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Abstract—A novel technique to estimate and model parameters
of a 460-MVA large steam turbine generator from operating data is
presented. First, data from small excitation disturbances are used
to estimate linear model armature circuit and field winding pa-
rameters of the machine. Subsequently, for each set of steady state
operating data, saturable inductances and are identified
and modeled using nonlinear mapping functions-based estimators.
Using the estimates of the armature circuit parameters, for each
set of disturbance data collected at different operating conditions,
the rotor body parameters of the generator are estimated using an
output error method (OEM). The developed nonlinear models are
validated with measurements not used in the estimation procedure.

Index Terms—Armature circuit and rotor body parameters,
large utility generators, parameter identification.

I. INTRODUCTION

PARAMETER identification from operating data for syn-
chronous generators is a beneficial procedure which does

not require any service interruption to perform. Thus, machine
parameters, which can deviate substantially from manufacturer
values during online operation at different loading levels, can
be determined without costly testing [1]. These deviations are
usually due to magnetic saturation [2]–[4], internal temperature,
machine aging, and the effect of centrifugal forces on winding
contacts and incipient faults within the machine. References
[5]–[7] include investigations into modeling synchronous gen-
erator parameters as a function of operating condition. In most
of these studies, the independent variables used in modeling
nonlinear variations of the parameters are primarily the terminal
voltage, current, or a combination of these quantities including
the phase angle. A similar study can be found in [7] and [8] for
a small round rotor synchronous generator.

In this study, disturbance data sets acquired online at dif-
ferent loading and excitation levels of a large utility generator
are used to identify the machine parameters. It is assumed that
the machine model order is known (i.e., the number of differ-
ential equations). Estimated machine parameters for each oper-
ating point are then mapped into operating condition-dependent
machine variables using nonlinear mapping functions. The non-
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Fig. 1. Online model structure.

linear mapping [7] can easily identify the shape of the nonlinear
function from training data. Therefore, noapriori knowledge
of the shape of the mapping is required. The effects of gener-
ator saturation, rotor position, and loading are included in the
mapping process. Finally, validation studies are conducted to
investigate the performance of nonlinear mapping models and
estimated parameters.

II. M ACHINE MODEL DESCRIPTION

AND PROBLEM FORMULATION

The structure of the synchronous machine model used in this
study is amodel 2.1. type [1], with one damper in the-axisand
one damper in the-axis, given in Fig. 1.

For continuous time systems, the state space representation
of this model is

(1)

where and represent the process and measurement
noise. Also, see the equation at the bottom of the next page. All
parameters are in actual units. Also, it is assumed that the ma-
chine power angle is available for measurement. Variables,

, , and represent generator- and -axisterminal voltages
and currents, respectively. The quantitiesand represent
field current and field voltage, respectively, as measured on the
field side of the generator and is the field winding resistance
as measured on the field side. Terms, , and represent
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corresponding transformed quantities on the stator side through
the field to stator turns ratio as follows:

All other variables and parameters are referred to the stator.
The identification of machine parameters including arma-

ture, field, and rotor body parameters involve the following five
stages.

1) Measurement data are validated.
2) Using small excitation disturbance data, linear model

armature circuit and field winding parameters are
estimated.

3) Saturable inductances and are identified for each
steady-state operating point and nonlinear models are de-
veloped for mapping and to various operating
points.

4) Using the armature circuit parameter estimates from the
previous step, rotor body parameters are estimated from
disturbance data acquired when the machine is operating
online under various test conditions.

5) Nonlinear mapping models are developed and validated
to map variables representative of generator operating
condition to each rotor body parameter.

Stage 1 is discussed in detail in a recent study by the authors
[18]. Stages 2—5 comprise the primary objectives of this paper.
In order to validate the established model based on estimated pa-
rameters, simulation studies are also performed and the results
are compared against the simulation results with manufacturer
parameters. In these studies, measured terminal and field volt-
ages are used to excite the machine model to obtain terminal
and field currents. The simulated currents are compared against
corresponding actual measurements.

The large steam generator used for study purposes is one of
the Cholla Units operated by Arizona Public Service Co. (APS).
This machine is rated at 22 kV, 460 MVA, and operates at 3600
r/min. The generator is monitored continuously, and data are
recorded at an operator’s demand or when a fault condition oc-
curs. The data consist of measurements of stator voltages and
currents, field voltage and current, generator speed, and power
angle. Ten steady-state data files at various operating conditions
were used in this paper’s analysis. Thirteen transient data files
were obtained either by stepping the voltage regulator for short
periods of time or by capturing fault conditions.

III. ESTIMATION OF LINEAR MODEL ARMATURE CIRCUIT AND

FIELD WINDING PARAMETERS

The first stage of the estimation process involves estimation
of linear model armature circuit and field winding parameters

Fig. 2. Recursively estimatedaL andL trajectories.

of the machine. In order to satisfy linearity, the field side of the
machine should be disturbed in small amounts (approximatelyt
5 to 10%) while the machine is underexcited and operating at
light load. The measurements needed for the estimation process
are , , , , , , , and . These quantities can
be converted to -axis equivalents by following the steps de-
scribed in reference [20].

A recursive estimation procedure [20] is used to estimate the
armature circuit parameters , , and from two dif-
ferent small disturbance data. Due to the sensitivity of estima-
tion of to the accuracy of for small angles [18], it was not
feasible to estimate for these operating points. The trajecto-
ries of recursively estimated and are given in Fig. 2.
In addition to the armature circuit parameters, field winding pa-
rameters and are also estimated, applying output error
method (OEM) technique [21] to these small disturbance data
sets in that the contribution of damper winding effects can be ig-
nored. Table I lists the estimated parameters for these two cases.
Although the machine can be assumed to be linear while it is
underexcited, there is still a slight difference between estimated
parameters for two different operating conditions.

Due to the sensitivity of , , , and , estimates
are quite negligible even for significant changes inas shown
in Table I, the value of can be set as the manufacturer’s value
0.0047 . Also, the leakage inductance is assumed to be 10%
of , as given by manufacturer-supplied values. Based on this
value of , the value of turns ratio was found to be within the
range of 9.9. This tuning procedure is obtained by experience
with the measured and manufacturer’s data and confidence in
their values.
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TABLE I
ARMATURE RESISTANCE SENSITIVITY

ANALYSIS ON ESTIMATION WITH SMALL DISTURBANCE DATA

Fig. 3. Variation ofL andL as a function of power angle (�) and active
power (P ).

IV. DEVELOPMENT OFSATURATION MODELS

First, saturable inductances and are identified from
each steady-state operating data collected at various levels of ex-
citation and power generation. Since, , and are already
determined in the previous stage, and can be calcu-
lated for each steady-state operating point using the following
equations:

(2)

(3)

A total of 34 steady-state data points were used to identify
and 29 of which (excluding operating points with small. an-
gles) were used to identify . Fig. 3 depicts the variation of

and as a function of power angle and active power at
the machine-rated terminal voltage for these data points.

Once the inductance values are identified for each operating
point, the nonlinear mapping saturation models can be devel-
oped. The nonlinear mapping function to be identified between
the input and output patterns is proposed as

(4)

where and are unknown nonlinear mapping functions to
be established. The field voltage need not be a part of the
mapping since it is simply a scaled version of field current
at steady state.

Fig. 4. Nonlinear mapping and OEM estimatedL andL for the patterns
not used in training.

In order to verify that the nonlinear mapping functions are
able to generalize properly, a cross validation data set, which is
not included in the estimation, is used after the model develop-
ment. The values of estimated and are compared with
the cross validation set not previously used for modeling. As
shown in Fig. 4, both nonlinear functions saturation models can
correctly interpolate between patterns not used in estimation.

V. ESTIMATION OF ROTORBODY PARAMETERS

The estimation procedure involves the identification of field
winding - and -axis damper winding parameters from dis-
turbance data. For estimation of rotor body parameters, oper-
ating data due to disturbances that will excite adequate amount
of damper winding currents are needed. For instance, this can
be achieved by perturbing the field excitation voltage or by cap-
turing line fault events.

The armature circuit parameters obtained in stage 2 [18] are
fixed in this estimation procedure. These parameters include

, , , , and . Then, the parameter vector to be es-
timated for -axis is and for
-axis is . The model for estimation can be

established as follows:

(5)

(6)
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Fig. 5. Test 1: Comparisons of simulatedi and i for estimated and
manufacturer parameters against measuredi andi .

where and are - and -axis voltages as described in Fig. 1
and their computation procedure can be found in [7].

The model (5)–(6) is not in the proper form for estimation.
To render them amenable for state space representation, they
should be rearranged. This is accomplished by taking current
vector as outputs and voltage vectoras inputs of the system,
then the state space form for both models is

(7)

In (5) and (6), and represent unmeasurable rotor body
currents for both - and -axis. Once the state space estimation
models in the form of (7) are obtained, OEM can be employed
for the estimation of - and -axis rotor body parameters. The
estimation algorithm requires initial values for the parameters
to be estimated. Manufacturer values are used for this purpose.

In this study, disturbance data were collected at different op-
erating and loading conditions by perturbing the field excita-
tion of the machine or by capturing fault events. A total of such
nine disturbance data records were captured and made avail-
able for identification. Five of these records include proper large
transient dynamics required for the estimation of- and -axis
damper winding parameters. The remaining four records com-
prise relatively smaller transient dynamics in that the contribu-
tion of damper winding effects are insignificant. However, these
records can still be used to estimate field winding parameters

and . As a result, five sets of- and - axis damper
winding parameters and nine sets of field winding parameters
are estimated using the transient data files provided by APS.

Subsequently, simulation studies are conducted to validate
the performance of these estimated parameters. In these studies,
the simulated currents generated by using manufacturer and on-
line-estimated parameters are compared against corresponding
actual measurements. For example, Figs. 5 and 6 illustrate these
comparisons for field current and -axis current in two
test cases. Validation studies show that estimated rotor body pa-
rameters , , , and clearly outperform the man-
ufacturer parameters. No appreciable differences were noticed
between the performance of estimated , , and manufac-
turer -axis rotor body parameters.

Fig. 6. Test 2: Comparisons of simulatedi and i for estimated and
manufacturer parameters against measuredi andi .

Fig. 7. Variation ofL andR w.r.t. mean power angle (�) and mean field
current (i ).

VI. DEVELOPMENT OFROTORBODY MODELS

Using nonlinear mappings [8], the variables representative of
generator operating condition are mapped to each rotor body pa-
rameter being modeled. Thus, a total of four nonlinear functions
are used to model the rotor body parameters, , , and

.
The generator testing procedure is generally conducted at

rated terminal voltage. Hence, the operating region of the gener-
ator can be determined by using the field currentand power
angle . Due to the fact that the variables and are not con-
stant during a disturbance, there is not one unique point that
can represent each measurement record to be used to develop
models of rotor body parameters. Well-known statistical vari-
ables, mean value, and standard deviations ofand are used
for this purpose.

It is desirable to visualize the transfer functions of rotor body
parameters with respect to all variables of input vector space

; however, this can be at most represented in three dimen-
sions. For example, the approximate nonlinear mappings be-
tween , , and operating condition dependent
and are portrayed in Fig. 7. These three-dimensional (3-D)
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TABLE II
COMPARISON OFOEM-ESTIMATED AND NONLINEAR MODEL ESTIMATED

PARAMETERS FOR THECROSSVALIDATION DATA SET

plots represent the variation manifolds within the bounds of es-
timated parameter values.

In order to verify that the nonlinear mapping functions are
able to generalize properly, cross validation data sets, which are
not included in the estimation, are used after the estimation.
Table II compares nonlinear model estimated and OEM-esti-
mated -axis parameters for the data set not used in estimation.
As can be seen, nonlinear models can correctly interpolate for
the patterns not used in estimation.

Due to the very limited number of data sets available for
and estimates, all estimates are used for model estimation
and not left for validation procedure.

VII. CONCLUSIONS

A nonlinear mapping-based modeling technique for a large
utility generator is developed. Operating data collected online
at different levels of excitation and loading conditions are used
for estimation. The disturbance data used for estimation are ob-
tained by perturbing the field side of the machine or by capturing
fault events. Small excitation disturbance data sets are first used
to estimate linear model machine parameters. Subsequently, sat-
urable inductances and are identified for each steady-
state operating point based on the estimates of linear model pa-
rameters. Nonlinear saturation models are developed by map-
ping generator terminal variables to and estimates. An
OEM technique is later employed to estimate the operating point
dependent rotor body parameters. Rotor body models are devel-
oped by mapping field current and power angle to the pa-
rameter estimates.

Simulation studies show that estimated parameters clearly
outperform the manufacturer parameters. It has also been shown
that nonlinear models can correctly interpolate between patterns
not used in training. It is expected that a richer data set collected
at different loading and excitation levels would improve the per-
formance of such nonlinear mapping models.
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