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Abstract 20 

Humans have developed a number of specific mechanisms that allow us to maintain much 21 

larger social networks than would be expected given our brain size. For our primate cousins, 22 

social bonding is primarily supported using grooming, and the bonding effect this produces is 23 

primarily mechanistically underpinned by the release of endorphins (although other 24 

neurohormones are also likely to be involved). Given large group sizes and time budgeting 25 

constraints, grooming is not viable as the primary social bonding mechanism in humans. 26 

Instead, during our evolutionary history, we developed other behaviours that helped us to feel 27 

connected to our social communities. Here we propose that synchrony might act as direct 28 

means to encourage group cohesion by causing the release of neurohormones that influence 29 

social bonding. By acting on ancient neurochemical bonding mechanisms, synchrony can act 30 

as a primal and direct social bonding agent, and this might explain its recurrence throughout 31 

diverse human cultures and contexts (e.g. dance, prayer, marching, music-making). Recent 32 

evidence supports the theory that endorphins are released during synchronised human 33 

activities, including sport, but particularly during musical interaction. Thus synchrony-based 34 

activities are likely to have developed due to the fact that they allow the release of these 35 

hormones in large-scale human communities, providing an alternative to social bonding 36 

mechanisms such as grooming.  37 

 38 
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Synchrony as an adaptive mechanism for large-scale human social bonding 41 

Humans, like most anthropoid primates, live in bonded social groups (Dunbar & Shultz 2010) 42 

which allow members to directly influence fitness by buffering individuals against the 43 

stresses of social life (Wittig et al. 2008), enhancing infant survival (Flinn & England 1995; 44 

Silk et al. 2003; Silk 2007; Oesch & Dunbar 2015) and mounting coordinated defence against 45 

predators or raiders (Dunbar et al. 2014). During the process of human evolution, maintaining 46 

relationships with members of our social networks has become increasingly important to our 47 

health and wellbeing (Berkman 1984; Holt-Lunstad et al. 2010), so while our closest primate 48 

relatives have social network sizes that are directly predicted by brain size (Dunbar 1992; 49 

Kudo & Dunbar 2001), we have developed the ability to form larger networks than should be 50 

cognitively feasible. The predicted upper limit to the number of possible human social 51 

relationships (150; Dunbar 1992) is applicable to a wide variety of interpersonal situations, 52 

including hunter-gatherer clans (Dunbar 1993), Christmas card networks (Hill & Dunbar 53 

2003), and active Facebook relationships (Arnaboldi et al. 2013; Dunbar et al. 2015; Dunbar 54 

2016), yet we can also experience a sense of connection with larger groups.   55 

Primates bond their groups through social grooming, and the linear relationship 56 

between group size and the time devoted to grooming across species (Dunbar 1991; Lehmann 57 

et al. 2007; Dunbar & Lehmann 2013) appears to set an upper limit on the size of group that 58 

can be so bonded at around 50 individuals. Time invested in a relationship is important in 59 

order to gain benefits from social interaction, since relationship quality appears to reflect the 60 

time invested in it (Sutcliffe et al. 2012). However, since the number of hours in a day is 61 

limited (even if extended using fire: c.f. Dunbar 2014a), bonding larger groups than those 62 

typical of non-human primates makes it necessary to develop behaviors that use time more 63 

efficiently so as to allow bonding between multiple individuals simultaneously (Dunbar 64 

2012). Humans might first have had to find solutions to these time constraints, then during 65 
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the development of increasingly large social networks repeatedly adopted new cognitive, 66 

technological and sociological mechanisms to maintain cohesion. Here we argue that human 67 

social behaviours that involve synchronised movements (e.g. sport, music, ritual) can be 68 

understood as technologies developed to exploit existing neurobiological and psychological 69 

mechanisms which are important in the maintenance of social bonds. Synchronisation might 70 

initially have helped save time when socially bonding but recent evidence suggests, in the 71 

case of singing, it can encourage social bonding in groups larger than 150 people (Weinstein 72 

et al. 2015). Although unlikely to have increased cognitive constraints on the number of 73 

genuine social ties that can exist this might demonstrate humans experiencing connection to a 74 

larger social group to which others are associated, and thus a sense of shared communities 75 

with those others. Music and dance are particularly well investigated examples of social 76 

synchronisation, and here we focus on these examples, although further research into 77 

activities such as sport and exercise is also warranted (c.f. Launay 2015a). 78 

 79 

1. The neurobiology of social bonding 80 

 81 

Over the past fifteen years, there has been a surge in interest in the neurobiological 82 

underpinnings of social bonding, across mammal species including humans (Young & Wang 83 

2004; Lim & Young 2006; e.g. Insel 2010). A large part of this interest originated from 84 

research in species of monogamous and non-monogamous voles, which suggested that larger 85 

numbers of receptors for the neuropeptide oxytocin are associated with monogamous 86 

behaviour (Insel & Shapiro 1992), but that this monogamous behaviour can be blocked with a 87 

selective oxytocin antagonist (Young et al. 2001). Administration of oxytocin has for a long 88 

time been known to play a role in birth, lactation, and maternal behaviour (Pedersen & 89 

Prange 1979), and given this relationship with monogamy oxytocin became a good candidate 90 
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as a ‘social’ neuropeptide. Early experimental studies in humans demonstrated, for example, 91 

a relationship between oxytocin and increased trust (Kosfeld et al. 2005; Zak et al. 2005), eye 92 

contact (Guastella et al. 2008), face memory (Savaskan et al. 2008), generosity (Zak et al. 93 

2007), empathy and the ability to infer the mental state of others (Domes et al. 2007). More 94 

recently, the administration of oxytocin in humans has been shown to have positive effects 95 

towards both one’s own in-group (e.g. De Dreu et al. 2011) and out-groups (Shamay-Tsoory 96 

et al. 2013), with individual differences predicting some of this variability in behaviour (Ma 97 

et al. 2015) This suggests that the effects of oxytocin generalise beyond dyadic bonding, 98 

although more research is required to fully clarify these effects (Nave et al. 2015). 99 

Although oxytocin plays a role in human social bonding, there is reason to doubt that 100 

it is the only important social neurohormone in humans. Humans have a uniquely high 101 

propensity to form social bonds with unrelated others (e.g. Dunbar & Shultz 2010), and it is 102 

likely that this tendency is supported by an array of cognitive and neurobiological 103 

mechanisms, almost certainly co-opted from neural systems that existed before we developed 104 

such a large dependence on our social networks. Evidence indeed demonstrates that there are 105 

multiple neurohormonal cascades involved in social bonding, which include not just oxytocin 106 

and vasopressin (e.g. Carter 1998) but also neurotransmitters such as dopamine and serotonin 107 

(e.g. Depue & Morrone-Strupinsky 2005), endocannabinoids (e.g. Trezza & Vanderschuren 108 

2008) and the Endogeonous Opioid System (EOS; Curley & Keverne 2005; Dunbar 2010; 109 

Machin & Dunbar 2011). While all of these pathways are likely to play some part in social 110 

bonding that occurs between unrelated humans, here we concentrate on the role of endorphins 111 

because there is a substantial body of evidence suggesting that these play an especially 112 

important role in social bonding with unrelated conspecifics in non-human primates (e.g. 113 

Meller et al. 1980), and that the system may be activated by physiological arousal (Howlett et 114 

al. 1984; Harbach et al. 2000).  115 
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The EOS is central in opioid-mediated reward (Koob 1992; Olmstead & Franklin 116 

1997; Comings et al. 1999), social motivation (Chelnokova et al. 2014), and pleasure and 117 

pain perception (Janal et al. 1984; Leknes & Tracey 2008), and is associated with feelings of 118 

euphoria (Boecker et al. 2008). The capacity for experiencing (positively reinforcing) 119 

endorphin-related euphoria in a social setting is likely to encourage further interaction with 120 

individuals who are present, making this neuropeptide a good candidate (from an 121 

evolutionary perspective) for promoting social bonding. In addition, its opiate-like properties 122 

of inducing relaxation and calmness may be instrumental in creating a sense of trust. In an 123 

environment where the formation of closer social bonds is advantageous those behaviours 124 

that encourage the release of endorphins in social situations are likely to be positively 125 

selected for. 126 

Evidence from non-human primates provides strong support that social bonding 127 

activities are associated with activity of the EOS. An early finding demonstrated that male 128 

talapoin monkeys administered with an endorphin receptor antagonist did not exhibit 129 

increased sexual behaviour (as occurs in rats) but instead showed increased rates of dyadic 130 

grooming (Meller et al. 1980). This result was replicated by Fabre-Nys (1982), and supported 131 

in the same species through direct measurement of central nervous system levels of beta-132 

endorphins, which were found to be higher following grooming (Keverne et al. 1989; Martel 133 

et al. 1995). Given that grooming is thought to be used by non-human primates to reinforce 134 

social bonds and maintain peaceful relations and social cohesion, these results suggest that in 135 

primate evolutionary history the opioid system was co-opted to mechanistically support our 136 

need for enhanced social bonds (e.g. Curley & Keverne, 2005; Lehmann et al. 2007).  137 

In humans, there is less direct evidence about the relationship between social 138 

behaviour and the endogenous opioid system, but the Brain Opioid Theory of Social 139 

Attachment (BOTSA) argues that there are notable similarities in the behaviour and emotions 140 
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of people addicted to exogenous opiates and people in intense relationships (Panksepp 1999; 141 

Insel 2003). Early stages of opiate addiction and intense relationships both involve euphoria, 142 

with feelings of pleasure and gratification leading to a desire to continuously seek out the 143 

stimulus (Machin & Dunbar 2011; Eisenberger 2012). Furthermore there is some 144 

experimental evidence to suggest that interfering with the activity of the EOS in humans can 145 

affect the way that positive social stimuli are perceived (Chelnokova et al. 2014), and that 146 

areas of the brain with high concentrations of opioid receptors are responsive to social 147 

rejection and acceptance (Hsu et al. 2013; Eisenberger 2015). In summary, while evidence is 148 

primarily correlational, BOTSA illustrates that for humans both social attachment and the 149 

administration of exogenous opiates have similar neurophysiological effects (Nelson & 150 

Panksepp 1998; Nummenmaa et al. 2016).   151 

In addition to their potential role in social behaviour opioids are known to be released 152 

in response to low levels of muscular and psychological stress (Howlett et al. 1984), for 153 

example during exercise (Harbach et al. 2000), with evidence suggesting that the euphoric 154 

state that follows exercise (termed ‘runner’s high’) is due to endogenous opioids (Boecker et 155 

al. 2008). Further to the effect on mood, opioids have a very strong analgesic effect (Van Ree 156 

et al. 2000), being some 30 times more potent than morphine on a weight-for-weight basis 157 

(Loh et al.1976), and much evidence suggests that endorphins are central in the pain 158 

management system (Levine et al. 1979; Basbaum & Fields 1984; Janal et al. 1984; D’Amato 159 

& Pavone 1993; Benedetti 1996; Zubieta et al. 2001; Fields 2007; Bodnar 2008; Dishman & 160 

O’Connor 2009; Mueller et al. 2010). The release of endorphins during strenuous exercise 161 

has both pain relieving and euphoric effects, increasing the positive reinforcement for an 162 

individual.  163 

Given that direct measures of endogenous opioids are costly and invasive in humans 164 

(Dearman & Francis 1983), pain threshold is commonly used as a proxy measure of 165 
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endorphin release, and this has been operationalised using the length of time holding a hand 166 

in ice water or a frozen vacuum sleeve on the arm (Depue & Morrone-Strupinsky 2005; 167 

Dunbar et al. 2012a, b), a ski exercise (maintaining a squat position with legs at right angles: 168 

Dunbar et al. 2012a), an electrocutaneous simulator (Jamner & Leigh 1999), pressure 169 

produced using a blood pressure cuff (Cogan et al. 1987; Cohen & Ejsmond-Frey 2010; 170 

Dunbar et al. 2012a, b), and the amount of pain medication requested by patients (Zillmann et 171 

al. 1993). Given the evidence that endorphins act as analgesics, previous studies have used 172 

changes in pain thresholds as an indicator of central endorphin release following a relevant 173 

activity (e.g. engaging in sports).  174 

According to the pain threshold assay, various exertive human social bonding 175 

activities have an impact on endorphin release. A series of five experiments demonstrated 176 

that pain thresholds are significantly increased as a consequence of laughter whilst watching 177 

humorous videos (or live stand-up comedy) over non-humorous videos (or live drama), but 178 

that a social context was required in order to evince this effect  (Dunbar et al. 2012a). That it 179 

is specifically endorphins that are involved in this has since been confirmed using positron 180 

emission tomography (PET: Nummenmaa et al 2016). Studies in which people were asked to 181 

exercise on rowing machines have demonstrated that exertive activity in the presence of other 182 

people leads to a greater increase in pain thresholds than when alone, and that this can occur 183 

in either the presence of known others, or with strangers (Cohen & Ejsmond-Frey 2010; 184 

Sullivan & Rickers 2013).  185 

This area of research has begun to demonstrate that synchronised exertive activities 186 

can lead to a greater increase in pain thresholds than unsynchronised activities (Sullivan et al. 187 

2014; Tarr et al. 2016). Importantly, the effects of synchronisation and exertion appear to be 188 

additive, with each contributing towards an increase in pain thresholds independently (Tarr et 189 

al. 2015), suggesting that activities which include both of synchrony and exertion might be 190 
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considered ‘ideal’ for the release of endorphins. In the following section we review this 191 

evidence and will later return to our reasons to associate endorphin release and 192 

synchronisation, using musical activities as an example of human activity that engages this 193 

system.  194 

 195 

2. Synchronisation and social bonding 196 

 197 

Synchronisation has, in the past few years, come under experimental investigation as a 198 

potential means by which humans can become more socially bonded with one another (Hove 199 

& Risen 2009; Wiltermuth & Heath 2009; Valdesolo & Desteno 2011; Launay et al. 2013). It 200 

has long been argued that synchronisation and social bonding are related, based on, for 201 

example, the known bonding effects of activities such as marching (McNeill 1995) and 202 

evidence which demonstrates there is a reciprocal effect between mimicry and social bonding 203 

(Chartrand et al. 2005). Given that synchronisation is essentially mimicry involving 204 

temporally precise prediction of the movements of co-actors, it is likely to have similar, if not 205 

more pronounced effects on bonding.  206 

People have a tendency to spontaneously synchronise their movements with those of 207 

other people, and this can happen unintentionally, and even when instructed not to do so 208 

(Issartel et al. 2007; Oullier et al. 2008; van Ulzen et al. 2008). Prosocial people will 209 

demonstrate more spontaneous synchronisation than people with pro-self tendencies 210 

(Lumsden et al. 2012), and priming to believe that someone is more socially desirable can 211 

encourage synchronisation between strangers (Miles et al. 2010, 2011), suggesting that 212 

interpersonal synchronisation is a social and facilitative behaviour, rather than an automatic 213 

motor process. People also report perceived synchrony to be an indicator of social closeness 214 

between people for both basic sounds (Miles et al. 2009; Lakens & Stel 2011) and musical 215 
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stimuli (Hagen & Bryant 2003), suggesting that the tendency to associate synchronisation 216 

with social behaviour is well engrained.  217 

Importantly, there is recent evidence to show that that synchronisation between 218 

strangers can have effects on subsequent measures of social bonding (Hove & Risen 2009; 219 

Wiltermuth & Heath 2009; Valdesolo & Desteno 2011; Launay et al. 2013). This has been 220 

demonstrated in a number of experimental studies in which participants tapping 221 

synchronously with an experimenter (Hove & Risen 2009; Valdesolo & Desteno 2011), walk 222 

in time with other people (Wiltermuth & Heath 2009; Wiltermuth 2012) or dance together 223 

(Reddish et al. 2013), even when people have no visual access to one another but are 224 

synchronising with the sounds of another person (Kokal et al. 2011; Launay et al. 2014). 225 

These effects are also present throughout development (Kirschner & Tomasello 2010; Cirelli 226 

et al. 2014a, b; Tunçgenç et al. 2015), suggesting that, if they are learned, this happens very 227 

early in life.  228 

In general, the social bonding effects of synchronisation have been attributed to self-229 

other blurring that might occur any time we match our movements exactly to the movements 230 

of another person (e.g. Decety & Sommerville 2003). Perception of the movements of 231 

another person is known to activate regions of the brain involved in making a similar 232 

movement ourselves (e.g. Gallese et al. 1996; Rizzolatti & Craighero 2004), which means 233 

that moving at the same time as another person leads to co-activation of similar neural 234 

networks for perception and action. The Rubber Hand Illusion has demonstrated that it is 235 

possible to perceive a sense of ownership over a rubber hand when feeling a stroking motion 236 

synchronously with observing the hand being stroked (Botvinick & Cohen 1998), implying 237 

that blurring of self and other is possible even in the case of cross-modal perceptual inputs. 238 

However, this self-other matching process is likely to account for only some of the social 239 

bonding effects of real synchronous human activities, such as dance, where there are likely to 240 
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be many people involved, movements that are not exactly matched between co-actors, and 241 

associations with an external source, such as music. 242 

From an evolutionary perspective an important potential reason for synchronised 243 

activities to be socially bonding might be that they play a role in lekking (e.g. Ryder et al. 244 

2011). When engaging in chorused activities, all-male bands of several species appear to be 245 

able to attract females to their group due to the quality of the display (e.g. Merker 2000). It 246 

would therefore seem logical that group members who are particularly capable or competent 247 

should be sought out so as to enhance the quality of chorusing bouts. This might form part of 248 

the origins of synchronised activities (Merker et al. 2009), but the lack of clear sexual 249 

dimorphism in human abilities for synchronisation suggest that this is unlikely to be the only 250 

purpose that these activities serve (Bowling et al. 2013). Synchronised activities could have 251 

developed as a method for attracting mates, but then also served to aid evaluation of same-sex 252 

companions, and a demonstration of a group’s prowess or power. The knowledge gleaned of 253 

same-sex companions could prove to be useful in determining group membership, making it 254 

beneficial to co-opt these activities for social bonding purposes. Hitherto, it is only possible 255 

to speculate on the extent to which this capacity has been consciously used to promote and 256 

assess cohesion throughout history, but one recent study has shown that people moving in 257 

synchrony are perceived as more formidable (e.g. Fessler & Holbrook 2016).  258 

 259 

3. Music, social bonding and the Endogenous Opioid System 260 

 261 

So far we have reviewed evidence which demonstrates that the endogenous opioid system is 262 

involved in primate social bonding, and that the act of synchronising with other people can 263 

lead to social bonding. Here we connect these two lines of research, and suggest that 264 

synchronised musical activities are particularly conducive to the release of endorphins, by 265 



SYNCHRONY AS LARGE SCALE BONDING   12 
 

 
 

virtue of encouraging exertive movement in the presence of other people, and as a 266 

consequence of engaging regions of the brain involved in movement and social cognition. 267 

Based on the recent evidence associating exertive activities and endorphin release 268 

(e.g. Cohen & Ejsmond-Frey 2010; Sullivan & Rickers 2013; Tarr et al. 2015), a small 269 

number of studies have started to investigate the effect of active engagement in musical 270 

activities and the EOS. For example, sufficiently vigorous singing, dancing and drumming 271 

trigger a significantly larger increase in both pain threshold and positive affect compared to 272 

listening to music and engaging in low energy musical activities, suggesting that physical 273 

activity is important in the relationship between music, endorphins and social bonding 274 

(Dunbar et al. 2012b; Tarr et al. 2015). Another recent set of studies connected exercise 275 

machines to musical output software so that individuals influenced a musical soundscape 276 

though the exertive movements they made: when movement during group exercise resulted in 277 

musical feedback, participants perceived their own exertion to be lower, reported enhanced 278 

mood, and felt a greater desire to exert themselves further in comparison with when they 279 

were exercising whilst listening (passively) to music that they had no control over (Fritz et al. 280 

2013a, b). As such, musical agency (i.e. perception of a relationship between purposeful 281 

movement and sounds that are being produced) is likely to be associated with greater 282 

endorphin release, again suggesting that there is an important relationship between exertive 283 

movements, music and the EOS.  284 

However, the release of endorphins as a consequence of engaging with music is not 285 

limited to situations involving exertion. There is a considerable amount of evidence to 286 

suggest that listening to music can reduce perception of pain (Koch et al. 1998; Allen et al. 287 

2001; Good et al. 2001; Lepage et al. 2001; Nilsson et al. 2001, 2003; Nilsson 2008) and 288 

therefore diminish the need for opioid agonists following operative care (Cepeda & Carr 289 

2006; Bernatzky et al. 2011). This effect is largely attributed to the activity of the EOS, 290 
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suggesting that listening to music alone can have similar effects on endorphins to those 291 

experienced when actively engaging in musical activities.  292 

More direct evidence using positron emission tomography has demonstrated that the 293 

EOS is engaged during passive listening to music (Blood & Zatorre 2001; Stefano et al. 294 

2004). Functional Magnetic Resonance Imaging has provided evidence that areas of the brain 295 

with large numbers of opioid receptors that are involved in positive reinforcement (such as 296 

the nucleus accumbens) are active during passive listening to music (Brown et al. 2004; 297 

Menon & Levitin 2005; Koelsch 2014). The argument for a role of the EOS in musical 298 

experiences is strengthened by evidence associating ‘thrills’ and a sense of elation 299 

experienced whilst listening to music with endorphins (Goldstein 1980; Chiu & Kumar 300 

2003). As well as calming music buffering stressful life events (see McKinney et al. 1997 for 301 

a review), it has been argued that listening to techno music significantly changes emotional 302 

states (and increases beta-endorphin levels) due to its strong rhythmic beat and engagement 303 

of motor regions of the brain (Gerra et al. 1998). 304 

This suggests that exertion is not necessarily required for music to engage the EOS, 305 

and that the analgesic effects of listening to music are not simply attributable to its relaxing 306 

properties. It is important to return to the ubiquitous human aptitude for entrainment to 307 

rhythmic beats (Clayton et al. 2005; Brown & Jordania 2011), particularly those embedded in 308 

music (e.g. Demos et al. 2012) and, in addition, the detection of human agency, which is 309 

inextricably linked with the detection of rhythm and the desire to engage with that rhythm 310 

(Launay 2015b). Being told that music is created by a person rather than a computer means 311 

that listening to that music engages regions of the brain involved in social cognition, as well 312 

as motor regions of the brain (Steinbeis & Koelsch 2009). People synchronise differently 313 

when they believe they are interacting with a human compared with a computer (Konvalinka 314 

et al. 2010), and children’s drumming performance is improved when they believe they are 315 
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interacting with another person (Kirschner & Tomasello 2009). Importantly this might mean 316 

that even in the absence of another person musical and rhythmic sounds are detected as 317 

having some sense of agency, leading to some subjective social experience (Launay 2015b). 318 

Given that synchronisation and social bonding are thought to be linked via self-other 319 

coupling it is feasible that musical sounds, by virtue of the identification of agency, and 320 

musical rhythm (Zatorre et al. 2007; which engages motor regions of the brain: Chen et al. 321 

2008) leads to some imagined protosocial experience, and this has some influence on the 322 

EOS. This is somewhat speculative and needs much further investigation, but does suggest an 323 

evolutionary time course from making movements together to the pleasure and enjoyment we 324 

currently derive from listening to music alone. 325 

 326 

4. A proposed evolutionary time course from endorphins to music via synchronisation 327 

 328 

At some point in primate history it became important to engage in social activities with non-329 

related conspecifics. Endorphins were co-opted from existing neural systems for pain 330 

management, as it was relatively easy to encourage their release through mildly stimulating 331 

interpersonal contact (Curley & Keverne 2005). However, as hominids started to rely on 332 

increasingly large social groups there was a need to ‘groom at a distance’, requiring new 333 

behaviours that allowed the release of endorphins without physical touch (Dunbar 2012).  334 

 Estimates of the time budgets for the main hominin taxa (based on calculations given 335 

in Dunbar 2014b) suggest that without finding mechanisms for drastically reducing the costs 336 

of social bonding as well as foraging, hominin time budgets would have been unsustainable 337 

had they needed to live in larger groups than those characteristic of the most social monkeys 338 

and apes. In the case of anatomically modern humans, the gross time budget would have 339 

exceeded available active day time (defined by tropical daylight) by more than 50%. Social 340 
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grooming is extremely expensive time-wise (Dunbar 1991; Lehmann et al. 2007) because it is 341 

a strictly one-on-one activity. Hence, one effective way of reducing the time costs of social 342 

bonding is to increase the size of the ‘grooming’ group so that more individuals can be 343 

‘groomed’ simultaneously.   344 

 Synchronisation and physical exertion in social settings allow both the co-ordination 345 

of groups of people, and the release of endorphins though exertive motor activity, effectively 346 

taking on the role previously filled by grooming. As well as solving problems of time 347 

constraints these activities could make groups larger than 150 feel socially connected very 348 

quickly (Pearce et al. 2015; Weinstein et al. 2015), although this connection is likely to be 349 

felt towards the group as a whole rather than experienced as individual social relationships 350 

(Pearce et al. in press). Forms of synchronised movement could have progressively evolved 351 

and become positively reinforcing in their own right. When perceiving the music of the 352 

people from our own social group, and correctly predicting the repetitive rhythms involved 353 

we perform some mental synchronisation with those human driven sounds. While exertion is 354 

no longer a necessity for experiencing a social high during musical activities, it inevitably 355 

boosts the release of endorphins, meaning that active engagement in musical activities is 356 

optimal for social bonding, although passive listening can be sufficient to lead to the release 357 

of endorphins with some consequent analgesic effects. Importantly, as we noted above, both 358 

synchronisation and exertive engagement have independent effects on activation of the EOS 359 

and social closeness experienced by people engaging in musical activities together. 360 

While this series of events cannot be verified, it should nonetheless be possible to 361 

bring further evidence to bear on the question. More thorough testing of the relationship 362 

between synchronisation, exertion, endorphins and social bonding might help to elucidate 363 

potential causal pathways by which synchronous activities such as dance influence social 364 

bonds more generally. In addition, our current understanding of the degree to which musical 365 



SYNCHRONY AS LARGE SCALE BONDING   16 
 

 
 

sounds are perceived as agent driven and the underlying neural mechanisms that relate to 366 

these differences in perception are relatively poor. By bringing these lines of evidence 367 

together, it should be possible to determine the importance that synchronisation plays in our 368 

social experience of musical activities, both passive and involving active performance.  369 

     370 

 371 

  372 
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