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Abstract

Design exploration consists of analyzing several alternative im-
plementations of the “same” function to determine the most de-
sirable one. A fundamental question is whether an “implementa-
tion” is consistent with the high-level specification or whether two
implementations are “equivalent”. In this paper, we define syn-
chronous equivalence for embedded systems that strongly resem-
bles the concept of functional equivalence for sequential circuits.
We then present equivalence analysis algorithms that are of low
polynomial complexity. We show an example of application of
the algorithms to a real-life design (a shock absorber controller)
and demonstrate that synchronous equivalence opens design ex-
ploration avenues uncharted before.

1 Introduction

Current embedded system design practice is quite informal and
application specific. Designers often start with a requirement writ-
ten in plain English, use “intuition” to pick a particular interpreta-
tion of this requirement, and write a so called reference (or golden)
model in VHDL, Verilog, or C. The golden model is executed
on a computer to investigate whether it satisfies a set of require-
ments including a match with the original informal specification.
A (candidate) implementation1 is then generated through a com-
bination of manual labor and often poorly connected tools. The
correctness and optimality of the (candidate) implementations are
assessed with filtered simulation traces obtained from the reference
model and from the candidate implementation. This contorted and
highly informal design flow is very error-prone and does not pro-
mote efficient design space exploration since the set of “correct”
implementations cannot be precisely identified.

A fundamental clarification to improve the design methodology
is the formal definition of correctness. We advocate the principle
of “separation of concerns” in verification. Functional correctness
and timing are verified independently. This principle is the basis of
the synchronous design methodology for sequential circuits [1],
where latches decompose the circuit into combinational islands.
Signals are propagated from island to island when an enabling in-
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1An “implementation” may only be considered a candidate because it may not

be correct. The implementation in this context is not generated through formal
refinement. Somead hocmanual procedures are involved.

put (clock) is given to the latches. Any design of the combinational
islands ensuring that the combinational circuits stabilize before the
enabling signal arrives at the latches, can be verified for equiv-
alence paying attention only to the Boolean functions computed
by the circuits irrespective of the propagation time. Timing can
then be verified independently by performing a worst-case timing
analysis and making sure that this bound is within the clock cy-
cle. This powerful approach can be extended to higher level of
abstraction as demonstrated by synchronous languages [2]. Syn-
chronous languages describe complex systems consisting of inter-
connected components each represented by a Finite-State Machine
model. Both communication and computation take zero time to
perform. While very powerful, synchronous languages support a
model of computation that restricts the design space considerably
because of the synchronous communication hypothesis.

In this paper, we relax the “synchronous hypothesis” by adopt-
ing a more general model of computation (the one supported by
Co-design Finite State Machines(CFSM) [3]), while retaining the
fundamental idea of separation between timing and functionality.
We establishsynchronous equivalence, a “functional” equivalence
among a set of candidate implementations of embedded system
specifications. Equivalence analysis can be done precisely through
reachable state methods (e.g. formal verification tools [4, 5]), or
conservatively (but more efficiently) through structural methods.
We derive efficient structural algorithms for synchronous equiva-
lence analysis that can be used to explore the design space effec-
tively.

In the next section, we briefly review a formal model for control-
dominated embedded system design, CFSMs, that provides a con-
venient representation of the design space. In section 3, we present
the synchronous equivalence relation. In section 4, we show how
synchronous equivalence can be checked by structural methods.
In section 5, we show some results of applying this methodology
to a real-life industrial example. In section 6, we discuss future
directions.

2 Network of CFSMs

Embedded systems can be represented as networks of interact-
ing Codesign Finite State Machines [3]. CFSMs extend Finite
State Machines with side-effect-free computation on the transi-
tion edge. The communication entities between CFSMs are events,
which may or may not carry values. A CFSM can transition only
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when an input event has “occurred”.
Individual CFSMs operate in a “locally synchronous” fashion

with its own clock. This feature is necessary because different
resources can operate at widely different speeds. In order for
such “globally asynchronous” objects to communicate, buffering
is needed. We deal only with minimally required one-deep buffer.
There is noa priori relations between the local clocks and physical
time.

With this model of computation, the designers can specify their
designs with minimal implied implementation attributes. At the
“specification” level, designers specifies only the structure of the
design (i.e. number of CFSMs and I/O of these CFSMs) and the
local functions of the design (i.e. transition and output relation of
individual CFSM).

Implementing the specification involves allocating individual
CFSMs to computation resources and assigning scheduling policy
to shared resources. We call this high-level implementation pro-
cessarchitectural mapping. Architectural mapping has the conse-
quences of refining the relationship between the local clock and the
physical time. CFSMs implemented in hardware have local clocks
coincide with the hardware clocking. CFSM implemented in soft-
ware has local clock running at some variable period, depending
on the execution delay of a particular transition and scheduling.

Since local CFSM clocks are unsynchronized, a network of CF-
SMs is inherently non-deterministic: for a fixed input sequence,
many system responses are possible (and they are all equally
valid). However, a mapped network is deterministic: its response is
unique for any fixed input sequence. In fact, we extend the notion
of architectural mapping to include any set of rules that resolve
non-deterministic choices in a CFSM network (making it deter-
ministic). To resolve non-determinism, a mapping needs to specify
two things:

• delays for potentially parallel activities: for two activities
happening at the same time, we need to know which one will
finish first,

• scheduling: if two activities are enabled, we need to know
whether they will be executed in a particular order, or perhaps
in parallel.

For example, simulating a CFSM network (which necessarily in-
volves resolving non-determinism) is considered an architectural
mapping.

For simplicity, we refer to all mapped specifications as imple-
mentations (thus a mapping to a simulator is also considered an
implementation). Therefore, checking two implementations for
equivalence may be used to verify that some manual design op-
timizations did not alter the behavior, or it may be used to verify a
physical implementation versus the “golden” (simulation) model.

3 Synchronous Equivalence

Synchronous AssumptionThe operation of the design is split
into two alternatingnon-overlapping phases. An interaction
phase where the environment interacts with the design and a
computation phase where the design performs computation.

The interaction phase followed by its associated computation
phase is called a “cycle”. We will only consider specifications

that satisfies synchronous assumption. The implementation pro-
cess must guarantee to preserve it. This can be done by a separate
worst case timing analysis in the flavor of [6].

Synchronous EquivalenceUnder the synchronous assumption,
two embedded system implementations are synchronously
equivalent if and only if for all possible input traces the out-
puts of the implementations are the same at the end of every
cycle.

As long as the results (outputs of the network of CFSMs) are the
same at the end of the cycle, the order of execution of CFSMs or
even the parallel/serial nature of the computations do not matter.
The former can lead to freedom in scheduler selections while the
latter can lead to freedom in processor allocation.

3.1 Related Work

Synchronous languages are a group of languages proposed for
automatic synthesis of embedded software [2]. Synchronous lan-
guages have a unique notion of “synchronous scheduler”, the
scheduler that defines correct behavior. This scheduler is the result
of the assumption of synchronous communication among compo-
nents of the design. Our synchronous assumption is related only to
the “external” communication of the design with the environment.
Hence, there is an intrinsic non-determinism in our specification
that results in many possible “functional” behaviors that are con-
sistent with the specification.

Synchronous data-flow is a powerful formalism geared toward
simulation and code synthesis for digital signal processors [7]. It
too exploits the synchronous assumption at the interface between
the network and the environment, but “blocking read” is required
of all components in the design so the behaviors are the same (in
Kahn’s sense) independent of allocation and scheduling.

Our work does not restrict the implementation choices to those
utilizing synchronous scheduler, nor does it require communica-
tions to have the “blocking read” property. We use equivalence
analysis to tell us whetherany two implementations are equiva-
lent to each other. In the next section, we show how synchronous
equivalence analysis can be performed efficiently.

4 Analysis of Synchronous Equivalence

The general equivalence checking problem for sequential sys-
tems is very complex. We devise powerful but conservative heuris-
tics for synchronous equivalence that are of low polynomial time
complexity. Our algorithms decide the synchronous equivalence
between two given implementations from the same specification,
assuming both of them satisfy the synchronous assumption. A sep-
arate worst case timing analysis [6] will be needed.

We first show in the next section that for some subsets of imple-
mentations, synchronous equivalence will hold regardless of the
design that is being implemented. This type of analysis is “design
independent” and has constant complexity. If two implementations
do not belong to one such subset, a more complex analysis must
be performed in order to determine equivalence. We introduce “ab-
stract communication analysis” which can be applied to a large set
of implementations.



4.1 Design-Independent Synchronous Equivalence

We first have the following definitions:

Global State Pattern A complete characterization of the state the
implementation is in. It includes state information of all the
components and values on all the buffers, counters, and any
other memory element.

Stabilization An implementation is stabilized if and only if no
change in global state pattern or output is possible without
the application of a primary input. A system that satisfies the
synchronous assumption stabilizes at the end of a cycle.

A single primary input pattern can stimulate the design and
“generate” a sequence of global state patterns until stabilization
is reached. A sequence of primary input patterns (i.e. a primary
input trace) “generates” a sequence of sequence of global state pat-
terns. A primary input trace also generates a sequence of sequence
of scheduling points.

Scheduling Point A scheduling point is a point in time where
some component finishes computation, or produces some out-
put. It is the point in time when some “scheduling decision”
need to be made. There are often many scheduling points
within a single computation phase.

Lemma 1 Given two implementations,A and B, of the same
specification, and an arbitrary input tracei = {i1, i2, ...},
i generates a sequence of sequences of scheduling points
{{a1

1,a
2
1, ...},{a1

2,a
2
2, ...}, ...} for implementation A, and

{{b1
1,b

2
1, ...},{b1

2,b
2
2, ...}, ...} for implementationB. Let the

global state pattern be{{P1
1 ,P

2
1 , ...},{P1

2 ,P
2
2 , ...}, ...} for im-

plementationA, and{{Q1
1,Q

2
1, ...},{Q1

2,Q
2
2, ...}, ...} for im-

plementationB at the scheduling points. IfPm
n = Qm

n , for all
integer m,n,A andB are synchronously equivalent.

Proof of Lemma 1 Output are the same at all stabilization point
because every stabilizing point is a scheduling point.Pm

n =
Qm

n for all scheduling point. Therefore,A and B are syn-
chronously equivalent.

We now present the main theorem of this section.

Theorem 1 Any two single processor implementations with the
same non-preemptive scheduling policy are synchronously
equivalent.

Proof of Theorem 1 Given two such implementationsA and B
and an arbitrary input trace,P0

0 = Q0
0 because they are speci-

fied by the initial state, initial output and the environment. We
can now proceed by induction.

• Base CaseP0
0 = Q0

0

• Induction HypothesisPi
0 = Qi

0

• Prove:Pi+1
0 = Qi+1

0
BecausePi

0 = Qi
0, the same software scheduler makes

the same execution decision and execute the same com-
ponent, calculate outputs and next state of that compo-
nent corresponding to the next scheduling pointi + 1.
Since the output and transition relation are identical for
A andB, Pi+1

0 = Qi+1
0

Bi2

A: if (i1) then emit(m1)A m1
i1

o1
B: if (m1) and (i2) then emit(o1)

Figure 1: Example for Abstract Communication Analysis

At stabilization pointj, Pj = Q j . The next scheduling point
P0

j+1 = Q0
j+1 because they are the same pattern as at previous

scheduling point plus primary input.

Therefore,Pm
n = Qm

n for any integerm andn. Due to lemma
1, the theorem is proven.

This theorem can be easily extended to preemptive scheduling
because preemption always occur at a scheduling point.

Theorem 1 indicates that once a scheduler is chosen, the de-
signer is free to optimize the individual processes and the resulting
implementation will still be synchronously equivalent to the orig-
inal one. Also, implementation with different processors (hence
different delay characteristics) will result in synchronously equiv-
alent implementations as long as the scheduler remains unchanged.

It is clear that, depending on the design specification, two im-
plementations with different scheduling can still be synchronously
equivalent. In the next section we try to extend the reach of the
analysis by further examining the communication structure of the
system.

4.2 Abstract Communication Analysis

During a computation phase, there is no interaction between the
design and its environment. Within the design, however, compo-
nents receive events, perform executions in some order, and send
out events which can trigger other executions. A given component
during a computation phase can be executed many times. The se-
quence of input event pattern consumed is thelocal execution trace
of the component. Theexecution traceof the design is obtained by
grouping together all local execution traces of all components and
concatenating across phases.

An execution trace does not contain any timing information, ex-
cept in the form of ordering among the sequential executions of
the same component. The ordering of the executions of different
components is not kept in the execution trace. This feature allows
widely different implementations to be considered “functionally”
equivalent.

Execution traces for the design of figure 1 are shown in table 1.
Three implementations are being considered: a single processor
with component A at a lower priority than component B, a concur-
rent hardware implementation where A and B execute in parallel
with the same delay, and a single processor with A at a higher pri-
ority than B. 1/0 in the table indicates the presence/absence of an
event. Execution traces can be obtained by simulation. Implemen-
tation A<B with primary input i1, i2 = 11 has B executing first
with input m1, i2 = 01, then A executing with input 1, then B ex-
ecuting again with input 10. The design is memoryless so every
computation phase have the same response to the same primary
input pattern.

Execution traces have the following important property:

Lemma 2 For every legal input trace, if the execution traces from



A<B A=B A>B
E.T. M.E.T. E.T. M.E.T. E.T. M.E.T.

i1i2 A B A B A B A B A B A B
11 1 01 1 01 1 01 1 01 1 11 1 11

10 10 10 10

10 1 01 1 01 1 11

01 10 10 11
Table 1: Execution Traces and Maximal Execution Traces

two implementations are identical, then the two implementa-
tions are synchronously equivalent to each other.

Proof of Lemma 2 Since all local execution traces (i.e. input
traces) are identical, output must be identical at all scheduling
points (including stabilizing points). Two implementations
are therefore synchronously equivalent to each other.

This lemma suggests a straightforward algorithm for checking
synchronous equivalence: simulate all possible input traces and
compare the resulting execution traces. Accordingly, implemen-
tations A<B and A=B for design in figure 1 are synchronously
equivalent to each other. Exhaustive simulation is clearly not prac-
tical for all but the most trivial designs. Hence, we introduceab-
stract communication analysis. It is based on the intuition that
since two implementations of any design have identical compo-
nent functionalities and connectivities, the only thing that requires
analysis is the communication characteristics. To this end, we look
for a “signature” that summarizes the communication.

A good communication signature must be easy to compute, so
it can become the inner loop of some automatic design exploration
procedure. It must also have the property that if two implementa-
tions have the same communication signature, they must be syn-
chronously equivalent. For this purpose we propose the “maximal
execution trace” computed by the following algorithm.

Maximal Execution Trace Computation Procedure

1. Replace the functions of the components by “OR”s, so
that any input event can cause all output events to be
emitted. This is equivalent to existentially quantifying
both output and transition relation of all components.

2. Simulate the transformed design with a single primary
input pattern of all 1’s (presence). The execution trace
from this single simulation run is the maximal execution
trace. This is similar to worst case analysis in real-time
scheduling [8].

Maximal execution trace is a useful communication signa-
ture for implementations whosescheduling policiesare “well-
behaved”. We say that a scheduling policy is well-behaved if an
execution trace forany input can be obtained by only eliminat-
ing some executions from the maximal execution trace, but not
reordering any remaining executions. Though this property could
certainly be design dependent, tests exist to identify scheduling
policies that are well-behaved regardless of the design functional-
ity. Details of these tests are beyond the scope of this paper, but
we point out that many common implementations have scheduling

policies that are well-behaved. Single processors with list schedul-
ing or static priority scheduling, synchronous circuits, and mul-
tiple clock circuits with fixed relationship between clocks are all
well-behaved. Multi-processor implementations in general are not
well-behaved.

The correctness of using maximal execution trace as communi-
cation signature hinges on lemma 2 and the following theorem:

Theorem 2 If the maximal execution traces are the same for two
implementations whose scheduling policies are well-behaved,
then their execution traces will be identical for all possible
input traces.

Outline of Proof of Theorem 2 Since the scheduling policies are
well-behaved, the real execution traces can be obtained by
eliminating some executions from the (same) maximal ones.
It is shown by induction on the length of the maximal trace
that the same executions are eliminated for both implemen-
tations. Therefore, if maximal execution traces are the same,
the real execution traces for both implementations have to be
identical also.

Table 1 shows all possible execution traces and maximal execu-
tion traces. The maximal execution traces are the same for imple-
mentations A<B and A=B, and the two implementations indeed
do have identical execution traces. According to Lemma 2, they
are synchronously equivalent to each other. If the maximal exe-
cution traces are different, as they are between A=B and A>B,
we cannot conclude whether the implementations are or are not
synchronously equivalent.

The complexity of this algorithm is quadratic in the number of
components since each component can be executed no more than
n times, wheren is the number of components in the design. This
algorithm can only be applied to a design with no loops in the
connection among components. We suggest a simple extension to
deal with common loop structures in section 6.

5 Case Study

We applied abstract communication analysis to a real-life indus-
trial design: a shock absorber controller [3]. The controller sets the
shock absorbers’ motors to appropriate absorption levels according
to inputs from steering wheel, vertical acceleration sensor, speed
sensor, and battery voltage sensor. The system includes over 200
binary latches. Attempts to verify it automatically with the tool
VIS [5] exceeded available memory and time limits.

The system graph for this design is shown in figure 2. We use
abstract communication analysis algorithm to decide synchronous
equivalence among the following five implementations:

1. Synchronous hardware.

2. Single processor with list scheduling: a,b,c,d,e,f,g,h.

3. Single processor with list scheduling: h,g,f,e,d,c,b,a.

4. Single processor with priority: a>b>c>d>e>f>g>h.

5. Single processor with priority: h>g>f>e>d>c>b>a.
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Figure 2: System Graph for Shock Absorber Controller.

impl execution a b c d e f g h
1 1 1 1 001 1 10 11 1 10

2 010 01 10 10
3 100 01 10 11
4 01 11

2 1 1 1 111 1 11 11 1 11
3 1 1 1 001 1 10 11 1 10

2 010 01 10 10
3 100 01 10 11
4 01 11

4 1 1 1 111 1 11 11 1 11
5 1 1 1 001 1 10 01 1 10

2 010 01 10 01
3 100 01 10 01
4 01 10 10
5 01
6 10
7 01
8 10

Table 2: Maximal Execution Traces.

We obtained the maximal execution traces for all five imple-
mentations in table 2. The input patterns are recorded from the
top-most input on the graph to the bottom-most one.

From the table, we can conclude that implementation 1 and 3 are
synchronously equivalent. Combining this result with theorem 1,
we can conclude that any synchronous hardware implementation
and any single processor implementation (with any delay charac-
teristics) with the given list scheduling are synchronously equiva-
lent. If they both satisfy timing constraints, implementation 3 may
have a lower cost and implementation 1 may have better perfor-
mance in terms of timing. We can also conclude similarly that
implementation 2 and 4 are synchronously equivalent. The conser-
vative analysis was performed in a very short computing time and
with negligible memory occupation.

6 Summary and Future Direction

We proposed a definition of functional equivalence for embed-
ded systems: synchronous equivalence. We also proposed simple
algorithms for evaluating equivalence that can be applied to a large
set of implementations.

The calculation of maximal execution traces can easily be made
less conservative. Instead of abstracting away all functionality, one
can abstract away only the state information of the components and
leave everything else intact. The generated symbolic trace remains
correct. Preliminary study has indicated that this type of extension

is very useful in dealing with request-acknowledge loops and other
loops of similar nature.

Another important future direction is to increase the applicabil-
ity of the abstract communication analysis to include architectures
using more than one processor. We will probably need to make
the synchronization explicit among resources. A third direction
is to deal with timing issues such as tightening the bound on the
worst-case execution time. This will complement abstract com-
munication analysis and possibly make the synchronous approach
as popular in the embedded system domain as it is in the sequential
circuit domain.
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