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Abstract: UAV (unmanned aerial vehicle) remote sensing provides the feasibility of high-throughput
phenotype nondestructive acquisition at the field scale. However, accurate remote sensing of crop
physicochemical parameters from UAV optical measurements still needs to be further studied. For
this purpose, we put forward a crop phenotype inversion framework based on the optimal estimation
(OE) theory in this paper, originating from UAV low-altitude hyperspectral/multispectral data. The
newly developed unified linearized vector radiative transfer model (UNL-VRTM), combined with
the classical PROSAIL model, is used as the forward model, and the forward model was verified
by the wheat canopy reflectance data, collected using the FieldSpec Handheld in Qi County, Henan
Province. To test the self-consistency of the OE-based framework, we conducted forward simulations
for the UAV multispectral sensors (DJI P4 Multispectral) with different observation geometries and
aerosol loadings, and a total of 801 sets of validation data were obtained. In addition, parameter
sensitivity analysis and information content analysis were performed to determine the contribution
of crop parameters to the UAV measurements. Results showed that: (1) the forward model has a
strong coupling between vegetation canopy and atmosphere environment, and the modeling process
is reasonable. (2) The OE-based inversion framework can make full use of the available radiometric
spectral information and had good convergence and self-consistency. (3) The UAV multispectral
observations can support the synchronous retrieval of LAI (leaf area index) and Cab (chlorophyll a
and b content) based on the proposed algorithm. The proposed inversion framework is expected
to be a new way for phenotypic parameter extraction of crops in field environments and had some
potential and feasibility for UAV remote sensing.

Keywords: crop population phenotype; optimal estimation inversion; unmanned aerial vehicle
(UAV); hyperspectral; multispectral

1. Introduction

Unmanned aerial vehicle (UAV) remote sensing has great potential in collecting
crop information [1,2]. Crop phenotype data can be retrieved from the hyperspectral or
multispectral sensors onboard UAVs. The phenotypic data can be further used for crop
breeding (seed screening, crop–environment interaction, etc.) [3–5] and field management
(growth monitoring, yield estimation, pest and disease prediction, etc.) [6–8]. However,
it is still a great challenge to retrieve the crop physiological parameters from the optical
reflectance data [9].

For the inversion of crop parameters, currently, there are two main approaches: the
empirical model method and the physical model method [10,11].

The empirical method makes use of the crop-sensitive bands to construct spectral
indices [12–14]. Then, a regression model between phenotype parameters and spectral
indices can be established using a large number of measurements. Thus, the inversion
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accuracy of the empirical method mainly depends on the spectral indices and the number
of samples [15–17]. Since the spectral indices are usually constructed from measurements at
several wavelengths, these methods can hardly make use of all the observation information.
Moreover, the application of the empirical model approach is limited [18–20].

The physical model method builds a forward model from the solar radiation to the
crop canopy, and then to the sensor [21,22]. Then, crop parameters can be obtained by
finding the minimum of the cost function. The cost function is usually a multivariable
nonlinear function and mathematical tool, which is constructed by model simulation
results and actual measurements, as the Least Squares method can be used to solve the
cost function [23,24]. However, the iterative process requires repeated forward model
calculation, which is time-consuming, and prior constraints are also required to avoid
falling into local optimality [25,26]. Look-up Tables (LUTs) are widely used to replace
the real-time calculation of the forward model, which can greatly reduce the computation
load [27,28]. However, LUTs are not suitable for multiparameter inversion because the size
of the LUT grows exponentially with the number of parameters.

At present, the physical models are rare for the UAV remote sensing of crop pa-
rameters. The PROSAIL model, widely used to simulate canopy reflectance from crop
physicochemical and structural parameters, does not consider solar radiation and atmo-
spheric environment yet [29,30]. The typical atmospheric radiative transfer models, such
as 6SV (Second Simulation of a Satellite Signal in the Solar Spectrum—vector) [31], MOD-
TRAN (moderate-resolution atmospheric transmission) [32], RT3 (the polarized radiative
transfer) [33], and UNL-VRTM [34], can be used for UAV remote sensing. However, the
inputs of these models do not include the crop phenotype parameters. The 6SV provides a
Python interface for PROSAIL but does not have open-source code [35].

On the one hand, most of the physical models do not realize the radiation transmission
from the atmosphere to the vegetation canopy [16], and atmospheric correction is a separate
process that needs to be performed. On the other hand, previous studies on crop parameter
inversion have focused on the establishment of spectral index and LUTs [11,27], and there
is limited information on inversion methods to extract crop multiparameters synchronously.
Therefore, this study considers the atmospheric composition during the establishment of
the forward model and evaluates the contribution of crop parameters to the forward model.
In addition, we propose an optimal inversion framework for the synchronous retrieval
of crop phenotypic parameters to solve the multiparameter inversion problem. The main
objectives include the following: (1) to construct a forward model by coupling the PROSAIL
model and UNL-VRTM model; (2) to analyze the sensitivity and information content of
the model to crop parameters and to determine retrieved parameters; (3) to use optimal
estimation theory and other techniques to find the minimum of the cost function; and (4) to
establish and validate the optimal inversion framework for the synchronous retrieval of
crop phenotypic parameters.

In Section 1, we introduced two main approaches currently for the inversion of crop
parameters and the research purpose of this paper. The components of our forward coupling
model are described in Section 2, and we present the method for the synchronous retrieval
of multiparameters in Section 3. In Section 4, we performed the parameter sensitivity
analysis and information content analysis to determine the contribution of parameters
to the model. In Section 5, we verified the accuracy of the forward model and tested the
consistency of the inversion framework used to retrieve LAI and Cab. The discussion and
conclusion are in Sections 6 and 7, respectively.

2. Modeling of UAV Observations

For UAV remote sensing, the observation contains the contribution of atmospheric
scattering, absorption, and canopy reflection. The measured surface reflectance can be
described by the following equation [36,37]:

Rλ(µs, µv, φ) = T↓λRcrop(µs, µv, φ)T↑λ (1)
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where µs and µv are the cosine of the solar zenith angle (SZA) and cosine of the viewing
zenith angle (VZA), respectively; φ refers to the relative azimuth angle; λ denotes the
wavelength; T represents the atmospheric transfer term, which describes the contribution
of atmospheric gases and aerosols. The superscripts ↓ and ↑ represent the direction of
downwelling and upwelling, respectively. For low-altitude observation, the effect of the
atmosphere on upward transmission can be ignored. Rcrop is the canopy reflectance of the
crop, which is determined by the growth stage and status of the crop.

2.1. Atmospheric Radiative Transfer

To calculate the downward radiation term T↓λ, the UNL-VRTM model is adopted,
which is an open-source atmospheric radiative transfer model [38,39]. The inputs of UNL-
VRTM include the atmospheric parameters (pressure, altitude, temperature, etc.), aerosol
parameters (the aerosol optical depth, particle size distribution, and complex refractive
indices), and observation geometries (solar zenith angle, viewing zenith angle, and relative
azimuth angle). The outputs of UNL-VRTM include not only the Stokes vector but also their
sensitivities (Jacobians) with respect to aerosol and surface model parameters. However, the
UNL-VRTM‘s built-in surface model is the kernel-driven BRDF (Bi-directional Reflectance
Distribution Function) model, and none of the BRDF kernels contains the phenotypic
parameters of the crop. Therefore, the UNL-VRTM model cannot be used directly as a
forward model for crop parameter inversion. The main input parameters of the UNL-VRTM
model are given in Table 1.

Table 1. Main input parameters of the UNL-VRTM model.

Parameter Types Parameter Symbols Parameter Description Unit

Geometry

SZA Solar zenith angle Degrees (◦)
VZA Viewing zenith angle Degrees (◦)
SAA Solar azimuthal angle Degrees (◦)
VAA Viewing azimuthal angle Degrees (◦)

Atmosphere
Atmospheric type The meteorological and air density profile –
Pressure Surface pressure hPa
Altitude Surface altitude m

Aerosol

AOD Aerosol optical depth –
Ri Complex refractive index of aerosol –
Profile The vertical profile of aerosol –
PSD Aerosol particle size distribution –

Surface
Lambertian Lambertian surface reflectance –
BRDF Surface bidirectional reflectance –

Spectra Wavelength Central wavelength of spectral channel nm
FWHM Full width at half maximum of spectral channel nm

2.2. Crop Canopy Reflectance

The classic PROSAIL model is adopted to describe the contribution of crop canopy
Rcrop. The PROSAIL model, a fusion of PROSPECT (leaf reflectance and transmittance)
and SAIL (plant canopy reflectance), is widely used for quantitative inversion of vegetation
parameters [40,41]. PROSAIL provides the calculation of the spectral and directional re-
flectance of the plant canopy [42]. However, the application of PROSAIL for crop parameter
inversion requires reflectance after atmospheric correction. Traditionally, atmospheric
correction is a separate process before inversion, executed by radiative transfer models,
such as 6S and RT3. The inputs of the PROSAIL model and the range of parameters are
given in Table 2.
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Table 2. Main input parameters of the PROSAIL model.

Model Parameter
Symbols Parameter Description Common Value Search Range Unit

PROSPECT

N Leaf structure parameter 1.3 1.2~2.8 –
Cab Chlorophyll a and b content 50 20~70 µg·cm−2

Car Carotenoids content 8 6~12 µg·cm−2

Cw Equivalent water thickness 0.004 0.004~0.05 cm
Cm Leaf mass per unit leaf area 0.012 0.003~0.027 g·cm−2

SAIL
LAI Leaf area index 1.4 1~7 –
ALA Average leaf angle 15 0~90 Degrees (◦)
Hspot Hot spot 0.01 0.01~1.0 –

Psoil Soil coefficient 0.1 0.1~1.0 –

2.3. The Coupling Model for Crop Parameter Inversion
2.3.1. Coupling of Models

For modeling the UAV observations, we replace the built-in surface BRDF (Bidirec-
tional Reflectance Distribution Function) model in UNL-VRTM with the PROSAIL model.
Then, the process of atmospheric correction and the process from the biochemical content
to the spectral reflectance are integrated into a unified model. The coupling model can be
specifically described by the following equation:

Mλ(µs, µv, φ) = U
(
λ, µs, µv, φ, xair, P

(
xcrop

))
(2)

where M denotes the coupling model, U represents the UNL-VRTM model, and P refers to
the PROSAIL model. The xair and xcrop represent the atmospheric and crop
parameters, respectively.

The diagram of the coupling model is shown in Figure 1. The inputs of the cou-
pling model include the crop physiological parameters, canopy structure parameters, and
atmospheric parameters. The output of the coupling model is the intensity of radiation.
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Figure 1. Diagram of the coupling model (where 𝜇  and 𝜇  are cosine of solar zenith angle and 
cosine of view zenith angle, respectively, and 𝜙 is relative azimuth angle.) 
Figure 1. Diagram of the coupling model (where µs and µv are cosine of solar zenith angle and cosine
of view zenith angle, respectively, and φ is relative azimuth angle.)

The downwelling radiation after gas absorption, Rayleigh scattering, and aerosol
scattering, simulated by UNL-VRTM, is shown in Figure 2, in which the assumption of
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Lambertian surface is adopted, and the surface reflectance is set to 0.2. Moreover, urban
aerosol types are selected and different aerosol loadings, of which the AOD (Aerosol optical
depth) changes from 0.2 to 1.0, are considered.
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Figure 2. Forward simulation of different atmospheric aerosols by UNL-VRTM.

It can be seen from Figure 2 that the radiation gradually increased with the increase
in AOD on the whole, mainly caused by aerosol scattering. However, the radiation is
nearly equal regardless of the AOD in the near-infrared bands (such as 1320–1410 nm and
1800–2200 nm). For the intensity of radiation, it is found that the contribution of AOD has
about a 3.0–20% difference with the increase in AOD, indicating that the value of AOD is
an important input variable of the UNL-VRTM model.

Based on the values listed in Table 2, the spectral reflectance between 400 nm and
2500 nm, simulated by the PROSAIL model and the coupling model, is shown in Figure 3.
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Figure 3. The spectral reflectance simulated by PROSAIL and the coupling model.

From Figure 3, the reflectance of the coupling model is smaller than the vegetation
canopy reflectance simulated by the PROSAIL model at all spectral wavelengths. The de-
crease in reflectance at wavelengths larger than 750 nm is mainly due to aerosol absorption,
and in the blue spectrum (400–450 nm) it is because of the contribution of Rayleigh scatter-
ing. Taking into account solar radiation, the spectral reflectance near 1400 and 1900 nm was
equal to zero because incident and reflected energy are almost reduced by water vapor and
carbon dioxide, which indicated that the forward model has a strong coupling between
vegetation canopy and atmosphere environment.
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2.3.2. Calculation of Jacobians

The outputs of UNL-VRTM provide the Jacobians of the measurements with respect
to the surface reflectance. However, in the inversion framework, the Jacobians of the
measurements with respect to the crop phenotype parameter (xcrop) are required. The
Jacobian matrix determines the direction of convergence and the step size when solving
the cost function [43]. According to the chain rule of derivative, the sensitivity transfer
process of the observation vector Y to the crop parameter xcrop is expressed by the following
equation [44–46]:

J =
∂Y

∂xcrop
=

∂U
∂P

∂P
∂xcrop

(3)

where ∂U
∂P is the Jacobian of the observation with respect to the canopy reflectance, and

∂P
∂xcrop

is the Jacobian of the canopy reflectance with respect to the crop parameters, which
can be calculated by the finite difference method.

3. Method for the Synchronous Retrieval of LAI and Cab

Inversion is usually defined as determining the state vector by observation vector. A
complex UAV observation system can be represented by the simple mathematical model
as follows:

Y = M(xa, xb) + ε (4)

where Y denotes the UAV observation vector and M denotes the forward model. ε is an error
term including uncertainties in measurements and forward model. xa is the state vector that
contains crop parameters to be retrieved, and the choice of state vector depends on which
parameter contains more information in the observation data. xb represents other parameters.

The reverse solution of Equation (4) is the inversion process of crop parameters.
Assuming that the observed vector can constrain the solution of the above equation, then
theoretically xa can be obtained when Y is given. For the UAV observation vector, due to
insufficient effective observation information, it is often difficult to constrain the reverse
solution process of the above equation. The state vector xa is usually not unique, and we
can obtain a statistical estimate value of xa because of the error term ε.

Based on the optimal estimation theory, the inversion of crop parameters can be re-
garded as finding the minimum of the cost function. In most cases, it is an ill-posed problem
to find the accurate value of the phenotypic parameters [47]. The a priori knowledge of
crop parameters should be introduced into the inversion as a constraint term. Then, the
cost function O(x) is composed of two terms: the measurement term and a priori constraint
term. M is always a nonlinear function for UAV remote sensing, thus solving the optimal
solution of Equation (4) needs multiple iterations. The corresponding cost function in the
p’th iteration of the state vector is expressed as follows [48,49].

O
(

xp
a

)
=

1
2
[Y−Mp]TS−1

y [Y−Mp] +
1
2

γ
(

xp
a − xpri

)T
S−1

pri

(
xp

a − xpri

)
(5)

where M denotes the simulation results of the forward model at the p’th iteration. Sy is the
error covariance matrix, which indicates the measurement uncertainty. Lagrange multiplier
γ is a regularization parameter defined following the work of Xu et al. [50]. xp

a represents
the state vector of the p’th iteration. xpri and Spri describe the a priori estimate and the error
covariance matrix of the state vector, respectively.

Generally, finding the minimum value of O(x) is a nonlinear problem and needs the
gradient vector of O(x), which can be further expressed as ∇

∇O
(

xp
a

)
= JTS−1

y [Y−Mp] + γS−1
pri

(
xp

a − xpri

)
(6)

where ∇ refers to the gradient operator, and J denotes the Jacobian matrix.
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Based on multiple iterations, the state vector at the p + 1′th iteration can be described as:

xp+1
a = xp

a − αpHp∇O
(

xp
a

)T
(7)

where H is the inverse matrix of the Hessian matrix constructed with successive gradient
vectors in the quasi-Newton method, and αp is the step factor of the iteration.

The flow chart of the inversion framework is shown in Figure 4. The inputs of the in-
version framework include a priori knowledge (prior estimates, upper and lower bounds),
the cost function, and its gradient. Firstly, the observation vector Y consists of the hyper-
spectral or multispectral radiometric measurements carried by the UAV platform, and
the observation error covariance matrix Sy was constructed by a given observation error.
At the same time, the parameters to be retrieved and a priori estimates xpri should be
determined. The error covariance matrix Spri is constructed according to the uncertain-
ties of a priori estimation. After that, the cost function can be established according to
Equation (5). To find the minimum value of O(x), the quasi-Newton method implemented
by the L-BFGS-B code was introduced. The L-BFGS-B algorithm is a highly effective tool in
bounded minimization problems [51,52]. Finally, the optimal estimation of the state vector
is considered to be found, if the following Equation (8) is satisfied. Otherwise, the state
vector continues to be updated until the termination condition is satisfied. In other words,
the crop parameters are retrieved.∥∥∥xp+1

a − xp
a

∥∥∥
2
≤ Threshold (8)

where ‖ ‖2 denotes the L2 paradigm, and the superscript p refers to the p’th iteration.
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4. Model Analysis for UAV Multispectral Measurements
4.1. The Sensitivity of the Model to Crop Parameters

The multispectral sensor is widely used in the agricultural field because of its price
advantage. In this paper, the band settings of UAV (P4 Multispectral, SZ DJI Technology Co.,
Ltd., Shenzhen, China) were adopted, as a case study, for sensitivity analysis of the model
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to crop parameters. The UAV is equipped with a multispectral camera with the central
wavelength of 450, 560, 650, 730, and 840 nm. The band settings of UAV multispectral
sensors are given in Table 3.

Table 3. The multispectral bands of UAV.

Band Center Wavelength/nm Bandwidth

Band1-Blue 450 16
Band2-Green 560 16
Band3-Red 650 16
Band4-RedEdge 730 16
Band5-NIR 840 26

Obviously, it is difficult to obtain all the crop parameters from the limited channels
of the multispectral sensor. Thus, we must figure out exactly which parameter can be
retrieved. To solve this problem, firstly, we calculate the influence of each parameter change
on the model output reflectance. The simulation results are shown in Figure 5, in which
we assumed that the input parameters were independent in the coupling model. For each
of the parameters, the reflectance is calculated by fixing other parameter values listed in
Tables 1 and 2.

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

Co., Ltd., Shenzhen, China) were adopted, as a case study, for sensitivity analysis of the 
model to crop parameters. The UAV is equipped with a multispectral camera with the 
central wavelength of 450, 560, 650, 730, and 840 nm. The band settings of UAV multispec-
tral sensors are given in Table 3. 

Table 3. The multispectral bands of UAV. 

Band Center Wavelength/nm Bandwidth 
Band1-Blue 450 16 
Band2-Green 560 16 
Band3-Red 650 16 
Band4-RedEdge 730 16 
Band5-NIR 840 26 

Obviously, it is difficult to obtain all the crop parameters from the limited channels of the 
multispectral sensor. Thus, we must figure out exactly which parameter can be retrieved. To 
solve this problem, firstly, we calculate the influence of each parameter change on the model 
output reflectance. The simulation results are shown in Figure 5, in which we assumed that 
the input parameters were independent in the coupling model. For each of the parameters, 
the reflectance is calculated by fixing other parameter values listed in Tables 1 and 2. 

   
(a) (b)  (c)  

   
(d)  (e)  (f)  

   
(g)  (h)  (i)  

Figure 5. Spectral response under different input parameter values. (a–d) are the different reflectance
changes of physicochemical parameters Cab, Cw, Cm and LAI, respectively. (e,f) are the difference
reflectance changes of structure parameter N and geometry parameter ALA, respectively. (g–i) are
the difference reflectance changes of parameters Car, Hspot and Psoil, respectively.
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From Figure 5, we can see that the Cab yields a strong contribution to green band,
and a weak influence to red-edge band, and the reflectance gradually decreases with
the increase in Cab. It is due to the weak absorption of chlorophyll on the green band.
The Cw and Cm reflect the accumulation of water and dry matter during wheat growth,
respectively. However, the simulation shows that the sensor is insensitive to Cw in all the
channels, and the same is true for the Car parameter on the visible band. The changes of
Cm and LAI are well reflected in the reflectance of NIR band, while their contributions
are opposite. Parameters related to the structure or geometry, such as the (ALA), leaf
structural parameter (N), and Hspot, affect the measurement of all bands. Usually, these
parameters are considered as nonstate quantities, using an empirical value with a given
error during the inversion. The Psoil represents the proportion of bare soil and vegetation
cover; therefore, the increase in Psoil means the enhancement of contribution from the bare
soil surface. From Figure 5i, the reflectance of each band increases with the increase in Psoil,
since the reflectance of bare soil has little difference at each wavelength. These results were
consistent with the previous research [53–55].

4.2. Parameters Information Content Analysis

Furthermore, the information of each parameter contained in the multispectral ob-
servation is quantified using the degrees of freedom of the signal (DFS) [56]. The DFS
is defined as the partial derivative of the posterior estimate values with respect to state
parameters and can be calculated by the following equation:

∂x̂
∂x

=
(

JTS−1
ObsJ + S−1

pri

)−1
JTS−1

ObsJ (9)

Ideally, the state vector can be completely determined by measurements, that is, all the
parameters can be obtained for observation data. In this case, the amount of information
for each parameter is equal to 1 and the sum of the information of all parameters is equal
to the number of parameters. However, subject to observation and systematic errors, the
DFS is always less than 1 for each parameter. Therefore, the signal degrees of freedom can
characterize the ability of observations and models to invert parameters. The closer the
parameter‘s DFS is to 1, the more adequate information the observation contains about
that parameter.

To study the contribution of the phenotypic parameters to observation, Figure 6a
shows the variation of all parameters information obtained by different wavelengths’ obser-
vation; in other words, the number of parameters can be retrieved from single wavelength
observation. In order to describe the observation capabilities of the P4 multispectral UAV,
we carried the forward simulation of multispectral bands. Finally, the DFS of each pa-
rameter is calculated according to the information content analysis method, as shown in
Figure 6b.

From Figure 6a, the total DFS of different wavelengths between 400 and 1200 nm is less
than 1, which indicated that the single-band observation has insufficient retrieval ability
for multiple parameters. It is because the single band cannot obtain sufficient information.
From Figure 6b, (1) the DFS of LAI, Cab, and N were 0.83, 0.71, and 0.58, respectively,
significantly higher than Cm (DFS = 0.2). It indicated that the observation contains more
effective information on these parameters and can further be better extracted. (2) The
DFS of ALA, Car, and Psoil were lower than 0.2, indicating that these parameters are
difficult to be retrieved by multispectral observation and can be used as a priori value in
the inversion framework.
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4.3. Setting of State Vectors and Boundary Conditions

For crop phenotype parameters inversion, we assumed that the observation error does
not vary with wavelength and observation geometry in this paper. The state and nonstate
vectors of the crop phenotype parameters are composed of the following equations:{

xa = [Cab, LAI]T

xb = [N, Car, Cw, Cm, ALA, hspot, psoil]T
(10)

The boundary range of the state vector determines the interval range for finding the
optimal solution. The prior estimation is based on the historical data statistics of the same
period of crop parameters. The values of the nonstate vector come from the empirical
values of the fertility period and sensitivity analysis results, which provide some auxiliary
constraints for the optimal solution. In this paper, the boundary conditions for the LAI
were (0.5, 7) and for Cab were (20, 70).

5. Results
5.1. Validation of the Forward Model

The study area is a national high-standard farmland of 5000 hm2 in Qixian County,
Henan Province (114.17◦ E, 35.6◦ N), where winter wheat was cultivated annually from
October to June, approximately. The region has a warm temperate humid monsoon climate
with warm and rainy summer and cold and dry winter. The measured data were derived
from the FieldSpec Handheld (a handheld geophysical spectrometer, Analytica Spectra
Devices, Inc., Boulder, CO, USA). The spectral range of the measuring instrument is
325~1075 nm, and the spectral resolution was 3 nm at wavelengths 325~700 nm. We
collected the test data on 4 March 2021 at about 12:00 when the solar light intensity was
stable and the weather was clear and cloudless. The measurement results can represent the
true reflectance of the vegetation canopy because the instrument is closer to the target and
less influenced by aerosols and water vapor. Figure 7 compares the results between the
simulated data at a solar zenith angle of 5◦ and the measured data at a sampling test point.
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It can be seen from Figure 7 that the simulated values of band 3 and band 4 were
lower than the ground-measured values. However, the error between the measured and
simulated reflectance at the sampling point was within 2%. The results indicated that the
simulation of crop reflectance can be achieved by the coupled model from solar radiation
to vegetation, further reflecting that the forward modeling process is reasonable.

5.2. Retrieval Demonstration and Self-Consistency Tests

Self-consistency tests following the inversion framework are conducted. Firstly, for-
ward simulation datasets are obtained by the coupling model according to the bands of
P4 multispectral UAV. The input parameters varied by 10% themselves. The observation
geometries are adopted for the yearly solar altitude variation at mid-latitudes in the north-
ern hemisphere [57], in which the solar zenith angle varies from 10◦ to 60◦, view zenith
angle and relative azimuth are both 0◦. Secondly, to simulate the measurement error, we
also added the 5% Gaussian noise to the simulation results. Finally, we obtained a total of
671 sets of validation data.

Figure 8a,b show the iterative process of apparent reflectance and the convergence of cost
function for Cab = 63, LAI = 1.3, and the solar zenith angle of 15◦ in the optimized inversion.
The red solid line represents the measured results from the forward model simulation.

As shown in Figure 8a, the model simulated value gradually approaches the obser-
vations with the increase in iteration times, and the best fit has been achieved through
the OE algorithm at the 14th iteration. The fitting residual error is used to describe the
difference between the observation and simulated values. In Figure 8a, the residual error
of the last iteration is only 0.023%, and the average residual error of all simulated data is
0.3% after statistics. From Figure 8b, the cost function changes rapidly from the second to
the fifth iteration and gradually approached a minimum value after the eighth iteration.
The minimum value is determined by the observation error and the error in the radiation
transfer and coupling process between the vegetation canopy and the atmosphere. After
statistics, the average iteration times of test datasets were about 14 when the cost function
reaches the minimum value. The details of the inversion process indicated that the optimal
estimation inversion algorithm can realize the dynamic adjustment of inversion parameters
and had good convergence in obtaining the retrieval results.

A comparison is summarized in Figure 9 between the inversion values reconstructed
from the optimized inversion framework and the true value used in the dataset. The
coefficient of determination (R2) and root-mean-square error (RMSE) are used to verify the
consistency of the optimized algorithm. A larger R2 and a smaller RMSE indicate the higher
accuracy of the forward model and the better consistency of the inversion framework.
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The retrieved Cab and LAI synchronously under different observation geometries were
compared to the true value as shown in Figure 9a,b.
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Figure 9. Validation of the Cab and LAI with the OE-iteration method: (a) validation of the Cab with
the OE-iteration method against the true value under different observation geometries and (b) vali-
dation of the LAI with the OE-iteration method against the true value under different observation
geometries. The blue solid line, dashed line, and orange solid line are the 1:1 line, error line, and
fit line, respectively. The error lines of (a,b) are E = x ± 0.02x ± 0.08 and E = x ± 0.08x ± 0.08. The
statistics of the linear fitting result, including slope, intercept, R2, and RMSE, are listed in the upper
left corner of each scatter plot.

As seen in Figure 9a, the R2 value for Cab was 0.9999, while the RMSE was 0.1007,
which indicated that the Cab had good retrieval results. Similarly, the verification results of
LAI were consistent with Cab. Meanwhile, it is worth noting that the slopes of the fit lines
were all close to 1. With the variation of solar zenith angle, the error lines of Cab and LAI
were within E = x ± 0.02x ± 0.08 and E = x ± 0.08x ± 0.08, respectively. The error line is
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defined as a correlation range between the true value and the inversion value. The results
showed the final model retrieval values were in good agreement with the real values.

Moreover, for the validation of the influence of different aerosol loads on the inversion
results, another case was also performed. The viewing geometries, including solar zenith
angle, view zenith angle, and relative azimuth angle, were 65◦, 0◦, and 120◦, respectively.
The state parameters varied by 50% themselves, with different aerosol AOD from 0.1 to 1.0,
a total of 130 datasets are obtained. Figure 10a,b show the scatterplots between the retrieval
results and the true value under different AODs.
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As seen in Figure 10a, the R2 value and RMSE for Cab were 0.9998 and 0.205, which
indicated the uncertainty of the retrieved Cab increased weakly with the varying aerosol
loading compared with Figure 9a. It can be seen from Figure 10b that the retrieved LAI
value is lower than the true value when the LAI is larger than 6. However, the validation
results were almost similar to Figure 9a,b, with the R2 values all larger than 0.99. The results
indicated that the developed inversion framework showed good performance regardless of
the varied aerosol-loading situation.

6. Discussion

The PROSAIL model is sensitive to crop parameters that have been well documented
in previous studies [21,40], and UAV-observed reflectance data can in turn promote LAI
and Cab retrieval. Nevertheless, solar radiation and atmospheric environment information
from UAV observation in physical models cannot be considered in general. Therefore,
the forward model by replacing the built-in surface BRDF model in UNL-VRTM with the
PROSAIL model was established in this study, which was calculated based on the optimal
estimation inversion framework to obtain crop parameters retrieved. The advantage of the
forward model is to achieve atmospheric correction during the radiation transfer process
and save the costs in human resources, materials, and time. As a result, compared with the
measured data collected by the FieldSpec Handheld, the physical transmission model from
solar radiation to the crop canopy, and then to the sensor is used as the UAV observation
system. Moreover, crop multiparameters retrieved from current inversion approaches
cannot be estimated synchronously. Such as LUTs and machine learning algorithms are not
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suitable for multiparameter inversion [11,27]. Therefore, an optimal estimation inversion
algorithm from UAV remote sensing data was proposed, and we can obtain a statistical
estimate value of the state vector based on optimal estimation theory. The advantage of the
proposed inversion algorithm is that it can extract crop LAI and Cab synchronously from
UAV observation.

Based on the optimal estimation theory, we can find the best solution in the continu-
ous state space. Theoretically, the inversion accuracy of crop parameters by the optimal
estimation method is higher than LUTs [58]. However, the optimal estimation algorithm
requires calculating forward transmission timely and achieves multiple iterations. Thus, it
took a lot of time to complete the inversion. After statistics, the average iteration times of
test datasets were about 14. We also need to improve the computational efficiency of the
inversion algorithm with a larger amount of data.

From the calculation process of the cost function and its gradient vector, it can be
seen that our optimal algorithm is related to a priori constraints and the observation data.
The algorithm test was carried out based on simulated data in our inversion framework.
Although we added noise to the simulated data, the uncertainty of the actual observation
data is more complex than the simulated data in fact. The accuracy of the inversion
result not only is affected by the uncertainty of observation data, but also depends on
prior constraint values (including nonstate parameters value, the initial value of the state
parameters, and their boundary conditions). The prior values are derived from historical
data statistics of the same period of crop parameters. Reasonable prior estimates and error
assumptions can constrain the inversion results to a relatively optimal range and further
speed up the iterative computation. Furthermore, we need to optimize the parameter of the
measured data and prior constraints and carry out the inversion verification of the actual
observation data.

7. Conclusions

In this study, we used a physical model to establish a multiparameter inversion
framework for crop phenotypes based on optimal estimation inversion theory. Firstly, we
unified PROSAIL and UNL-VRTM models to achieve synchronous atmospheric correction.
Secondly, multiple phenotypic parameters inversion framework was established based
on the optimized estimation method with prior constraints. Then, the contribution of
parameters to the model was obtained by parameter sensitivity analysis, and the parameters
to be retrieved were determined according to the information content analysis method.
Finally, the optimized estimation inversion framework self-consistency test was performed,
and the model inversion values were validated against the true values under different
observation geometries and aerosol loadings. The results showed that the coefficients
of determination (R2) between the inversion values and the true values were above 0.99,
indicating that UAV multispectral observations can support the inversion of LAI and Cab.
It also indicated that the inversion framework can make full use of the available radiation
spectral information and has good stability. The findings from this study suggest that
our proposed forward model has a strong coupling between vegetation reflectance and
atmosphere. Moreover, there were good convergence and consistency for the inversion
framework in obtaining inversion LAI and Cab. The optimal inversion framework for the
synchronous retrieval of crop phenotypic parameters is expected to be performed on actual
observation data in the future and can be applied to the monitoring of crop parameters in
the field environment.
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