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ABSTRACT

The coherent Ising machine (CIM) is a network of optical parametric oscillators (OPOs) that solves for the ground
state of Ising problems through OPO bifurcation dynamics. Here, we present experimental results comparing the
performance of the CIM to quantum annealers (QAs) on two classes of NP-hard optimization problems: ground-
state calculation of the Sherrington-Kirkpatrick (SK) model and MAX-CUT. While the two machines perform
comparably on sparsely-connected problems such as cubic MAX-CUT, on problems with dense connectivity, the
QA shows an exponential performance penalty relative to CIMs. We attribute this to the embedding overhead
required to map dense problems onto the sparse hardware architecture of the QA, a problem that can be overcome
in photonic architectures such as the CIM.

Keywords: Optical parametric oscillator, phase transition, quantum annealing, Ising model, combinatorial
optimization

1. INTRODUCTION

Many important tasks in modern society rely on the efficient solution of hard optimization problems such as
scheduling, route planning, portfolio optimization, circuit layout, and drug discovery. These problems belong
to the NP-hard complexity class,1 for which exact solutions require exponential time. As a result, significant
computational resources are required to solve such problems, even if only approximate solutions are required.
Therefore, there is significant interest in accelerating the solution of such problems special-purpose machines,
including ASICs,2 physical annealers that map the optimization directly to the underlying physical dynamics,3

and quantum annealers.4 Most such special-purpose machines have been targeted at the Ising problem, a
canonical NP-hard problem to which all NP problems can be reduced in polynomial time.5–7 The Ising problem
consists of finding spin configuration ~σ ∈ {−1, 1}N that minimizes the Ising energy:

H =
1

2

∑
ij

Jijσiσj +
∑
i

hiσi (1)

While most special-purpose solvers utilize electronics, interest in photonic solvers is rapidly growing. Photonics
offers unique advantages for information processing, including high data rates,8 low latency, low power consump-
tion,9 elimination of the interconnect bottleneck,10 and the ability to perform linear algebra operations with
passive optics.11,12 Motivated by this, we have proposed an optical annealer called the coherent Ising machine
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Figure 1. (a) Schematic of CIM consisting of time-multiplexed OPO and measurement-feedback apparatus. (b) Bifurcation
in OPO state during transition from below-threshold squeezed state to (bistable) above-threshold coherent state. (c)
Solution of antiferromagnetic Ising problem on the Möbius ladder with the CIM.17

(CIM) that maps the Ising problem onto the dynamics of a network of degenerate optical parametric oscillators
(OPOs).13,14 A degenerate OPO is an optical cavity with a χ(2) nonlinear medium, pumped at the second har-
monic of the cavity resonance.15 If a pulsed pump is used, multiple identical OPOs can be time-multiplexed in a
single cavity through a technique of synchronous pumping,16 as shown in Fig. 1(a). Coupling between the OPOs
is realized using a measurement-feedback apparatus (bottom of Fig. 1(a)), consisting of a homodyne detector, an
FPGA, and a modulator. This enables progammable Ising problems with arbitrary Jij of sizes up to N = 2000
to be studied on the CIM.17,18

The CIM solves Ising problems through the gain-dissipative bifurcation dynamics of OPOs.14,19–22 Funda-
mentally, this is based on the OPO bifurcation from a below-threshold (quantum) squeezed state to an above-
threshold (classical) coherent state (Fig. 1(b)). Due to the phase-sensitive nature of OPO gain only two states
with phases {0, π} can occur above threshold: the Ising spin σi is encoded in this phase. The optical annealing
process is illustrated in Fig. 1(c), where the OPO bifurcation occurs simultaneously with the inter-OPO cou-
pling, which pushes the OPOs to lower the collective Ising energy of the system. As a result, when the pump is
sufficiently far above threshold that all OPO amplitudes have settled to values with roughly equal amplitudes,
the resulting state (for this problem) is the Ising ground state.

2. BENCHMARKING CIM AND QA

This work presents a performance comparison between the CIM and the D-Wave 2000Q quantum annealer
(DW2Q).23 Inspired by the adiabatic principle,24 quantum annealing4,25 is an established technique for quantum-
enhanced optimization and may offer the possibility for a limited speedup on certain classes of problems, although
obtaining conclusive evidence for such a speedup has proved challenging.26–28 However, existing quantum an-
nealers suffer from limited connectivity, so that actual problems must be embedded into the solver architecture’s
native graph before they can be solved.29,30 Embedded problems are often much larger than the originals and
can include many constraints, leading to a potentially significant degradation in annealer performance.

In light of these limitations, it is insightful to consider performance benchmarks of general problem classes,
chosen independently of the annealer’s architecture. Here, we compare the performance of the CIM and DW2Q
on three classes of NP-hard Ising problems: fully-connected Sherrington-Kirkpatrick (SK) spin glasses,31 MAX-
CUT on dense graphs, and MAX-CUT on regular sparse graphs.5 Problems with all-to-all or dense connectivity
are usually embedded with precomputed clique embeddings (Fig. 2(a)), which which map each logical qubit
to an L-shaped ferromagnetic chain on the Chimera.32 Embedding introduces an additional degree of freedom
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Figure 2. (a) Optimized quantum annealing of embedded SK problems on DW2Q: clique embedding to map a densely-
connected problem onto a Chimera graph. (b) SK success probability as a function of problem size N and embedding
constraint Jc. (c) MAX-CUT success probability for dense (edge-density- 1

2
) graphs. (d) Regular sparse graphs with

d = 3, 4, 5, 7, 9 edges per vertex. (e) Representative sample of N = 16 sparse and dense graphs.

Stanford CIM NTT CIM D-Wave 2000Q
Spins OPO OPO JJ qubits
Size 100 2000 2048

Ising model Jij Jij Jij and Zeeman
Couplings Full (5,000) Full (2× 106) Chimera (12,000)
Jij range Continuous {−1, 0,+1} Continuous

Largest clique N = 100 N = 2000 N = 64
Anneal time 1600µs 5000µs 1–2000µs

Table 1. Specifications of the annealing machines used in this study.

Jc, which dictates the strength of the constraint couplings relative to the logical couplings. To optimize the
performance of the quantum annealer, it is essential to find the optimal Jc, which is size- and problem-dependent
(Fig. 2(b)). The optimal Jc is believed to be related to the emergence of a spin-glass state of the embedded
problem

2.1 MAX-CUT and SK Performance

Fig. 2(c) plots the D-Wave success probability for MAX-CUT as a function of problem size N (the performance
on SK problems is similar, see Ref.23). Here, the embedding parameter Jc has been optimized as a function of
problem size following the procedure in Fig. 2(b). Even so, the success probability falls off super-exponentially

with N , the data fitting roughly to the curve P = e−(N/Ndw)2 , where Ndw is a constant than increases slowly,
roughly logarithmically, with the annealing time Tann. By contrast, the CIM success probability decreases much
more gradually with N , leading to a several-orders-of-magnitude difference in success probability for moderate-
size problems N ≥ 50.

On the other hand, embedding heuristics30 can embed sparse graphs using far fewer physical qubits; this
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reduced embedding overhead suggests that the DW2Q should perform better on sparse problems. As Fig. 2(d)
shows, the DW2Q outperforms the CIM for cubic (d = 3) and d = 4 graphs, while for graphs of higher density,
the CIM shows a strong scaling advantage. Unlike DW2Q, the CIM’s performance does not appear to depend
on the graph edge density. This is consistent with the hypothesis that the embedding overhead, which is much
greater for dense graphs than sparse graphs, is a primary factor limiting the performance of physical annealers.

2.2 Time-to-Solution and Optimal Annealing Time

While success probability provides intuition about an annealer’s performance, a more rigorous performance
benchmark is the time to solution Tsoln = Tanndlog(0.01)/ log(1 − P )e, defined as the time required to reach
the Ising ground state with 99% probability. When calculating time to solution, it is important that all free
parameters in the annealer be optimized. For the DW2Q, this includes the constraint term Jc as well as the
annealing time Tann. Finding the optimal annealing time is particularly important, as failing to properly optimize
this parameter can lead to an illusion of speedup at small problem sizes if the annealing time is sufficiently large.27

The CIMs used here are experimental systems with fixed annealing time. To study the effect of varying Tann,
we performed semiclassical simulations of the CIM using c-number stochastic differential equations (c-SDEs).
The c-SDE model, which resembles noisy mean-field annealing,21 can accurately predict the CIM’s performance
for the problems studied here.17,20 Fig. 3(a) shows the success probability and time to solution of the CIM
(c-SDE simulations) for dense MAX-CUT problems. An asymptotic fit P = exp(−O(N)) for large problems
is observed at fixed annealing time, and the time to solution at optimal annealing times appears to follow a
Tsoln ∝ exp(O(N1/2)) curve. This is in contrast with the DW2Q (Fig. 3(b)), where the optimal time-to-solution
goes as Tsoln ∝ exp(O(N)). By problem size N = 50, the difference in time-to-solution is 106×; extrapolated
to N = 64 (the largest size supported by clique embeddings in the DW2Q), it exceeds 109×. A similar scaling
in time to solution is observed for SK problems. For cubic MAX-CUT problems, consistent with Fig. 2(d), the
DW2Q outperforms the CIM in absolute terms at all tested problem sizes, but the CIM has a scaling advantage
suggesting a performance edge for larger problems.

CIM (c-SDE simulations) D-Wave 2000Q

(b)(a)

(d)

(c)

Figure 3. (a) Time-to-solution analysis for MAX-CUT. C-SDE simulations of CIM giving success probability and time to
solution. (b) Time to solution for DW2Q and comparison with CIM. (c) DW2Q success probability for dense MAX-CUT

run on DW2Q embedded onto subgraphs of the Chimera. Data fit to P = e−a(L)N2

, where the constant a depends on
Chimera degree L. Annealing time is 20µs. (d) Chimera subgraphs with L = 1–4 and their associated clique embeddings.
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2.3 Effect of Annealer Sparsity

To illustrate the effect of embedding overhead limiting the performance of quantum annealers on dense problems,
we varied the connectivity degree L of the Chimera graph in the DW2Q. A Chimera graph is a 2D lattice, with
the 2L qubits at each lattice point arranged in a biclique. This arrangement supports up to L + 2 connections
per qubit, so L is a rough proxy for the connectivity of the hardware graph. It is also a proxy for embedding
overhead: for clique embeddings, an N -qubit fully-connected graph maps to approximately N2/L physical qubits,
indicating the embedding overhead decreases with larger L.

Fig. 3(c) shows DW2Q results for MAX-CUT on dense graphs embedded into Chimera graphs with L = 1–
4. Consistent with the results above, the success probability fits to a square-exponential P = exp(−O(N2)).
However, the coefficient in this exponential depends on L, leading to a significant performance penalty for the
sparser Chimera graphs at large problem sizes. This is consistent with the intuition that embedding a problem
into a sparse native hardware graph will lead to a degradation of success probability in addition to requiring a
larger number of physical qubits.

3. CONCLUSION

With its measurement-feedback coupling, the CIM has native all-to-all connectivity and does not require minor
embedding. This provides it with a significant advantage over the DW2Q (and other annealers with sparse hard-
ware connectivity) on MAX-CUT and SK problems defined on dense graphs, where the embedding overhead is
costly. However, the DW2Q’s lead on cubic MAX-CUT problems suggests that, if efficient embeddings are em-
ployed, annealers such as the DW2Q can maintain an edge. The importance of embedding overhead sketched here
motivates recent efforts to improve the performance of physical annealers with alternate embedding strategies33

or increased hardware connectivity.34–36

Quantum annealing offers the promise of quantum speedup, but this must be balanced against the overhead
required to embed the problem into the annealer’s hardware. As we have shown, this embedding overhead can
cause exponential slow-down for general Ising problems. By contrast, optical annealing with the measurement-
feedback CIM is intrinsically all-to-all and better adapted to problems with dense connectivity. Moreover, the
CIM is based on a very extensible concept of gain-dissipative optimization. Modifications to the annealing
dynamics may significantly improve the success probability for large problem instances,37–39 while operating in a
regime with stronger nonlinearities40,41 or non-Gaussian measurements42 may lead to a non-semiclassical regime
where quantum effects play a central role and quantum speedup is possible.
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