, is renamed xPand a new signal xQ, produced by the node Cx;P!Qand consumed by the node q at the clock clk, is intro-duced. This simple operation can be seen in Signalas a ow-renaming, as the synchronous hypothesis saysthat computation durations are null (at least ignoredfrom a practical point of view). Thus, communicationnodes do not change the semantics of a program.The communication node introduced before can becut in two, a write node WxP!Q on P and a read nodeRP!xQ on Q:p qclk xQ; clkxP ; clk WxP!Q RP!xQP QThe reader should note that a dependency (at the clockclk) is left between the two nodesWxP!Q andRP!xQ ,insuring that the dependency between the nodes p andq is left unchanged. We can then a�rm that the newgraph obtained by the introduction of read/write nodes3

is dead-lock free, i.e. it introduces no circuit. It is obvi-ous that the memory is kept bounded by all the trans-formations explained above. Finally, from the Sig-nal point of view, read/write nodes are seen as ex-ternal functions; as the synchronous hypothesis tellsthat such processes have a null computation duration,the response time theoritically is also kept bounded. Inpractice, we have to ensure that computation durationsare bounded, to get a global bounded response time forthe program. As quantitative aspects of distributionare not studied here, we assume that communicationdurations are all bounded. We have shown that theintroduction of communication-nodes6 in SDFGs doesnot change the semantics of the initial program.3.2 Data communications in a complete graphIn this sub-section, we show how the principle de-scribed above can be extended to a complete graph,such as this one:qnkkq1kq11qn11p x; c11x; cn11x; c1kx; cnkk . . .Q1QkPFor this, let us consider the more general case of a nodep of a processor P producing a signal x consumed by dif-ferent nodes located on a set of processors fQigi2f1::kg.The di�culty introduced for the transformation of sucha sub-graph is induced by the presence of many clocks.The choice made to preserve the dependencies at theright clocks is to introduce one communication for eachprocessor Qi: q1kq11. . .x1; c11Cx;P!Q1p xk ; cnkkxk; c1kCx;P!QkxP ; c1xP ; ck x1; cn11 qn11qnkkP Q1QkThe clock dependence between the node p and anynode Cx;P!Qi is set to ci = Wnij=1 cji . The communi-cation nodes can still be seen as simple renamings (ofxP into xQi). The introduction of read/write nodesis then problemfree thanks to the dependence betweentwo corresponding read/write nodes:6Called thereafter comm-nodes.

......... qnkkq1kq
11qn11. . .WxP!Q1 x1; c11x1; cn11WxP!Qk ck RP!xkp RP!x1c1 xk; cnk1xk; ck1xP ; c1xP ; ck Q1QkPOf course, such transformations can be performed forevery edge of a Signal graph. The result is a newgraph, in which the dependencies between two nodeslocated on di�erent processors are no more data-de-pendencies but (simple) clock-labelled dependencies7 :Each sub-graph is located on a single processor. Theindependant sub-graphs can now be extracted from thecomplete graph to get independent programs:PjPi PkPresented this way, the problem of the distributionseems very simple. In fact, we have intentionally hid-den two main issues: the distribution of the control andthe consequences of the extraction of sub-graphs intoindependent programs 8 on their semantics. They arediscussed in the next sections.3.3 DiscussionTo be e�cient, the algorithm must not unmark anyalready-marked node. This could happen when intro-ducing a new clock-node depending on a signal x ofwhich the production node p has already been treated(marked). As the communications between p and thenodes consuming x may be a�ected by the new con-sumption of x, communication nodes should then bechanged. To prevent this, only nodes without unmarkedsuccessors are treated. The proof shows below that itis always possible.In a �rst approximation, let us say that the commu-nication clock chosen for a signal is cQ = Wi2f1::kg ci,which corresponds to the lower bound of the possibleclocks. Other possible clocks are x̂ (the productionclock of x) and all the clocks between cQ and x̂ in theclock-hierarchy. In these cases, no supplementary nodeis introduced (because the communication clock is al-ways already in the graph) but this way communica-tions are �red more often than necessary.3.4 ProofTo insure the correctness of this algorithm, we haveto prove that it never locks, that it always ends, that7the only meaning is a temporal precedence between the twonodes which has to be respected by any scheduler.8to generate executable code.4

the initial dependencies between the initial nodes of thegraph are left unchanged and that the new graph is aSDFG according to the subsection 2.2.Dead-locks may happen if the choice (third line ofthe algorithm) of a node p is impossible. If no nodewas added to the graph, this would be obvious. As somenew clock-nodes may be introduced (as unmarked), wehave to prove that this can not lead to the followingdead-lock situation: all the unmarked nodes have un-marked successors. This is strictly equivalent to saythat there is a cycle in the graph. We have then toprove that the new nodes do not induce cycles. As thisis the crucial point of the proof, it is detailed in 3.5.The only solution for the algorithm to in�nitly loopis that it generates more nodes than it consumes: thenew nodes are introduced unmarked, which means thatthe number of unmarrked nodes may not reduce at eachstep. In fact, as the initial number of clocks of thegraph is �xed, and as the algorithm only introduce up-per bounds of already existent clocks, the number ofnew clocks is also bounded9, which means that the al-gorithm will always end.The last point to verify is the corectness of the newgraph regarding to the properties of the �rst one. Allthe objects introduced (the clocks cQ and the signals(xQ) are placed exactly as in the clock calculus of theSignal compilation. Let us note that the signals x donot need to be moved after the introduction of commu-nication nodes. Finally, thanks to the dependencies be-tween two corresponding read/write nodes, the depen-dencies between the initial nodes are left unchanged.Finally, this algorithm is correct if the communicationclock does not introduce circuits in the graph.3.5 Communication clocksLet us consider this Signal program:(| { I, B1, J } := f{ E }| I1 := I when B1| I2 := I when B2| X := I1 default J| B2 := g{ X } |)The compilation process introduces the clocks c1 and c2denoting respectively the instants the booleans B1 andB2 are true. To make the associated SDFG as clearas possible, we did not mention the main clock of theprogram, synchronous with E, I, B1, J, X and B2:B1 c1 B2 c2 I2E J XI1IIf we assume that the programmer wants to produceI on a processor P and I1 and I2 and a processor Q,a comm-node CI from P to Q is needed. The upperbound of the consumption clocks is c1_ c2 and is noted9because the upper bound is associative and commutative,and the clocks are stored in the graph in a single way.

c12. The introduction of c12 obviously entails a circuitin the graph:B1 c1 B2 c2 I2E J XI1CII c12After analysis, the circuit is never e�ective because itsdependency-clock is null. This problem, �rstly encoun-tered in [10] is left unresolved. Indeed, we did neither�nd examples where communications clocks induce ef-fective circuits nor managed to prove that those circuitsare always never-e�ective.As the correctness of the previous algorithmdependson the choice of the communication clock, we choose cQin such way that no circuit is introduced. If Wi2f1::kg ciis not present in the graph, it is introduced, producedon the processor Q10. If �ring the comm-nodes at thisclock induces circuits, we choose the slowest clock an-cestor up to X̂ that can �re the comm-nodes withoutintroducing any new circuit. In the worst case, theclock chosen is X̂ and X is communicated as often as itis produced.4 Control distributionTwo corresponding read/write nodes are activatedat the same clock. This clock should then be presenton each processor. With our hypothesis saying that nosignal is duplicated, the clock is produced on one pro-cessor and should then be communicated to the otherone: data communications imply control communica-tions.Let us assume that clocks are implemented as boole-ans11 (true/false values assumed as present/absent sta-tes). So they can be treated exactly like the other sig-nals. The only di�erence is that they can not be com-municated at their own clock but at a clock quicker thanit (its communication clock). This implies the imple-mentation of this communication clock on the sendingand the receiving processor: control communicationsimply other control communications. Of course, thephenomenon is bounded because the number of clocksof any program is �xed by the compiler while creat-ing the SDFG and thus the depth of any clock is alsobounded.A possible choice is to distribute all the clocks of theprogram on each processor. This trivial and systemati-cal method is very expensive and may generate uselesscommunications in most of the programs. To improvethe distribution, a reduction of the clock-hierarchy oneach processor is needed.4.1 Extraction of useless clocksThe �rst step of the simpli�cation of the hierarchyis the elimination of useless clocks. To see which clocks10Because all the clocks ci are already on this processor.11This hypothesis is justi�ed in [6].5

can be immediatly suppressed, we introduce a classi�-cation.� A clock c is said necessary on a processor P if andonly if at least one of these assertions is true:| an instruction has to be �red on P when c is present(a signal has c as its clock).| a signal computed on P depends on c.| another clock, di�erent from any sub-clock, com-puted on P depends on c.� To keep the richness of the initial hierarchy, we saythat a clock c is useful if it is necessary or if atleast two sub-hierarchies of c own necessary clocks.This way the evaluation of sub-clocks is not neces-sary when their ancestor is not present, reducing thecomputation of the control part of a program (see theproduction of sequential mono-processor code in [6]).These useful clocks have to be implemented on P.� At the opposite, a clock c is said useless on a processorP if and only if:| no instruction has to be �red when c is present (nosignal has c as its clock).| no signal on P depends on c.| no other useful clocks produced on P depends onc.| all the sub-clocks of c are useless (on P).� The other clocks of the program, that are neitheruseless nor necessary, are clocks with no instruction,no successor (signal or clock) but their useful sub-clocks. Those clocks are said intermediate.As a useless clock c does not precede any signal or use-ful clock computed on P, no need to implement it on P.Useless clocks can be extracted from the clock-hierarchywithout any problem. The resulting hierarchy is saidpuri�ed. The following �gure shows such a transfor-mation on a clock-hierarchy projected on a processorP:
 uuuuu
u i ii

uu u
 =) uuuu i iiu uu u uIn the hierarchies, useful, useless and intermediate clockson P have been represented respectively with the sym-bols u,
 and i. As all the useful clocks have tobe implemented on P, reducing the puri�ed hierarchymeans extracting intermediate clocks.4.2 Extraction of intermediate clocksAs said before, a possible choice is to communicateany clock c when its upper clock in the clock-hierarchyis present (when c is the main clock of the program,there is no need to communicate it if absent because nocomputations are needed). This leads to the duplica-tion of almost all the clocks on each process, keeping all

the richness of the hierarchy but obviously generatinguseless communications: the communication of a clockmay need the communication of all its ancestors in theclock-hierarchy.An extremal solution consists in moving all the use-ful clocks of the hierarchy up to the main clock of theprogram, thus present on all the processors. But asthe reduction is an improvement of the distributed pro-gram, thus theoritically leading to better implementa-tions, it must preserve the richness of the hierarchy.What we propose here is an intermediate solution.Let us consider a clock c useful on P. If it is not pro-duced on P, as it must be implemented (because usedon P), it must be read from the processor Q produc-ing it. As clocks are read as booleans, the problem isto determine at which clock c will be read (let us notethis clock r). This clock must obviously be an ancestorof c in the hierarchy (quicker than c). If we want toextract from the graph a maximum number of inter-mediate clocks while preserving the hierarchy, the bestchoice for r is the nearest useful ancestor of c, noted n(this way, all the intermediate clocks between n and cbecome useless). As the boolean used to communicatethe clock c must be written and read at the same clock,n must be present on Q, which is not always veri�ed inpractical cases.; If n is useful on Q, c can be communicated whenn is present:uiinuc unucu? cQ:=...default not ngbc:= read c()cP:= when bcon P on Qwrite cfcQOn P, bc is read and cP is produced when n is present;on Q, cQ is still produced when its father in the clock-hierarchy is present and cQ is written to P when n ispresent. The two intermediate clocks between c and ncan be extracted from the processor P. If all the clockscan be communicated this way, the gain is optimal andall the intermediate clocks are suppressed. With ourexample, this leads to the following hierarchy on P:uu uu uu u uu; If n is not useful on Q,� One possibility is to communicate c at a clock fasterthan n. In the worst cases, this would lead to makeall the communications at the fastest clock of the pro-gram. This way, a part of the hierarchy would be lost,so this solution can not be taken into account.6

� Another possibility is to force n to be implemented onQ. That would result in increasing the computationfrequency on Q if n is faster than the quickest usefulclock of Q. This solution is rejected.� As c is produced on Q, its immediate ancestor a isuseful on Q. This shows that there is at least oneclock between n and c useful on Q. We choose tocommunicate c at the fastest clock f between n andc (in the worst case, this clock is a). This interme-diate clock f on P becomes useful. In our previousexample, if a is di�erent from f , we see that a can beextracted from P:bc:= read c()cP:= when bc write cfcQdefault not fgunucu cQ:=...on P on Quinuc faafu uOn P, bc is read and cP is produced when f is present;onQ, cQ is still produced when its father in the clock-hierarchy is present and cQ is wrote to P when f ispresent. All the (intermediate) clocks between c andf can be extracted from the clock hierarchy.Let us remark that in the worst cases, this methodsets new clocks as useful in the hierarchy only amongthe ancestors of c. As control communications mustbe introduced on the whole hierarchy, the traversal ofthe clock-tree must be made from the leaves up to theroot. Moreover the clocks must be treated one by oneon each processor: if we apply this method processorby processor on the hierarchy we may not bene�t fromthe clocks introduced by the communications neededon the others processors.4.3 Root clocksLet q be the quickest useful clock on a processor Pafter puri�cation of the hierarchy (thanks to the previ-ous algorithm, q is the latest usefull clock encountered).If q is not the main clock of the program, it is producedby another processor and sent to P. When q is absent,no computations are needed on P and thus there is noneed to communicate q to P: only the present (true)values of the clock are interesting. We can then com-municate q only when it is present. Moreover, the com-munication clock does not need any more to be fasterthan q:Finally, when q is the quickest clock of a process P,only the present values of q need to be sent to P andthe communication clock can be q itself12.The roots on each processor are detected during thepuri�cation of the hierarchy and stored in an arraycalled root. When introducing communication nodes,the algorithm checks whether the current clock is rooton the current processor or not and sets up correct com-munications.12In an implementation, the reception of a false value can bethe signal for the processor P to end its execution.

4.4 Gathering communicationsAs the number of communications is one of the qual-ity criteria of distribution, we want to gather commu-nications if possible. First of all, because of the for-malism of the SDFG, two comm-nodes can be groupedif �red at the same clock. Secondly, it is only inter-esting if the source and destination processors are thesame. But these conditions are not su�cient; indeed,grouping nodes this way may introduce circuits in theSDFG. Let us consider the following SDFG, where allthe nodes are synchronous (�red at the same clock c):1 3 4A B CQ P2If we agregate the comm-nodes A and C in a singlecomm-node AC, we introduce a circuit:1 3 4BQ PAC2Of course, circuits have to be rejected. When the agre-gation of many comm-nodes into a single one does notintroduce circuits, it is possible but not always wantedbecause it can reduce concurrency by forcing a newsynchronization (in one instant) in the program. Letus now consider this new example:AB 31 4QP 2All the nodes are assumed to be synchronous again. Ifwe gather the comm-nodes A and B (see below), wemake the nodes 3 and 4 to be ready to be executed atthe same moment when one can be executed indepen-dently from the other one: 31 4AB QP 2In order to prevent useless reduction of the concurrency,we gather comm-nodes if and only if 1) their source anddestination processors are the same, 2) they are �red atthe same clock, 3) their successors on the destinationprocessor are the same, and 4) their predecessors on thesourse processor are the same13. The assertion 2) tellsus that the optimization should be done by any traver-sal of the clock-hierarchy while the third one insuresthat no new circuit is introduced in the graph.13In fact, this condition can be extended later by \their prede-cessors belong to the same cluster" when considering non-atomicnodes.7

5 Extraction of sub-graphsWe said before that the graph obtained after trans-formation keeps all the properties of the initial graph.By simply extracting the sub-graphs from the completegraph, we lose the temporal dependencies between thenewly introduced read/write nodes and it could leadto incorrect implementations. To convice the reader ofthis, let us consider the following graph:1 2 22 2 3 33 3 3CD EF 11 H 33G23 ABComputation and comm-nodes are represented respec-tively by circle and squares, each comm-node standingfor one write-node and its corresponding read-node.5.1 Direct extractionIf we simply extract from this graph the nodes lo-cated on the processor 3, we get the sub-graph3 33 3 3 333 wA rCrD rHrGwEwFwhich can, in the absence of additionnal informationlead to incorrect implementations; here is a possible re-inforcement of the dependencies made by a static sched-uler, for instance: 3 33 3 3 333 wA rCrD rHrGwEwFObviously, though this reinforcement does not intro-duce any cycle regarding to the sub-graph, as there ex-ists some dependence between the couples of read/writenodes, it would lead to an easilly predictable dead-lock.This matter is fully described in [6] and solved by the\abtract graph method". What we propose here is justanother algorithm to get correct sub-graphs: �rstly, wemake explicit the dependencies between the read/write-nodes of the whole SDFG by a transitive closure appliedon each processor; secondly, we show a fast algorithm(applying to these nodes only) to get the minimal setof dependencies to add to the read/write-nodes of eachprocessor to extract independant sub-graphs.5.2 Reinforcement of sub-graphsTo be sure that any correct reinforcement14 of thedependencies by a scheduler leads to a correct exe-cution, we must add some dependencies between theinput/output nodes of the graph. Moreover the de-pendencies should be minimal: a too strong reinforce-ment prevents from getting some possible executions.A possiblity consists in a transitive closure on the com-plete graph. Already implemented in the Signal com-piler, this easy solution is quite expensive because theonly dependencies we want to add are dependencies14Briey, a reinforcement is said correct if it does not introducecircuits in the SDFG.

from write-nodes to read-nodes on the same processor.Firstly, we make explicit the dependencies from comm-nodes located on the same processor. Applied to theprevious graph, we get the following dependencies:CD EF HGBA31 22 3322 33 21 21 33After this selective transitive closure on each processor,a global transitive closure applied to the very limitedsubset of communication nodes reveals the necessarydependencies that should be added. This abstractionof the subgraphs to their interface results in faster andcorrect extractions. The algorithms leading to the ex-tractions will be explained in a complete version of thispaper.5.3 ExampleApplied to our previous example, The new depen-dencies added by the algorithm are:C E GD F HBA3 2 32 3 2 2 31 2 32 3 1 1 3Projected on each processor, we see on this examplethat necessary and su�cient dependencies have beenadded: 1 F 11 HB 2 22 2 CD E G2AB 3 33 3 3CD EF H 33G3 A6 SimulationAll the previous modi�cations of the SDFG lead toone sub-graph per processor. We have proved in theprevious sections that the composition of these sub-graphs is equivalent to the initial graph but a new is-sue, speci�c to distributed systems, appears for simu-lation. On a single processor, the execution of consec-utive instants is exclusive because all the instructionsof an instant must be terminated before the followinginstant starts. On a distributed system, without anyadditionnal information, the processor producing themain clock of the program (predecessor of any node)may be ready to execute an instant while the executionof the previous one is not ended on other processors.Obviously, this is in contradiction with the semantics ofSignal that tells that instants are successive, but may8

be wanted by the user to get data-ow-like simulation.In this section, we see some possible implementationsleading to:� synchronous executions, where the execution of aninstant can not start while the previous instant isnot ended;� asynchronous executions, where overlays between in-stants are allowed but bounded, controlled by FIFO-queued communications and validated at compile-time;After those di�erent macro-behaviours, we show theimplementations of the sub-graphs and �nally the com-munications between processors.6.1 Synchronous executionsWe want here to infer a synchronous execution pre-serving the semantics of Signal: the execution of aninstant can not start while the previous instant is notended. This can be done if and only if the processor Pproducing the main clock cm of the program is informedof the end of the execution of the current instant on allthe other processors15. As we want to keep on with theSignal formalism, this will be done in three steps.�We note TQ the set of computation and clock nodeswithout any successor16 . For each processor, if TQ isnot empty, we introduce a virtual node eQ succeedingto all the elements of TQ. This way, the executionof an instant is ended when eQ is executed. As theexecution of eQ must be transmited to P, if P 6= Q,eQ is a write-node sending a dummy value to theprocessor P.�We introduce on P the corresponding read-nodes eQP ,all of preceeding another new node called eP .The nodes added by this transformation are shownon the following graph:fQfR tt tt tteP cm ttprocessor Pprocessor QprocessorR fPwhere the nodes belonging to Ti are represented by thesymbol t. Each node ei is set to the main clock of theprocess i. It is not the slowest one; indeed, the upperbound of all the clocks of the t-nodes of the processori is the best one but it may not be present in the SDFGon i and its introduction may introduce circuits as seenin 3.5. It is easy to see that the three steps do notintroduce circuits because the t-nodes had initially no15because cm is preceeding all the nodes of the SDFG.16The read-nodes always have succesors on Q and the write-nodes on another processor.

successor. The reader may note that the node eP isnot necessary: the only presence of the read-nodes eiPinsures that there will be no overlay between instants ifcm is not �red before the previous executions of thesenodes is ended.As well as the desynchronizations introduced by theoversampling in the communications of clocks and thereduction of the main clock on each processor, the trans-formations above preserve the observationnal semanticsof the initial program. The next execution overview be-low does not.6.2 Asynchronous executionsSynchronous executions can be interpreted seen fromthe previous processor P (producing the main clock) asif the other processes were acting on its authority: theonly desynchronizations observed are in the instant. Inother words and with a temporal point of view, as over-lays between instants are not allowed, the gain of timeis minimal because the processors are kept idle in par-ticular since the moment they achieve their executionuntil the beginning of the next instant when they couldstart its execution.What we describe here is another desynchronizationof the program: if we want to make preemption possi-ble by idle parts of the program, it is easy to see thatthe Signal formalism is not su�cient because SDFGonly deal with static properties. Asynchronous execu-tions require some deep transformations that can notbe performed without a �ne knowledge of dynamic be-haviours: another modelization, describing the execu-tion of synchronous programs is needed.Indeed, let us assume that we do not introduce theprevious nodes ei and eiP . As some processors mayexecute their sub-graphs faster than other processors,without any acknowlegment, such asynchronous execu-tions can lead to the accumulation of tokens on thecommunication media between the processors. A sim-ple way to resolve this problem is to bound the desyn-chronisation between two processors, by having FIFO-queued communications. This also means a dynamicscheduler refusing the emission of values by write-nodesif the corresponding FIFO is full. Obviously, theseasynchronous implementations require some long pre-liminary studies that we can not develop here.6.3 SchedulingDuring the extraction of sub-graphs onto the pro-cessors, dependencies between comm-nodes located onthe same processor have been added to allow any staticscheduler to rule the execution of sub-graphs. Thus,a possible choice for the implementation of sub-graphsis to generate statically sequenced code; all the tech-niques described in [6] can be applied to the sub-graphs.On a single processor, executable code statically se-quenced at compile-time always makes e�cient pro-grams. Choices made for the scheduling do not haveany e�ect on losses due to idle periods. On many pro-cessors, an \at least partially dynamic" scheduler isneeded because idle periods in a statically sequencedcode can be reduced only with a �ne knowledge of ex-ecution costs on the di�erent processors. As Signalspeci�cations are architecture-independent, those infor-mations are missing and scheduling must be made at9

run-time. Of course, a dynamic scheduler is much moreexpensive than a static one. The �nal implementationshould then statically sequence a maximum of nodes ofthe sub-graphs while leaving enough freedom betweenstatically sequenced parts to bene�t from concurrencyfor the best.To achieve this goal, we perform clustering tech-niques shown in [11] on each sub-graphs to get clustersthat can be implemented in a procedural way.6.4 CommunicationsThe �rst implementations of the distribution of Sig-nal programs has been made on unix; processors areunix processes (possibly on many machines of di�erentsites). As one of our goals is to �nally provide sepa-rate compilation and hardware/software implementa-tions, we wanted an abstraction of communications.The �rst implementations are currently made on theP.O.M. (Parallel Observable Machine [12]) developpedat I.R.I.S.A. in the PAMPA team.In a near future, we plan to use corba [13]. Indeed,corba provides a standardization of object-orientedcommunications between applications. The abstractionof physical communications is made through an idl17object-oriented and commonly de�ned by many hard-ware designers and software developpers. Final imple-mentations should use the support of a run-time kerneland libraries. The programs generated will shift the re-sponsability of communications on to corba's Broker,used as a \black box". Of course, the use of such astandard reduces the performances of the �nal imple-mentation, but allows more portability.7 PerspectivesWe have shown a complete method to generate dis-tributed implementations from a Signal program.What we did not mention here is the way the nodesof the SDFG were assigned to processors. From ourpoint of view saying that the distribution motivationsare only qualitative, the user's directives should be setin the Signal source program to make his work eas-ier. Moreover, this way the directives can be kept atthe source level through successive improvements of thespeci�cation while the graph level is just a temporaryrepresentation, invisible by programmers. These fea-ture is currently implemented in version V4 of Signal.A big improvement of the control distribution wouldbe the de�nition of cost functions with quantitative in-formations on durations. As this is not part of Sig-nal scope because of the architure-independence, themethod presented in section 4 to reduce the clock-hi-erarchies on the processors could be adaptated to quan-titative tools.Finally, and this is the main part of our future work,Signal speci�cations should allow asynchronous exe-cutions. Our present studies have shown the limits ofthe SDFGs, ruling only static properties. This leads usto de�ne a new model for the execution of synchronousprograms able to represent dynamic behaviours of ap-plications.17Interface Description Langage, described in [13].

References[1] Albert Benveniste and G�erard Berry. The synchronousapproach to reactive and real-time systems. Proceed-ings of the IEEE, 79(9):1270{1282, September 1991.[2] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice.Lustre: a declarative language for programming syn-chronous systems. In 14th ACM Symposium on Prin-ciples of Programming Languages, pages 178{188, Mu-nich, 1987.[3] F. Boussinot and R. De Simone. The Esterel lan-guage. Proceedings of the IEEE, 79(9):1293{1304,September 1991.[4] Paul Le Guernic, Thierry Gautier, Michel Le Borgne,and Claude Le Maire. Programming real-time ap-plications with Signal. Proceedings of the IEEE,79(9):1321{1336, septembre 1991.[5] Lo��c Besnard. Compilation de Signal: horloges,d�ependances, environnement. PhD thesis, Universit�ede Rennes 1, France, September 1992. in french.[6] O. Ma�e��s. Ordonnancements de graphes de ots syn-chrones; Application �a Signal. PhD thesis, Universit�ede Rennes 1, France, January 1993. in french.[7] Mohammed Belhadj. Conception d'architectures enutilisant Signal et VHDL. PhD thesis, Universit�e deRennes 1, France, December 1994. in french.[8] Albert Benveniste, Paul Caspi, Paul Le Guernic, andNicolas Halbwachs. Data-Flow Synchronous Lan-guages. In J.W. de Bakker, W.P. de Roever, and G.Rozenberg, editors, Lecture Notes in Computer Sci-ence 803, Proc. of the REX School/Symposium, Noord-wijkerhout, Netherlands, pages 1{45, Springer{Verlag,June 1993.[9] C. Lavarenne, O. Segrouchni, Y. Sorel, and M. Sorine.The Syndex software environment for real-time dis-tributed systems design and implementation. In Euro-pean Control Conference, pages 1684{1689, June 1991.[10] Bruno Ch�eron. Transformations syntaxiques de pro-grammes Signal. PhD thesis, Universit�e de Rennes 1,France, September 1991. in french.[11] Bernard Le Go� and Paul Le Guernic. The granules,glutton: an idea, an algorithm to implement on mul-tiprocessor. In R. Cori M. Wirsing, editor, STACS88, Lectures Notes in Computer Science, AFCET,Springer-Verlag, Bordeaux France, February 1988. Vol-ume 294.[12] F. Guidec and Y. Mah�eo. POM: a virtual parallel ma-chine featuring observation machanisms. Research re-port 902, IRISA, January 1995.[13] OMG, editor. The Common Object Request Broker:Architecture and Speci�cation. Object ManagementGroup, 1992.10

