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Abstract put (clock) is given to the latches. Any design of the combinational

islands ensuring that the combinational circuits stabilize before the
Design exploration consists of analyzing several alternative ienabling signal arrives at the latches, can be verified for equiv-
plementations of the “same” function to determine the most d&lence paying attention only to the Boolean functions computed
sirable one. A fundamental question is whether an “implementa the circuits irrespective of the propagation time. Timing can
tion” is consistent with the high-level specification or whether twilien be verified independently by performing a worst-case timing
implementations are “equivalent”. In this paper, we define syanalysis and making sure that this bound is within the clock cy-
chronous equivalence for embedded systems that strongly resel@- This powerful approach can be extended to higher level of
bles the concept of functional equivalence for sequential circuigstraction as demonstrated by synchronous languages [2]. Syn-
We then present equivalence analysis algorithms that are of loronous languages describe complex systems consisting of inter-
polynomial complexity. We show an example of application afonnected components each represented by a Finite-State Machine
the algorithms to a real-life design (a shock absorber controllenpdel. Both communication and computation take zero time to
and demonstrate that synchronous equivalence opens desigrperorm. While very powerful, synchronous languages support a
ploration avenues uncharted before. model of computation that restricts the design space considerably
because of the synchronous communication hypothesis.
In this paper, we relax the “synchronous hypothesis” by adopt-
1 Introduction ing a more general model of computation (the one supported by
Co-design Finite State Machines(CFSM) [3]), while retaining the
Current embedded system design practice is quite informal gntidamental idea of separation between timing and functionality.
application specific. Designers often start with a requirement wite establistsynchronous equivalenca “functional” equivalence
ten in plain English, use “intuition” to pick a particular interpretaamong a set of candidate implementations of embedded system
tion of this requirement, and write a so called reference (or goldepecifications. Equivalence analysis can be done precisely through
model in VHDL, Verilog, or C. The golden model is executetieachable state methods (e.g. formal verification tools [4, 5]), or
on a computer to investigate whether it satisfies a set of requigenservatively (but more efficiently) through structural methods.
ments including a match with the original informal specificatioyVe derive efficient structural algorithms for synchronous equiva-
A (candidate) implementatidris then generated through a comlence analysis that can be used to explore the design space effec-
bination of manual labor and often poorly connected tools. Thigely.
correctness and optimality of the (candidate) implementations ardn the next section, we briefly review a formal model for control-
assessed with filtered simulation traces obtained from the referedoginated embedded system design, CFSMs, that provides a con-
model and from the candidate implementation. This contorted arghient representation of the design space. In section 3, we present
highly informal design flow is very error-prone and does not préhe synchronous equivalence relation. In section 4, we show how
mote efficient design space exploration since the set of “corresynchronous equivalence can be checked by structural methods.
implementations cannot be precisely identified. In section 5, we show some results of applying this methodology
A fundamental clarification to improve the design methodolod9 a real-life industrial example. In section 6, we discuss future
is the formal definition of correctness. We advocate the princigléections.
of “separation of concerns” in verification. Functional correctness
and timing are verified independently. This principle is the basis of
the synchronous design methodology for sequential circuits [8, Network of CFSMs
where latches decompose the circuit into combinational islands.
Signals are propagated from island to island when an enabling inEmbedded systems can be represented as networks of interact-
Ths author is sunoorted by SRC contract DC.324.028 ing Codesign Finite State Machines [3]. CFSMs extend Finite
1An “implementat%pn" may gnly be considered a candidate because it may giate Machines with side-effect-free computation on the transi-
be correct. The implementation in this context is not generated through forrH&N €dge. The communication entities between CFSMs are events,
refinement. Somad hocmanual procedures are involved. which may or may not carry values. A CFSM can transition only
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when an input event has “occurred”. that satisfies synchronous assumption. The implementation pro-
Individual CFSMs operate in a “locally synchronous” fashioness must guarantee to preserve it. This can be done by a separate

with its own clock. This feature is necessary because differembrst case timing analysis in the flavor of [6].

resources can operate at widely different speeds. In order for

such “globally asynchronous” objects to communicate, bufferirgynchronous EquivalenceUnder the synchronous assumption,

is needed. We deal only with minimally required one-deep buffer. two embedded system implementations are synchronously

There is naa priori relations between the local clocks and physical  equivalent if and only if for all possible input traces the out-

time. puts of the implementations are the same at the end of every
With this model of computation, the designers can specify their cycle.

designs with minimal implied implementation attributes. At the

“specification” level, designers specifies only the structure of tia& long as the results (outputs of the network of CFSMs) are the

design (i.e. number of CFSMs and I/O of these CFSMs) and theme at the end of the cycle, the order of execution of CFSMs or

local functions of the design (i.e. transition and output relation efen the parallel/serial nature of the computations do not matter.

individual CFSM). The former can lead to freedom in scheduler selections while the
Implementing the specification involves allocating individuahtter can lead to freedom in processor allocation.

CFSMs to computation resources and assignhing scheduling policy

to shared resources. We call this high-level implementation pro-

cessarchitectural mappingArchitectural mapping has the conse3-1  Related Work

guences of refining the relationship between the local clock andth%ynchronous languages are a group of languages proposed for

physical time. CFSMs implemented in hardware have local clocks : : i}
coincide with the hardware clocking. CFSM implemented in so ttomatic synthesis of embedded software [2]. Synchronous lan

ware has local clock running at some variable period, dependfig 2. - have a unique notion of *synchronous scheduler’, the
. g at able p » G€PE Bheduler that defines correct behavior. This scheduler is the result
on the execution delay of a particular transition and scheduling.

. : the assumption of synchronous communication among compo-
Sln.ce_local CFSM clocks are qn;y.nchronllzed, a network of G ents of the design. Our synchronous assumption is related only to
SMs is inherently non-deterministic: for a fixed input sequen

many system responses are possible (and they are all e Ct?ni “external” communication of the design with the environment.
valid))/ Hyowever aEna od netvfork ‘s deterministié/' its res ongs ce, there is an intrinsic non-determinism in our specification

L ! app ' PONSEIS results in many possible “functional” behaviors that are con-
unique for any fixed input sequence. In fact, we extend the no“&gtent with the specification

of architectural mapping to include any set of rules that resolveS nchronous data-flow is a powerful formalism eared toward
non-deterministic choices in a CFSM network (making it deter- ynet A powertL ) 9
ulation and code synthesis for digital signal processors [7]. It

[\?\;Qltsr::ﬁ)';o resolve non-determinism, a mapping needs to spectsf exploits the synchronous assumption at the interface between
gs- the network and the environment, but “blocking read” is required

e delays for potentially parallel activities: for two activitiesof all components in the design so the behaviors are the same (in

happening at the same time, we need to know which one viithn’s sense) independent of allocation and scheduling.
finish first, Our work does not restrict the implementation choices to those

utilizing synchronous scheduler, nor does it require communica-

e scheduling: if two activities are enabled, we need to knolions to have the “blocking read” property. We use equivalence
whether they will be executed in a particular order, or perhaggalysis to tell us whetheany two implementations are equiva-

in parallel. lent to each other. In the next section, we show how synchronous

For example, simulating a CFSM network (which necessarily iﬁguwalence analysis can be performed efficiently.

volves resolving non-determinism) is considered an architectural
mapping. : :

For simplicity, we refer to all mapped specifications as impIeAf AnaIySIS of Synchronous Equwalence
mentations (thus a mapping to a simulator is also considered a

implementation). Therefore, checking two implementations for * "™ lex. We devi ful but tive heuri
equivalence may be used to verify that some manual design Qp- SIS very compiex. Ve devise poweriul but conservative heuris-
tics for synchronous equivalence that are of low polynomial time

timizations did not alter the behavior, or it may be used to verify lexity. O lgorithms decide th h val
physical implementation versus the “golden” (simulation) mode Omplexity. Dur aigonthms decide the synchronous equivalence
etween two given implementations from the same specification,
assuming both of them satisfy the synchronous assumption. A sep-

3 Synchronous Equiva|ence arate worst case timing analysis [6] will be needed.
We first show in the next section that for some subsets of imple-

Synchronous Assumption The operation of the design is splitmentations, synchronous equivalence will hold regardless of the
into two alternatingnon-overlapping phasesAn interaction design that is being implemented. This type of analysis is “design
phase where the environment interacts with the design antih@ependent” and has constant complexity. If two implementations

computation phase where the design performs computatiod© not belong to one such subset, a more complex analysis must
be performed in order to determine equivalence. We introduce “ab-

The interaction phase followed by its associated computatistnact communication analysis” which can be applied to a large set
phase is called a “cycle”. We will only consider specificationsf implementations.

l:f‘he general equivalence checking problem for sequential sys-



4.1 Design-Independent Synchronous Equivalence - A: if (i1) then emit(m1)

We first have the following definitions: . ol

i2 B B: if (m1) and (i2) then emit(ol)

Global State Pattern A complete characterization of the state the
implementation is in. It includes state information of all the
components and values on all the buffers, counters, and any
other memory element.

Figure 1: Example for Abstract Communication Analysis

At stabilization pointj, P; = Q;. The next scheduling point
Pjo+1 = Q?H bgcause thgy are _the same pattern as at previous
scheduling point plus primary input.

Stabilization An implementation is stabilized if and only if no
change in global state pattern or output is possible without
the application of a primary input. A system that satisfies the

synchronous assumption stabilizes at the end of a cycle. Therefore A" = Q' for any integem andn. Due to lemma
1, the theorem is proven.

A single primary input pattern can stimulate the design and
“generate” a sequence of global state patterns until stabilizationThis theorem can be easily extended to preemptive scheduling
is reached. A sequence of primary input patterns (i.e. a primdgcause preemption always occur at a scheduling point.
input trace) “generates” a sequence of sequence of global state patheorem 1 indicates that once a scheduler is chosen, the de-
terns. A primary input trace also generates a sequence of sequeigier is free to optimize the individual processes and the resulting
of scheduling points. implementation will still be synchronously equivalent to the orig-
inal one. Also, implementation with different processors (hence
Scheduling Point A scheduling point is a point in time wheregifferent delay characteristics) will result in synchronously equiv-
some component finishes computation, or produces some @int implementations as long as the scheduler remains unchanged.
put. Itis the point in time when some “scheduling decision” |t js clear that, depending on the design specification, two im-
need to be made. There are often many scheduling poigfsmentations with different scheduling can still be synchronously
within a single computation phase. equivalent. In the next section we try to extend the reach of the
analysis by further examining the communication structure of the

Lemma 1 Given two implementationsA and B, of the same
system.

specification, and an arbitrary input trace= {i4,io,...},
i generates a sequence of sequences of scheduling points o _
{{ai,ai,...},{al,ag,...},...} for implementation A, and 4.2 Abstract Communication Analysis

{{bg,bs,...},{b3,bs5,...},...} for implementationB. Let the , ) ) , ,
global state pattern b{P},P2,...},{PL.P2,...}, ...} for im- During a computation phase, there is no interaction between the

plementationA, and {{Q%,Ql,m},{sz, Qg,---},...} for im- design ano_l its environment. Within the de_sign, however, compo-
plementatiorB at the scheduling points. B = QM for all nents receive .events, p_erform execunon; in some order, and send
integer m,nA andB are synchronously equivalent. out events which can trigger other executions. A given component
during a computation phase can be executed many times. The se-
Proof of Lemma 1 Output are the same at all stabilization poinguence of input event pattern consumed iddizal execution trace
because every stabilizing point is a scheduling poRff.= of the component. Thexecution tracef the design is obtained by
QM for all scheduling point. Thereforéd and B are syn- grouping together all local execution traces of all components and
chronously equivalent. concatenating across phases.
An execution trace does not contain any timing information, ex-
cept in the form of ordering among the sequential executions of

Theorem 1 Any two single processor implementations with th(tehe same component. The ordering of the executions of different

same non-breemptive scheduling policy are s nchronouglomponents is not kept in the execution trace. This feature allows
equivalent P P g policy y vader different implementations to be considered “functionally”

equivalent.

Proof of Theorem 1 Given two such imp'ementation& and B EXeCUtion traces fOI’ the deSign Of ﬁgure 1 are ShOWn in table 1.
and an arbitrary input trac®d = QS because they are speci-Three implementations are being considered: a single processor
fied by the initial state, initial output and the environment. W@&ith component A at a lower priority than component B, a concur-

We now present the main theorem of this section.

can now proceed by induction. rent hardware implementation where A and B execute in parallel
o o with the same delay, and a single processor with A at a higher pri-
e Base Cas&) = Q ority than B. 1/0 in the table indicates the presence/absence of an

e Induction Hypothesi&} = Q, event. Execution traces can be obtained by simulation. Implemen-

oitl i1 tation A<B with primary inputis,i = 11 has B executing first
* Prove:R, - Q? with inputmy, i, = 01, then A executing with input 1, then B ex-
BecauseR, = Qp, the same software scheduler makescyting again with input 10. The design is memoryless so every
the same execution decision and execute the same c@@mputation phase have the same response to the same primary
ponent, calculate outputs and next state of that compapuyt pattern.

nent corresponding to the next scheduling poitl.  Execution traces have the following important property:

Since the output and transition relation are identical for

AandB, P(i)+1 = Qigl Lemma 2 For every legal input trace, if the execution traces from



A<B A=B A>B policies that are well-behaved. Single processors with list schedul-
. ET |MET | ET | MET | ET | MET | ing or static priority scheduling, synchronous circuits, and mul-
iz |A B A B /A BJA BJA BJA B | tpleclock circuits with fixed relationship between clocks are all
171 01p1 0171 01p 1 0171 1111 11} wej-pehaved. Multi-processor implementations in general are not
10 10 10 10 well-behaved.
1011 o1 1 o1 1 11 'I_'he correctness of using maximal execution trace as communi-
cation signature hinges on lemma 2 and the following theorem:

01 10 10 11
Table 1: Execution Traces and Maximal Execution Traces Theorem 2 If the maximal execution traces are the same for two
implementations whose scheduling policies are well-behaved,
then their execution traces will be identical for all possible

input traces.

two implementations are identical, then the two implementa-
tions are synchronously equivalent to each other.

Qutline of Proof of Theorem 2 Since the scheduling policies are

Prootf of Lemma_§ St'.nC? a”t Iocial e>f[ebcuf[(|jon t’;ratlze? (Ill.e. h 'r('ijlj.t well-behaved, the real execution traces can be obtained by
races) are identical, output must be identical at all scheduling eliminating some executions from the (same) maximal ones.

points (including stabilizing points). Two implementations It is shown by induction on the length of the maximal trace

are therefore synchronously equivalent to each other. that the same executions are eliminated for both implemen-

) ) ) . tations. Therefore, if maximal execution traces are the same,
This lemma suggests a straightforward algorithm for checking e real execution traces for both implementations have to be
synchronous equivalence: simulate all possible input traces and qentical also.

compare the resulting execution traces. Accordingly, implemen-

tations A<B and A=B for design in figure 1 are synchronously 1,6 1 shows all possible execution traces and maximal execu-
equivalent to each other. Exhaustive simulation is clearly not pragyy, traces. The maximal execution traces are the same for imple-
tical for all but the most trivial designs. Hence, we introdate o otions AB and A=B. and the two implementations indeed
stract communication analysislt is based on the intuition that y, have identical executi(,)n traces. According to Lemma 2, they
since two implementations of any design have identical COMPgz. svnchronously equivalent to each other. If the maximal exe-
nent functionalities and connectivities, the only thing that requirgStion traces are different. as they are betweerBAand A>B
analysis is the communication characteristics. To this end, we Iqﬁ cannot conclude Whether the implementations are or a,re not
for a “signature” that summarizes the communication. synchronously equivalent.

_ A good communication signature must be easy to compute, Sqhe complexity of this algorithm is quadratic in the number of

it can become the inner loop of some automat|c.de5|g.n exploratlgﬂﬂponents since each component can be executed no more than
procedure. It must also have the property that if two implementagnes wheren is the number of components in the design. This
tions have the same communication signature, they must be_sgl jorithm can only be applied to a design with no loops in the

chronously equivalent. For this purpose we propose the ‘maximglnection among components. We suggest a simple extension to
execution trace” computed by the following algorithm. deal with common loop structures in section 6.

Maximal Execution Trace Computation Procedure

_ 5 Case Study
1. Replace the functions of the components by “OR”s, so
that any input event can cause all output events to bewe applied abstract communication analysis to a real-life indus-
emitted. This is equivalent to existentially quantifyingrial design: a shock absorber controller [3]. The controller sets the
both output and transition relation of all components. shock absorbers’ motors to appropriate absorption levels according

2. Simulate the transformed design with a single prima#§ inputs from steering wheel, vertical acceleration sensor, speed
input pattern of all 1's (presence). The execution tra&®nsor, and battery voltage sensor. The system includes over 200
from this single simulation run is the maximal executioRinary latches. Attempts to verify it automatically with the tool

trace. This is similar to worst case analysis in real-timé!S [5] exceeded available memory and time limits.
scheduling [8]. The system graph for this design is shown in figure 2. We use

abstract communication analysis algorithm to decide synchronous

Maximal execution trace is a useful communication sign§duivalence among the following five implementations:

ture for implementations whosscheduling policiesare “well-
behaved”. We say that a scheduling policy is well-behaved if anl' Synchronous hardware.

execution trace fomny input can be obtained by only eliminat- 5 Single processor with list scheduling: a,b,c,d,e.f,g,h.
ing some executions from the maximal execution trace, but not A

reordering any remaining executions. Though this property could Single processor with list scheduling: h,g,f,e,d,c,b,a.
certainly be design dependent, tests exist to identify scheduling

policies that are well-behaved regardless of the design functional. Single processor with priority:>eb>c>d>e>f>g>h.
ity. Details of these tests are beyond the scope of this paper, but

we point out that many common implementations have scheduling. Single processor with priority:>hg>f>e>d>c>b>a.



is very useful in dealing with request-acknowledge loops and other
loops of similar nature.

@\

@ Another important future direction is to increase the applicabil-
ity of the abstract communication analysis to include architectures
using more than one processor. We will probably need to make

al —:C

the synchronization explicit among resources. A third direction
is to deal with timing issues such as tightening the bound on the
worst-case execution time. This will complement abstract com-
\\_1 @ munication analysis and possibly make the synchronous approach

as popular in the embedded system domain as it is in the sequential
circuit domain.

Figure 2: System Graph for Shock Absorber Controller.
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6 Summary and Future Direction

We proposed a definition of functional equivalence for embed-
ded systems: synchronous equivalence. We also proposed simple
algorithms for evaluating equivalence that can be applied to a large
set of implementations.

The calculation of maximal execution traces can easily be made
less conservative. Instead of abstracting away all functionality, one
can abstract away only the state information of the components and
leave everything else intact. The generated symbolic trace remains
correct. Preliminary study has indicated that this type of extension



