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Fully connected phase-locked networks are built with all nodes exchanging phase and

frequency signals. The nodes are phase-locked loops (PLLs) with slightly different free-

running frequencies. The synchronous state emerges from a dynamic process with the

phase interactions generating a common frequency steady state. In this work, an estima-

tion is analytically obtained for the synchronous state in a generic N-node network. Nu-

merical experiments complete the analysis of the fully connected network relating free-

running frequencies, node gains, and propagation delays.

Copyright © 2006 J. R. C. Piqueira et al. This is an open access article distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Phase-locked loops (PLLs) are circuits for synchronizing phase and frequency of a local

oscillator with a variable reference signal [14]. They started to be used in synchronous

detection for radio communication systems in 1932 and, during the 40s, they were used

in vertical and horizontal synchronizations of TV receptors [1, 23].

In the middle of the 60s, PLLs started to be available as low-cost integrated circuits

[6] easing the implementation of modulation and demodulation circuits, frequency syn-

thesizers [8], and motor speed control systems [17]. In the 70s, the advancement of inte-

gration technologies allowed the construction of digital PLLs [1] that play an important

role in modern digital communications. Nowadays, analog and digital PLLs are used in

digital telecommunication networks, in modern mobile phone systems [4, 6], in remote

measuring systems, and in computer networks [15].

Here, synchronization strategies using PLLs are studied and a fully connected network

with spatially distributed nodes, designed to dynamically acquire a common frequency

from slightly different local free-running frequencies, is considered [11, 12, 16, 19, 21].

Our main motivation is concentrated in the telecommunication networks and their

standards developed by ITU-T, ETSI, and ANSI, covering synchronous digital hierarchy
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Figure 2.1. PLL block diagram.

(SDH) and synchronous optical networks (SONET) [3, 20]. These standards indicate that

the master-slave (MS) architecture is better than the fully connected (FC) architecture

for clock distribution systems. Additionally, the international standards suggest that the

fully connected architecture needs further studies because the synchronous state of the

network depends on gains and propagation delays [16].

However, when one compares the costs of MS and FC networks, it seems that FC

networks are cheaper [16] and also are more reliable, maintaining the synchronous state

even if any node fails [13].

A generic N-node fully connected PLL clock distribution network is studied, in or-

der to obtain the frequency of the synchronous state. Numerical simulations are also

performed showing how the dynamics depends on free-running frequencies, gains, and

propagation delays.

2. Network architecture

The nodes of the fully connected network studied here are second-order nonlinear PLLs

[2, 9, 10, 12, 18] with the following individual characteristics:

(i) they are closed loops composed of a phase detector (PD), a low-pass filter (F),

and a voltage controlled oscillator (VCO), as shown in Figure 2.1;

(ii) PD is a signal multiplier;

(iii) F is a first-order linear low-pass and its output controls the VCO.

The signal vi(t) is supposed to be periodic with central angular frequency ω and time-

varying phase θi(t). The VCO signal vo(t) has also a periodic form with central angular

frequency ω and adjustable phase θo(t).

Defining local phase error by Φ(t)= θi(t)− θo(t), the dynamics of an individual PLL

is described by [8],

Φ̈+µ1Φ̇+µ1µ2 sinΦ= θ̈i +µ1θ̇i. (2.1)

In (2.1), µ1 represents the cut-off frequency of F, and µ2, called PLL gain, depends on

the phase detector and VCO gains [22].

The PLLs are spatially distributed and topologically structured with all nodes fully

connected and each node is configured as shown in Figure 2.2. In this scheme, each node

receives the signals from all other nodes. These signals are individually multiplied by the

output of the local VCO. The mean value of the outputs of the PDs is applied to the
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Figure 2.2. Mathematical model for fully connected PLL network.

filter that eliminates the high-frequency terms and whose output controls the phase of

the VCO signal.

Phase of the VCO from node i is denoted by φi(t) and its frequency by ωi = φ̇i(t), for

i = 1,2, . . . ,N . Propagation delays between two nodes are represented by τi j with i, j =

1,2, . . . ,N . The synchronous state is obtained when all VCOs operate at the same fre-

quency with phase differences, φ j(t)−φi(t), constant for i, j = 1,2, . . . ,N .

3. Mathematical model and synchronous state estimation

Consider a fully connected second-order PLL N-node network with each node i receiving

signals from all other nodes j �= i, with propagation delay τi, j , and processing them as

shown in Figure 2.2.

The VCO of each PLL node has the state represented by its phase φi(t) and frequency

ωi = φ̇i(t). Spatial phase and frequency errors between the nodes i and j are, respectively,

defined as ∆φ ji(t)= φ j −φi and ∆φ̇ ji(t)= φ̇ j − φ̇i.

PLLs belonging to the nodes are characterized by the following parameters:

(i) PD multiplying factors: km1=km2=···=kmi=km, in volts−1, with i= 1,2, . . . ,N ;

(ii) gains of the VCOs: k1 = k2 = ··· = ki = k0, in rad /sV , with i= 1,2, . . . ,N ;

(iii) cut-off frequencies of F: µ11 = µ12 = µ1i = ··· = µ1, in rad/s, with i= 1,2, . . . ,N .

The output of each VCO is

vi(t)=V cosφi(t); (3.1)

and signals received by the phase detector of node i from node j, with propagation delays

τ ji, can be written as

v j
(

t− τ ji
)

=V sin
[

φ j

(

t− τ ji
)]

, (3.2)

where V is the controlled amplitude of the outputs of VCOs and PDs.

Considering the implementation from Figure 2.2, in each phase detector j �= i, belong-

ing to node i, its output is

vd ji(t)= kmv j
(

t− τ ji
)

vi(t). (3.3)
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Replacing (3.1) and (3.2) in (3.3), we have the output of each phase detector j �= i,

belonging to node i, given by

vd ji(t)= kmV
2
[

sinφ j

(

t− τ ji
)

cosφi(t)
]

. (3.4)

Each resulting signal given by (3.4) is multiplied by 1/(N − 1) and added, in order to

compose the filter input that, neglecting the double-frequency terms [8], is given by

vdi(t)=

(

1

N − 1

)(

kmV 2

2

)

{ N
∑

j=1, j �=i

sin
[

φ j

(

t− τ ji
)

−φi(t)
]

}

. (3.5)

Defining kd = (1/2)(kmV 2), expression (3.5) is simplified to

vdi(t)=
kd

N − 1

{ N
∑

j=1, j �=i

sin
[

φ j

(

t− τ ji
)

−φi(t)
]

}

. (3.6)

The dynamics of the phase of the VCO is obtained considering the filter transfer func-

tion Fi(s)= µ1/(s+µ1), resulting the expression

v̇ci(t) +µ1vci(t)= µ1vdi(t). (3.7)

Replacing vdi , given by (3.6), and the VCO control signal vci = θ̇i(t)/k0 in (3.7), the

equation for the node phase is

θ̈i(t) +µ1θ̇i(t)−µ1

(

kokd
(N − 1)

){ N
∑

j=1, j �=i

sin
[

φ j

(

t− τ ji
)

−φi(t)
]

}

= 0. (3.8)

Then, considering φi(t)=wit+ θi(t) in (3.8), defining µ2 = kokd and k = µ1µ2/(N − 1),

the dynamics of each VCO phase in a fully connected network is given by

φ̈i(t) +µ1φ̇i(t)−µ1ωi− k

{ N
∑

j=1, j �=i

sin
[

φ j

(

t− τ ji
)

−φi(t)
]

}

= 0. (3.9)

Examining (3.9) one can see that it is similar to the pendulum equation, containing

a dissipation component µ1φ̇i(t), a delayed conservative term k{
∑N

j=1, j �=i sin[φ j(t− τ ji)−

φi(t)]}, and a forcing part µ1ωi [7].

Consequently, it is reasonable to suppose that the long-term solution of the system is

a synchronous state with the phases of all nodes oscillating with the same frequency ωs

that can be estimated.



J. R. C. Piqueira et al. 5

In order to estimate this frequency, the following hypotheses are considered [18]:

(a) φ̇i(t)= ωs;

(b) φ̈i(t)= 0;

(c) φ j(t− τ ji)≈ φ j(t)−ωsτ ji.

Therefore,

µ1

(

ωs−ωi

)

− k

[ N
∑

j=1, j �=i

sin
(

∆φ ji−ωsτ ji
)

]

= 0. (3.10)

For small values of [∆φ ji−ωsτ ji], expression (3.10) can be written as a linear approx-

imation, considering sin[∆φ ji−ωsτ ji]≈ ∆φ ji−ωsτ ji, resulting, for each node i,

µ1ωs−µ1ωi− k

[ N
∑

j=1, j �=i

∆φ ji

]

+ kωs

[ N
∑

j=1, j �=ı

τ ji

]

= 0. (3.11)

Using (3.11) for an N-node network, with i, j = 1, . . . ,N and j �= i, and adding the N

resulting equations, as the sum of the terms ∆φ ji is equal to zero, because ∆φ ji =−∆φi j ,

one can write

Nµ1ωs−µ1

N
∑

i=1

ωi + kωs

( N
∑

i=1

N
∑

j=1, j �=i

τ ji

)

= 0. (3.12)

Calculating ωs from (3.12)

ωs =
µ1

(

∑N
i=1ωi

)

Nµ1 + k
(

∑N
i=1

∑

j=i, j �=iN τ ji
) . (3.13)

Dividing (3.13) by Nµ1, and replacing k = µ1µ2/(N − 1), the estimation of the syn-

chronous state frequency (ωs) is obtained:

ωs =
1/N

(

∑N
i=1ωi

)

1 +µ2/N(N − 1)
(

∑N
i=1

∑N
j=i, j �=i τ ji

) . (3.14)

Therefore, expression (3.14) is an estimation for the frequency of the synchronous

state for a fully connected second-order PLL network, depending on the individual free-

running frequencies and propagation delays. Notice that when the delays are zero, ωs is

given by the mean value of ωi.

In the next section, numerical simulations are conducted to investigate the accuracy

of expression (3.14) and to analyze how gains and delays change the behavior of the net-

work.

4. Numerical simulations

Fully connected PLL networks were implemented by using MATLAB-Simulink [5] for 3,

5, and 15 nodes. Free-running frequencies are normalized to 1 rad/s considering 5% and

10% of dispersion, with and without propagation delays.
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Figure 4.1. Frequency errors: N = 5, µ2 = 0.0625, τi, j = 0.

The goals of the simulations are:

(i) verifying whether the synchronous state, with frequency errors ∆φ̇ vanishing and

phase errors ∆φ tending to constant values, is reachable;

(ii) validating the estimation of the synchronous state frequency given by (3.14);

(iii) measuring the acquisition time.

All the simulations use MATLAB built-in PLLs and Runge-Kutta (Dormand-Prince)

method with constant step time 0.02 [5]. We show the results for the 5-node network and

10% of free-running frequency dispersion, because the results are similar to the results

for networks with different number of nodes and 5% of dispersion.

Starting without propagation delays, ω1 = 1.0, ω2 = 0.95, ω3 = 0.90, ω4 = 0.85, and

ω5 = 0.80 are chosen, that is, ωs = 0.90. Figures 4.1 and 4.2 show the behavior of the

frequency and phase errors between nodes. In the same conditions, the behavior of the

node frequencies is shown (Figure 4.3).

Considering a propagation delay of 0.18, corresponding approximately to 10% of the

period of the normalized frequency signal, Figure 4.4 shows the frequency errors, Figure

4.5 the phase errors, and Figure 4.6 the node frequencies.

In order to complete the investigation about the expression (3.14), Figure 4.7 presents

for the same 5-node delayed network how the synchronous state frequency depends on

the gain µ2.

Considering communication networks, it is important to evaluate the acquisition time

for the clock distribution system. Figure 4.8 shows how the acquisition time depends on

the gain µ2 and on the propagation delays for a 5-node network.
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Figure 4.2. Phase errors: N = 5, µ2 = 0.0625, τi, j = 0.
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Figure 4.3. Node frequencies: N = 5, µ2 = 0.0625, τi, j = 0.
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Figure 4.4. Frequency errors: N = 5, µ2 = 0.0625, τi, j = 0.18.
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Figure 4.6. Node frequencies: N = 5, µ2 = 0.0625, τi, j = 0.18.
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5. Conclusions

In a previous work of Hoppensteadt and Izhikevich [10], fully connected PLL network

was proposed as a neural network showing that the synchronous state is an emergent

property of the whole network and that the computation performed is robust to the vari-

ation of PLL parameters.

Their work was complemented by studying an 4-node network under gain and delay

variations [22] and an additional interest arose to generalize the results for a N-node

network, to be applied as a clock distribution system in a communication network.

Expression (3.14), derived here, represents a good estimation for frequency of the syn-

chronous state, as Figures 4.3 and 4.6 show. Besides, observing how this frequency de-

pends on the gain (Figure 4.7) and comparing it with the theoretical value given by (3.14),

less than 0.1% deviations were observed, in the worst case.

Figure 4.8 shows that for small values of the propagation delays there is a value for the

gain corresponding to the maximum acquisition time. For high-propagation delays the

capture range, µ2 allowing synchronous state, is more restrict and the acquisition time is

too high. In spite of this, the synchronous state is reachable, as Figures 4.1, 4.2, 4.4, and

4.5 show. Consequently, given the propagation delays, it is possible to choose a set of PLL

gains in order to allow the network to synchronize.

These results confirm that the fully connected PLL architecture, that is generally cheap

and reliable, could be an interesting solution for distributing clock information in a com-

munication network.
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