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Abstract
We report on a test to assess the dynamic brain function at high temporal resolution using
magnetoencephalography (MEG). The essence of the test is the measurement of the dynamic
synchronous neural interactions, an essential aspect of the brain function. MEG signals were
recorded from 248 axial gradiometers while 142 human subjects fixated a spot of light
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for 45–60 s. After fitting an autoregressive integrative moving average
(ARIMA) model and taking the stationary residuals, all pairwise, zero-lag,
partial cross-correlations

(
PCC0

ij

)
and their z-transforms

(
z0
ij

)
between i

and j sensors were calculated, providing estimates of the strength and sign
(positive, negative) of direct synchronous coupling at 1 ms temporal
resolution. We found that subsets of z0

ij successfully classified individual
subjects to their respective groups (multiple sclerosis, Alzheimer’s disease,
schizophrenia, Sjögren’s syndrome, chronic alcoholism, facial pain, healthy
controls) and gave excellent external cross-validation results.

1. Introduction

Like any other organ in the body, the function of the brain
needs to be assessed to evaluate its status in health and
disease. However, unlike any other organ in the body, no
good tests of brain function are available. Typically, one
relies on behavioral examinations, including a neurological
examination, psychiatric interview, and neuropsychological
testing. In addition, several methods exist to assess the
brain structure (e.g. magnetic resonance imaging, MRI),
chemistry (e.g. magnetic resonance spectroscopy, fluoro-
deoxy-glucose-based positron emission tomography, PET),
pharmacology (e.g. ligand-based PET), and brain activation
patterns based on long (e.g. seconds or minutes) acquisition
times (e.g. functional MRI and O15 based PET). With respect
to biomarkers for brain disease, most of the ongoing effort
has focused on biological substances (proteins, genes, etc).
Although potentially useful, this approach cannot provide
direct information concerning the functional status of the
brain. This can be assessed only by methods suitable for
recording dynamic brain activity with a high (e.g. millisecond)
temporal resolution, such as electroencephalography [1–3] and
magnetoencephalography (MEG) [4, 5].

Ideally, a test for assessing brain function should be
noninvasive, passive, short, simple, dynamic, robust and
sensitive to changes in brain function. It should also evaluate
interactions among neuronal populations, since this is the
essence of brain function. In a recent study [6] we reported
on synchronous neural interactions revealed by MEG while
subjects fixated a spot for 45 s. Based on the fact that these
interactions were very similar across subjects, we proposed
that this robustness points to a relatively stable synchronicity
pattern among neural populations which could, in turn, serve
as a canonical network for assessing dynamic brain function.
In the present study, we tested this idea by using these
interactions as classifiers of brain status and assessing their
potential as biomarkers for several brain diseases in a total
of 142 subjects. For that purpose, we initially studied 52
subjects to derive discriminant classification functions. These
functions were subsequently applied to a new group of 46
subjects in an external cross-validation procedure. Finally,
44 additional subjects were most recently incorporated for a
complete sample of 142 subjects. We found that synchronous
neural interactions successfully classified brain status and gave
excellent external cross-validation results.

2. Materials and methods

2.1. Subjects

A total of 142 human subjects participated in this study as
paid volunteers. The study protocol was approved by the
relevant institutional review boards and informed consent
was obtained prior to the study. There were seven groups,
including healthy controls (HC), patients with Alzheimer’s
disease (AD), schizophrenia (SZ), chronic alcoholism (CA),
Sjögren’s syndrome (SS), multiple sclerosis (MS) and facial
pain (FP). The composition of each group was as follows. HC
(N = 89 (48 men, 41 women), age (mean ± SEM) 43.7 ± 1.7,
range: 10–82 years); AD (N = 9 men, age 74.0 ± 2.1 years,
average mini-mental state examination (MMSE) score
21.13 ± 1.5); SZ (N = 16 (13 men, 3 women), age 45.8 ±
2.5 years); CA (N = 3 men, age 57.3 ± 0.9 years); SS
(N = 10 (1 man, 9 women), age 54.8 ± 3.2 years); MS
(N = 12 (4 men, 8 women), age 40.7 ± 3.3 years, secondary
progressive or relapsing remitting forms); FP (N = 3 women,
age 47.3 ± 6.5 years, arthromyalgia). Subjects belonging
to a patient group had a functional brain disorder, and their
diagnoses were made by a specialist in the respective field of
medicine, as follows. AD patients were diagnosed on the basis
of an interdisciplinary consensus diagnosis conference and
determined to meet the criteria for (i) a diagnosis of dementia
according to DSM-IV [7] and (ii) possible or probable AD
according to NINCDS-ARDA criteria [8]. SZ patients were
diagnosed on the basis of DSM-IV criteria [7], had no history
of electroconvulsive therapy, no head trauma (overnight
hospitalization or unconscious for >5 min), no past substance
dependence, no current substance/alcohol dependence or
abuse, and no medical conditions that effect the central nervous
system (e.g. epilepsy). CA patients had not taken alcohol for
24 h preceding the study and had tested alcohol-free using a
breath analyzer. SS patients were diagnosed on the basis of the
classification criteria by the American–European consensus
group for Sjögren’s syndrome [9]. They complained of
cognitive dysfunction, verified clinically by their physicians
and by neuropsychological measurements. MS patients met
the modified McDonald criteria [10], had greater than or equal
to 10 T2 cerebral lesions, were at least 30 days post-relapse
or steroid burst, and had a clear MS subtype. FP patients
were diagnosed with temporomandibular joint arthralgia and
myofascial pain of the masticatory muscle (arthromyalgia).
Finally, the control group comprised age-matched subjects
to the patient groups, as well as additional healthy subjects.
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All subjects, except for those belonging to the control group,
received medications relevant to their brain illness; some of
these medications were psychotropic.

For purposes of external cross-validation, we analyzed
two consecutive sub-samples of subjects based on an arbitrary
time point unrelated to data analysis. The first sample
comprised 52 subjects (6 groups) and consisted of the
following groups: HC (N = 25 (17 men, 8 women), age
47.0 ± 3.6, range: 23–82 years); AD (N = 6 men, age 76.8 ±
1.8 years); SZ (N = 10 (7 men, 3 women), age 48.2 ±
2.9 years); CA (N = 3 men, age 57.3 ± 0.9 years); SS
(N = 4 women, age 56.3 ± 5.2 years); MS (N = 4 (2 men,
2 women), age 42.5 ± 6.4 years). The second sample
comprised 46 subjects (5 groups, the same as above except
CA) whose data were processed following the first sample.
This sample consisted of the following groups: HC (N = 33
(15 men and 18 women), age 36.8 ± 2.8, range: 11–67 years);
AD (N = 2 men, age 76.0 ± 3.0 years (73, 79)); SZ (N =
2 men, age 30.0 ± 2.0 years (27, 33)); SS (N = 5 (1 man,
4 women), age 51.4 ± 4.5 years); MS (N = 4 (2 men,
2 women), age 36.8 ± 5.2 years).

2.2. Task–data acquisition

Our goal was to have the brain in a stable condition without
engaging in any specific task. For that purpose, subjects lay
supine in the MEG instrument and fixated their eyes on a spot,
∼62 cm in front of them, for 45–60 s (in different subjects)
while MEG data were acquired from 248 axial gradiometers
(sampled at 1017 Hz, filtered 0.1–400 Hz; Magnes 3600WH,
4D Neuroimaging, San Diego, CA). This yielded, for each
subject, a data set consisting of 248 time series with 45 000–
60 000 time points. The cardiac artifact was removed from
each series using event-synchronous subtraction [27].

2.3. General data analysis (figure 1)

All analyses described below were performed on single-
trial, unsmoothed and unaveraged data. To compute the
zero-lag cross-correlation between MEG sensor time series,
individual series were made stationary by ‘prewhitening’
[11], for nonstationarities in the series can lead to erroneous
associations [11–13]. Therefore, the first step in our
analyses was to model the time series and derive stationary
(or quasi-stationary) residuals from which to compute
pairwise association measures, such as cross-correlations [14].
Previous work [6, 14] showed that an autoregressive integrative
moving average (ARIMA) model of 25 AR orders, first-
order differencing, and first-order MA was adequate to yield
residuals that were practically stationary with respect to the
mean, variance, and autocorrelation structure. Residuals
were estimated using the SPSS statistical package (SPSS
for Windows, version 15, SPSS Inc., Chicago, IL, 2006).
The zero-lag cross-correlation between pairs of stationary
residuals was computed using the DCCF routine of the
IMSL statistical library (Compaq Visual Fortran Professional
edition version 6.6B). From these, the partial zero-lag cross-
correlation PCC0

ij between the i and j sensors was computed
for all sensor pairs. PCC0

ij was transformed to z0
ij using

MEG Data

ARIMA
Residuals

GA-LDA

Classification
Functions

0
i jPCC

0
i jCC

0
i jz

Figure 1. MEG data processing flowchart. Raw MEG data are
initially cardiocorrected and subjected to an ARIMA modeling to
obtain practically stationary residuals. From these, synchronous
cross-correlations and partial cross-correlations are then calculated
and fed into the genetic algorithm–linear discriminant analysis
(GA-LDA) after z-transformation.

Fisher’s z-transformation [15] to normalize its distribution:

z0
ij = 0.5

[
ln

(
1 + PCC0

ij

) − ln
(
1 − PCC0

ij

)]
.

Univariate analyses of covariance (ANCOVAs) were
performed on the data of each individual sensor pair for
each sample, where z0

ij was the dependent variable and the
gender (binary variable) and age were covariates. To assess
the congruence of the distribution of the group effect among
sensor pairs in the first and second sample, we coded the
presence or absence of a significant effect for a given sensor
pair as 1 and 0, respectively, and computed the χ2 test statistic.
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LDA
Classification

Parent Selection
and

Crossover

Retain “good” 
classification set

Child
Population

Parent
Population

Initial
Random Seed

gene 1 gene 2
chromosome 1
chromosome 2
chromosome 3

chromosome 1
chromosome 2
chromosome 3

f (chromosome 1) = 0.96
f (chromosome 2) = 0.67
f (chromosome 3) = 0.48

chromosome 1
chromosome 2
chromosome 3

Figure 2. Genetic algorithm–linear discriminant analysis. An initial seed is used to create the first parent generation of chromosomes
(possible sets) of genes (z0

ij ). Chromosomes yielding good classifications are retained based on the classification results from the LDA
(posterior probabilities). Each chromosome in the child generation is born from two parent chromosomes, which are probabilistically
selected on the basis of their classification scores. Additionally, the best chromosome from each generation is carried over to the child
generation (elitism). Finally, the child generation becomes the next parent generation.

2.4. Linear discriminant classification analysis

This analysis [16] was used to determine whether subsets of z0
ij

exist that would correctly classify subjects into their respective
groups. In this analysis, Fisher’s group discrimination and
subject classification were done in a canonical discriminant
function (CDF) space. CDF is a weighted linear sum of the
predictor variables and is derived by the statistical analysis.
For L groups (assuming L is smaller than the number k of
predictors in a subset), there are j = L − 1 discriminant
functions, CDFi, where i = 1, 2, . . . , j . Group discrimination
(and individual subject classification) is performed within
this multidimensional CDF space. This analysis yields
group classification functions and posterior probabilities of
classification of each subject to a particular group. In addition,
we used a forward stepwise linear discriminant analysis on
the total sample of 142 subjects (program 7M of the BMDP
Dynamic, version 7, statistical package, Los Angeles, CA,
1992) to derive a single subset of predictors. The default
F-values of the program were used (F-to-add-a-predictor =
4.0, F-to-remove-a-predictor = 3.996). The input predictors
for that analysis were z0

ij values from 271 sensor pairs
which showed a highly significant group effect in an ANOVA
(P < 0.001, F-test). This was done in an effort to reduce the
large predictor space consisting of 30 628 values.

2.5. Genetic algorithm (GA)

A major objective of this work was to identify successful
predictor subsets from a very large space. A brute-
force approach in identifying all such subsets would be
computationally deterring even for more than a few predictors,
given the large size of the predictor set (N = 30 628). For
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Figure 3. Classification results from 52 subjects (first sample)
belonging to six groups are plotted in the two-dimensional space of
the first two (out of five) canonical discriminant functions (CDF) of
20 z0

ij predictors. Ellipses represent 95% confidence intervals on the
center of the group centroids. The classification was 100% correct.
It can be seen that all groups were clearly distinguished with no
overlap in the CDF space of the first two CDFs. The null hypothesis
of equality of the seven group centroids in the original, raw-data
20-dimensional z0

ij predictor space was tested using a multivariate
analysis of variance and was rejected at a high level of significance
(P < 10−31, Hotteling’s trace test).

this reason, we used a GA [17–19] (figure 2) to reduce the
computational time and optimize our search as follows. An
initial subset of a certain number of z0

ij predictors (out of the
30 628 available) was chosen randomly, and a micro-GA of
population size = 5 and uniform crossover was let to run
for 24 h. If, during the search, the fitness function solution
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was constant for 2 × 105 generations, a new random subset
would be chosen and the operation repeated. Practically, a GA
abides to the natural selection law of ‘survival of the fittest’.
This way, characteristics that improve an evaluation function
(classification in this case) are maintained, whereas the ones
that do not are discarded.

2.6. Statistical analyses of the first sample

These analyses had two objectives, namely (i) to test the
hypothesis that the number of good predictor subsets exceeds
that expected by chance, and (ii) to generate classification
functions for the purpose of cross-validation with the second
sample.

With respect to chance outcomes, given M subjects
belonging to L groups, and subsets of the same size of k
predictors out of N (= 30 628) possible, the expected number s
of subsets that would give 100% correct classification of each
subject to its group by chance is

s = Q

(
1

L

)M

, Q = N !

k!(N − k)!
.

For the analysis using an exhaustive search, we used
k = 2, L = 3, M = 17 (6 patients with AD, 3 subjects
with CA, and 8 matched HC) to perform a linear discriminant
analysis using the robust leave-one-out method. A 100%
correct classification of every subject to its corresponding
group was required to retain a specific subset.

2.7. Linear discriminant classification analysis: external
cross-validation

The linear discriminant analysis yields classification functions
for each group which are then used to classify individual
subjects to a group. For the external cross-validation, we
used classification functions derived from the first sample to
classify subjects from the second sample. For that purpose
we used classification functions derived from sets of 13–16 z0

ij

predictors that gave 100% correct classification for the first
sample and applied them to the second sample.

3. Results

3.1. The first sample (52 subjects, 6 groups): initial analyses

First, a statistically significant group effect on z0
ij (P < 0.05,

F-test, ANCOVA) was found in 18% of sensor pairs. Next,
we carried out a linear discriminant classification analysis
(using GA) on subsets of z0

ij to find out whether individual
subjects can be successfully classified to their respective
groups. Indeed, we found many (in the thousands) such subsets
of z0

ij predictors that classified each of the 52 subjects 100%
correctly. (The exact number of all such subsets is practically
impossible to determine.) An example is shown in figure 3. In
many cases, successful subsets yielded not only 100% correct
classification but also high (e.g., >0.98) posterior probabilities
of correct classification of each subject to its group.

Since many z0
ij subsets are possible, it is useful to

know whether the number of successful subsets exceeds that

expected by chance. This number is typically very large and
depends on the number of actual predictors, k, in a subset, the
ensemble size of all possible z0

ij predictors (N = 30 628),
the number of groups, and the number of subjects to be
classified. We investigated this problem in two tractable ways.
In the first analysis, we performed an exhaustive search on a
smaller sub-sample of the data using just two predictors (see
section 2.6). This exhaustive assessment yielded 560 subsets
with 100% correct classification (using the robust leave-one-
out method), as compared to ∼4 sets (3.63 to be exact)
expected by chance. These proportions differ significantly
(binomial theorem, normal deviate z = 23.4, P < 10−50),
indicating an excess (above chance) of good sets. In the
second analysis, we used the whole first sample of 52 subjects
using ten predictors, for which an exhaustive search would be
infeasible. The expected number of subsets yielding 100%
correct classification by chance is essentially zero (0.0069 to
be exact). However, our discriminant classification program
yielded 79 sets with 100% correct classification after running
for a while. Although we cannot calculate the exact proportion
of good sets in our data (since an exhaustive search is not
feasible), this proportion already exceeds appreciably the
chance expectation (z = 8.78, P < 10−50).

3.2. The second consecutive sample (46 subjects, 5 groups):
external cross-validation

In order to evaluate the robustness of this analysis and its
potential as a useful clinical test, we analyzed data from
46 subjects which were processed during a subsequent period
of time, following the first sample. Specifically, we wanted
to find out whether the results of the analysis of the second
sample were congruent with those of the first sample with
respect to (a) the distribution of the group effect assessed by
ANCOVA on individual z0

ij of sensor pairs (N = 30 628), and
(b) the classification outcomes of the second sample based on
classification functions derived from the first sample (external
cross-validation). With respect to the former, a statistically
significant group effect on z0

ij (P < 0.05, F-test, ANCOVA)
was found in 11% of sensor pairs, as compared to 18% in the
first sample; the distribution of this effect among sensor pairs
was highly congruent in the two samples (P < 10−11, χ2 test).
And with respect to the latter, many of the z0

ij subsets which had
given 100% classification in the first sample also gave excellent
classification (>90% correct in the thousands, >95% correct
in the hundreds) when all classification functions calculated
from the first sample were applied to the second sample.
These results underscore the similarity of the two samples and
document the occurrence of excellent external cross-validation
results.

3.3. The total current sample (142 subjects, 7 groups)

Recently, data from 44 additional subjects were analyzed
for a total current sample of 142 subjects (7 groups). We
readily identified many z0

ij predictor subsets yielding 100%
correct classification of every subject to its respective group.
The number of such subsets was in the thousands (for 20
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predictors), and even as few as 16 z0
ij predictors would give

100% correct classification results. It is also noteworthy
that the posterior probabilities of subject classification were
>0.95 in most cases, underscoring the power of this approach.
This analysis is ongoing. Finally, a stepwise discriminant
analysis (see section 2.4) yielded a subset of 12 z0

ij predictors
which correctly classified 86.6% of the 142 subjects to their
respective groups. Two cross-validation results were also
obtained with this set. First, a jackknifed classification
obtained by the leave-one-out method gave 78.9% correct
classification. Second, the program was run ten times
using 80% of the data (randomly selected) for calculating
the classification functions by which to predict the group
assignment of the remaining 20% of the subjects. The average
correct classification was 86.4% (range: 79.3–93.8%), and
the average correct jackknifed classification was 77% (range:
72.1–83.6%). These findings show that a high percentage of
correct classification can be obtained robustly.

4. Discussion

Early pioneering work using quantitative EEG went a long way
in laying the foundation for the application of discrimination
and classification of electrophysiological brain patterns in
health and disease [1–3]. Conceptually, our approach follows
those early leads but factually it differs substantially, for (i) it
utilizes much more accurate technology (MEG versus EEG),
(ii) it is based on single (versus averaged) trials, (iii) its basic
tool is a relational measure between sensor signals (cross-
correlation) instead of raw (e.g. signal amplitude) or derived
(e.g. spectral power in particular frequency band) measures
within individual sensors, and (iv) this cross-correlation is
computed from stationary time series (after prewhitening of the
raw neural signal) so that it reflects true moment-to-moment
neural interactions. In addition, (v) we measure the strength
of synchronicity at high temporal resolution (1 ms) and
(vi) partial out interactions of a given pair with the rest of
the neural network, so that the resulting partial zero-lag cross-
correlations are not contaminated by collinearities.

The measure underlying the successful classification
obtained in this study is the pairwise zero-lag partial
correlation of the MEG time series. The set of all such
correlations between the 248 MEG sensors characterizes
dynamic synchronicities in a large neural network. The
present results suggest that these synchronicities might be
regulated, since their alteration even within small subsets
is a powerful discriminant of brain disease states. This
idea is in accord with our previous observation that the
brain pattern of partial correlations is very similar among
healthy subjects [6]. It is also in keeping with the broader
concept of synchronicity as a basic functional substrate
for cortical function [20] and its disorders [21], as well
as for higher brain function [22, 23]. The mechanisms
for weak local cortical synchronization may rely on
recurrent collaterals of pyramidal tract cells [24] and specific
parvalbumin-immunoreactive thalamocortical neurons [25],
whereas calbindin-immunoreactive thalamocortical neurons
could be responsible for larger-scale, multifocal cortical

synchronization [25]. The present findings suggest that fine-
grain synchronicity may be a fundamental aspect of cortical
function that can be differentially disrupted by different disease
processes, yielding a disease-specific signature.

A different issue concerns the specific subsets of zero-lag
partial cross-correlations that yield high classification rates.
These cannot be found by an exhaustive search, given the
large space of 30 628 values available and the combinatorial
nature of the subsets problem. Instead, we have adopted a
few different approaches in an effort to identify and evaluate
such ‘good’ subsets. First, we used classical statistics in
applying a stepwise linear discriminant analysis to identify
a single subset of predictors. Since the whole set is very
large, we reduced it by first carrying out an analysis of
variance with the disease (‘group’) as a fixed factor, and
then performing the stepwise linear discriminant analysis
on 271 (out of 30 628) predictors which showed a highly
significant group effect. This analysis yielded a set consisting
of 12 predictors with high classification rates in standard
reclassification analysis as well as in jackknifed leave-one-
out classification and in an 80/20% random split. However,
like any stepwise procedure, the stepwise linear discriminant
analysis relies on specific criteria for entering and/or removing
predictors from the equation at each step, and these criteria
can have a major influence on the outcome, in addition to the
direction of stepping (forward or backward). This analysis,
although useful, may not be optimally suited to our specific
application. For that purpose, we first tried to identify the
ideal (100% classification) predictor subsets by brute force, i.e.
by searching within the entire combinatorial predictor subset
space. We placed emphasis on small subset sizes (<20) to
avoid overfitting. Our initial analyses using random search did
not produce any interesting result after running the program
for several days. Therefore, we then implemented a genetic
search algorithm to quickly locate ideal sets. Indeed, this
algorithm yielded a good number of such subsets within a day.
This number exceeded that expected by chance, as we found
out (a) in an exhaustive search of data from a few diseases
and few predictors, and (b) in a larger sample where we found
that the number of ideal predictor subsets exceeded that of
chance, although the exact number of such subsets could not
be determined. The next step was to evaluate the power of
such ideal predictor subsets to classify new subjects in an
external cross-validation scheme. By focusing the genetic
algorithm on that problem, we identified thousands of subsets
yielding excellent cross-validation rates (>90%; hundreds
>95%). Due to the large search space, the exact number
of such subsets cannot be known.

In summary, these results demonstrate that (a) adequate
information exists in the zero-lag partial correlations to
differentiate brain disease states, (b) this information can
be successfully extracted using linear discriminant analysis,
(c) the results exceed those expected by chance alone, and
(d) the results are robust and, to a good extent, cross-validated.
The long-term utility of such subsets in classifying new
subjects remains to be assessed in a phase II study according to
the Early Detection Research Network biomarker development
protocol, within the context of a large population-based case-
control study [26]. It should be made clear that such studies,
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at whatever stage, are always evolving, since the addition of
new study subjects and new disease groups will inevitably
necessitate an updating of the predictor subsets and associated
classification functions. In addition, other classification
methods (e.g. based on the support vector machine) could be
tried and/or developed to improve the classification outcome.
Finally, it should be mentioned that, although the analyses
described above were applied on seven groups, they can also be
applied, in general, on any pair of groups to serve, for example,
as a screening test (healthy controls versus all patients) or as a
more specific aid in differential diagnosis between particular
brain disorders (e.g. MS versus MS-mimetic disorders, etc).
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