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ABSTRACT Instance segmentation is typically based on an object detection framework. Semantic segmen-

tation is conducted on the bounding boxes that are returned by detectors. NMS (non-maximum suppression)

is a common post-processing operation in instance segmentation and object detection tasks. It is typically

used after bounding box regression to eliminate redundant bounding boxes. The evaluation criteria for

object detection require that the bounding box be as close as possible to the ground truth, but they do not

emphasize the integrity of the included object. However, sometimes the bounding boxes cannot contain the

complete objects, and the parts beyond the bounding boxes cannot be correctly predicted in the subsequent

semantic segmentation. To solve this problem, we propose the Syncretic-NMS algorithm. The algorithm

takes traditional NMS as the first step and processes the bounding boxes obtained by traditional NMS,

judges the neighboring bounding boxes of each bounding box, and combines the neighboring boxes that

are strongly correlated with the corresponding bounding boxes. The coordinates of the merged box are the

four coordinate extremes of the bounding box and the highly relevant neighboring box. The neighboring

box with strong correlation is merged with the corresponding bounding box. Based on an analysis of the

influences of corresponding factors, the criteria for correlation judgment are specified. Experimental results

on the MS COCO dataset demonstrate that Syncretic-NMS can steadily increase the accuracy of instance

segmentation, while experimental results on the Cityscapes dataset prove that the algorithm can adapt

to application scenario changes. The computational complexity of Syncretic-NMS is the same as that of

traditional NMS. Syncretic-NMS is easy to implement, requires no additional training, and can be easily

integrated into the available instance segmentation framework.

INDEX TERMS Instance segmentation, non-maximum suppression, correlation judgment, object

localization, object detection.

I. INTRODUCTION

Instance segmentation is a multi-mission learning task that

consists of object detection and semantic segmentation. In the

task, an algorithm generates bounding boxes for specified

The associate editor coordinating the review of this manuscript and
approving it for publication was Shiqi Wang.

object categories in images and assigns classification scores

to them. Then, the algorithm classifies the foreground objects

in the bounding boxes at the pixel level [1]. A popular

class of instance segmentation algorithms is based on

object detection frameworks, such as Faster R-CNN (faster

region-convolutional neural network) [2] and Cascade

R-CNN (cascade region-convolutional neural network) [3].
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In such algorithms, NMS (non-maximum suppression) is a

common post-processing operation. Its main objective is to

eliminate redundant bounding boxes that are generated during

the detection process, thereby substantially reducing the false

detection rate.

Traditional NMS is the widely used post-processing algo-

rithm in object detection, but it has some shortcomings in

instance segmentation. For the localization task in object

detection, the predicted bounding boxes must be as close as

possible to the labeled ground truth; however, the integrity

of the detected objects was not fully considered. When the

complexity of image structure is normal, although the bound-

ing boxes slightly larger than the ground truth has little

effect on the predictive results (as shown in Figure 1, larger

bounding boxes does not bring worse predicting result), those

bounding boxes smaller than the true boundary boxes can-

not fully contain the objects and will lead to serious prob-

lems. Instance segmentation requires semantic segmentation

operations after localization. Objects that are not contained

in bounding boxes cannot participate in the segmentation

process, thereby resulting in a decrease in the segmentation

accuracy. In addition, just as our brain uses the association

between objects and the environment to promote visual per-

ception and cognition [4], a moderate amount of contextual

information helps increase the accuracy of predictions [5].

Therefore, expanding the network’s receiving range or the

size of the candidate regions can enhance the segmentation

accuracy of deep learning networks [6]–[8].

FIGURE 1. When the complexity of the image structure is normal,
the segmentation results of the smaller bounding box on the left
and the larger bounding box on the right are almost the same.

Based on the above analysis, we propose Syncretic-NMS,

which is a merging non-maximum suppression algorithm

for instance segmentation that is based on traditional NMS.

The algorithm judges the neighboring bounding boxes of

proposed boxes, merges the bounding boxes that are strongly

correlated to the proposed boxes, and generates bounding

boxes that contain the complete objects.

The main innovations of the algorithm in this paper are as

follows:

1) A general NMS algorithm is proposed, which can

replace all traditional NMS algorithm modules that are based

on greedy algorithms in instance segmentation. Its algorithm

complexity is consistent with traditional NMS, and it needs

not be added to the training phase; thus, it is very easy to

implement.

2) Compared with traditional NMS, Syncretic-NMS

merges neighboring bounding boxes such that the bounding

boxes contain complete objects, which can provide more

context information during segmentation and improve the

segmentation accuracy.

3) Using a threshold self-test procedure, Syncretic-NMS

can adapt to various application scenarios.

The remainder of this paper is organized as follows:

Related works are reviewed in Section II. Section III

introduces traditional NMS. Section IV introduces our

method, including the details of the pipeline, the

correlation judgment factors and criteria, and the threshold

selection methods, and an algorithm complexity analysis is

conducted. Section V introduces the experiments and ana-

lyzes the results. We present the conclusions of this study

in Section VI.

II. RELATED WORKS

NMS is an important part of the detection algorithm. It was

first used for edge detection [9] and, subsequently, for feature

point detection [10], [11] and object detection [12]–[14].

Early NMS of object detection was not always an integrated

component in the pipeline [15]. In the subsequent develop-

ment, NMS was gradually integrated and differentiated into

the following three methods: greedy NMS, bounding box

aggregation and learning NMS.

Greedy NMS is a traditional and the most popular

NMS method in object detection. The strategy of this method

is simple and intuitive: For a set of overlapping bound-

ing boxes, the bounding box with the maximum score is

selected, and the neighboring bounding boxes are deleted

according to specified rules, e.g., if they exceed the man-

ually set IoU (intersection over union) threshold. In recent

years, related algorithms have been improved on this basis.

Soft-NMS [16] reduces the scores of (rather than directly

deleting) neighboring bounding boxes that exceed the IoU

threshold and improves the robustness to object occlusions.

References [17] and [18] use the IoUs of the bounding boxes

that are predicted by the network and the ground truth as

the localization reliability parameter of the bounding boxes.

They replace the classification score with the localization

reliability parameter as the input of the NMS; thus, the bound-

ing boxes do not deviate from the object during the iterative

regression process. Weighing [19], [20] and fusion [21]–[23]

can be used in NMS to further improve performance. In a

recent study, Softer-NMS [24] was proposed, which uses

a new loss function to train the bounding box regression

model. After obtaining the standard deviation of the predicted

localization, the bounding boxes are fused using the average

weights. Fast-NMS [25] realizes speedup of the batch sorting

algorithm and the IoU calculation and uses matrix operations

and thresholds to identify the detection results that must

be retained for each class. Greedy NMS remains the best

choice [26], but this type of method has the disadvantages

of requiring manual setting of the threshold and of yielding

only a locally optimal solution.
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Bounding box aggregation is another method for suppress-

ing redundant bounding boxes. The core strategy of this

type of method is the combination or clustering of bound-

ing boxes, rather than using a greedy algorithm to obtain a

locally optimal solution. For a series of bounding boxes that

are returned by a classifier, the algorithm typically groups

these bounding boxes according to specified rules. Then,

for each set of bounding boxes, all the bounding boxes that

satisfy the requirements are aggregated into a single bounding

box. Representative methods of this type are the VJ detector

(Viola-Jones face detector) [27] and Overfeat [28]. When

processing many bounding boxes, the VJ detector cascades

multiple classifiers, arranges the classifiers from front to

back in order of increasing complexity, and aggregates

the bounding boxes. Overfeat judges the correlation between

the bounding boxes that are returned by the classifier. If the

IoU between two bounding boxes is higher and the distance

between their centers is shorter, the probability that they are

regarded as the identical object is higher. Then, the average

of the four coordinate extreme values of all relevant bounding

boxes is calculated and returned to realize the aggregation of

the bounding boxes. In addition, [13] and [29] also present

effective methods for bounding box aggregation. However,

methods of this type also require manual setting of the thresh-

old and are relatively time-consuming.

Learning NMS is novel. The main strategy of methods

of this type is to add NMS to the neural network in an

end-to-end manner and to score and filter all the original

detection results. The representative method is Learning-

NMS [30]. For the network to obtain only one corresponding

bounding box for each object, the method proposes a loss

function. If the detector generates two or more bounding

boxes for an object during training, it will be punished.

Neighboring bounding boxes conduct joint processing so

that the detector has sufficient information to determine

whether a single object has been detected multiple times.

References [31]–[33] also integrate NMS into deep learning

networks. Comparedwith greedyNMS, thismethod performs

better when dealing with occlusion and on dense detection

problems, but it is outperformed overall by the latest greedy

NMS algorithm. Although learning NMS does not require

manual setting of the threshold, it is time-consuming.

III. TRADITIONAL GREEDY NMS

Traditional NMS is a greedy algorithm. Themain characteris-

tic of this algorithm is that it can only obtain a locally optimal

solution and not a globally optimal solution. To fully explain

the pipeline of the traditional NMS algorithm, the relevant

definitions are presented here.

The classifier extracts several bounding boxes from the

images and passes the first n bounding boxes with higher

scores to the NMS algorithm. Define the bounding box list B

as a tensor, which is expressed as B = b1, b2, . . . , bn. The

classification score list S that is returned by the classifier is a

one-dimensional array, which expressed as S = s1, s2, . . . , sn

and corresponds to the bounding box information in the

bounding box list B element by element.

To facilitate description of the algorithm, a bounding box

in the bounding box list is set to bi(i = 1, 2, . . . , n), and

its corresponding classification score is denoted as si(i =

1, 2, . . . , n). For this bounding box, assume that its area is

area(bi). If bj(j = 1, 2, . . . , n, j 6= i) is a neighboring box

of bi and the area of bj is area(bj), their IoU can be expressed

as:

iou
(

bi, bj
)

=
area

(

bi ∩ bj
)

area
(

bi ∪ bj
) (1)

According to the above definition, the traditional non-

maximum suppression algorithm process is as follows:

Algorithm 1 Pipeline of Traditional Non-Maximum

Suppression

Input: The bounding box list B = b1, b2, . . . , bn of the

top n bounding boxes with high scores that are returned

by the classifier, the score list S = s1, s2, . . . , sn, and the

threshold Nt .

Output: Bounding box list D and corresponding score

list S.

1) Develop tensor D as storage space and save the

bounding box coordinate information;

2) WHILE B 6= empty

3) Select the maximum sM in S;

4) Add the corresponding bounding box bM to D and

delete it from B;

5) FOR bi IN B:

6) IF iou (bM , bi) ≥ Nt
7) Delete the corresponding information of bi in B

and S;

8) END IF

9) END FOR

10) END WHILE

According to the above algorithm pipeline, there is

only one suppression condition for the bounding box.

If iou (bM , bi) exceeds the threshold Nt , the bounding box

will be suppressed. Due to the conciseness of the judg-

ment conditions, traditional NMS has extremely high effi-

ciency, but some high-confidence bounding boxes may also

be filtered out by mistake, thereby resulting in the obtained

bounding boxes not including complete objects. Aiming at

overcoming this problem, this paper proposes a new NMS

algorithm that merges neighboring boxes: Syncretic-NMS.

IV. SYNCRETIC-NMS

A. SYNCRETIC-NMS PIPELINE

Similar to the traditional NMS algorithm, the Syncretic-NMS

algorithm that is proposed in this paper accepts the bounding

box list B and classification score S that are returned by the

classifier as input, obtains the bounding box list D after one

round of NMS, and conducts neighboring box correlation
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judgment and merge operations. However, the coordinate

information of the bounding box is added to the bounding

box list B, which is used to obtain the combined border

coordinates. A plane Cartesian coordinate system is estab-

lished, where the positive directions of x-axis and y-axis are

horizontally rightward and vertically upward, respectively.

Consider a bounding box bi = {i, (x i1, y
i
1, x

i
2, y

i
2)} in B,

where i is the label of each bounding box, which associates

the bounding box with its corresponding classification score,

and the quadruple (x i1, y
i
1, x

i
2, y

i
2) represents the coordinates

of each bounding box, where (x i1, y
i
1) and (x i2, y

i
2) represents

the coordinates of upper-left corner and the lower-right corner

of the bounding box, respectively.

The correlation judgment operation is performed on all

adjacent boxes of the bounding box in the list in order. If the

degree of correlation between the neighboring box and the

candidate box exceeds a threshold Nc, it is added to the tem-

porary bounding box storage list A that contains the candidate

box. For all bounding boxes in A, find the minimum x i1,

the maximum yi1, the maximum x i2, and the minimum yi2
coordinate values among all the coordinates, and replace the

four coordinates of the bounding box accordingly. Finally,

repeat this for all boxes in D. After this operation, the area

of the bounding box is enlarged, and other high-confidence

bounding boxes are merged. By manually controlling the

threshold Nc, the degree of enlargement of the bounding box

area can be adjusted. The proposed algorithm expands the

range of the bounding box by retaining and merging adjacent

bounding boxes that are strongly related to the candidate

bounding box, and it can completely contain the boundary

of the object.

The algorithm pipeline is as follows:

Before conducting Step 15, to transform the bounding box

coordinate information into a modifiable state, it is necessary

to delete the constant mark ‘‘const’’ of the input bounding

box list and to modify the corresponding head file.

B. CORRELATION JUDGEMENT FACTORS AND CRITERIA

Correlation judgment is a key mechanism for controlling

whether neighboring boxes are retained. Neighboring boxes

that pass the judgment will participate in the merging of

bounding boxes. The bounding box classification score

reflects the probability that the objects in the bounding

box belong to a specified category. The higher the score,

the higher the localization accuracy of the bounding box.

The IoU between the bounding boxes reflects the degree of

correlation between the bounding boxes. The closer the two

boxes are, the higher the IoU between the bounding boxes.

Therefore, the bounding box classification score and the

IoU of the bounding boxes are positively correlated with the

correlation between the bounding boxes. In Overfeat [23],

the distance between bounding boxes is also an impor-

tant factor for judging the correlation of bounding boxes.

Under comprehensive consideration, we use the classification

score, IoU, and adjacency as the factors for determining the

Algorithm 2 Pipeline of Syncretic Non-Maximum

Suppression

Input: The bounding box list B = b1, b2, . . . , bn of

the top n bounding boxes with high scores that were

returned by the classifier (the bounding boxes in the list

bi = {i, (x i1, y
i
1, x

i
2, y

i
2)}), the score list S = s1, s2, . . . , sn,

the threshold Nt , and the correlation judgment threshold

Nc.

Output: Bounding box list D and the corresponding score

list S.

1) Develop tensors D and A as storage spaces for saving

the bounding box coordinate information for return

and for correlation judgment, respectively;

2) WHILE B 6= empty

3) Pick the maximum sM in S;

4) Add the corresponding bounding box bM to D and

delete it from B;

5) FOR bi IN B:

6) IF iou (bM , bi) ≥ Nt
7) IF iou (bM , bi) ∗ si ≥ Nc
8) Add bM and bounding box bi to A;

9) END IF

10) Delete the corresponding information of bi from B

and S;

11) END IF

12) FOR ai IN A:

13) Select the minimum x1 coordinate, the maximum

y1 coordinate, the maximum x2 coordinate and the

minimum y2 coordinate of all the bounding box coor-

dinates of list A;

14) END FOR

15) Replace the coordinates of bM in D with the four

coordinates;

16) END FOR

17) END WHILE

correlation of neighboring boxes. The experimental results

and analysis in Section V are used to evaluate a single model

under various combinations of factors. The results demon-

strate that the optimized result can be obtained by using the

product of the classification score and IoU as the correlation

judgment criterion.

The classification score and IoU have been introduced in

the previous section, and their values range in [0,1]. The

adjacency between the bounding boxes is defined as

the Euclidean distance between the center point of bM with

the maximum classification score in the current bounding

box list and the center point of the neighboring box. Let the

coordinates of the upper-left corner and the lower-right corner

of a bounding box bi be (x
i
1, y

i
1) and (x

i
2, y

i
2), respectively, and

the corresponding coordinates of the upper-left corner and

the lower-right corner be (x
j
1, y

j
1) and (x

j
2, y

j
2), respectively.

Then, the coordinates of the center point Pi of the bound-

ing box bi and the center point Pj of the neighboring box

114708 VOLUME 8, 2020
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are (
xi1+x

i
2

2
,
yi1+y

i
2

2
) and (

x
j
1+x

j
2

2
,
y
j
1+y

j
2

2
), respectively, and the

Euclidean distance ρ between the two points is:

ρ =

√

√

√

√

(

x
j
1 + x

j
2

2
−
x i1 + x i2

2

)2

+

(

y
j
1 + y

j
2

2
−
yi1 + yi2

2

)2

(2)

The adjacency should be normalized. The closer the two

boxes are, the more likely they are to be correlated. The

further away from the corresponding bounding box and the

closer to the image boundary, the less likely a box is to be

correlated to the corresponding bounding box. Based on the

above reasons, we normalize the adjacency adjc between the

bounding boxes to:

adjc = 1 −
ρ

ρ0
(3)

Here, ρ is the distance between the center points of

the adjacent bounding boxes, and ρ0 is the distance from

the extension of PiPj to the image boundary. After PiPj is

extended, it crosses the boundary with Qj, and after PjPi is

extended, it crosses the boundary with Qi.

ρ0 = min
(

QiPj,PiQj
)

(4)

If the center points of the two boxes are the same, adjc is 1.

If the center point of the adjacent box is at the boundary of the

image, adjc is 0. The range of adjc is [0,1]. After normalizing

all features, the product of these features is also limited

to [0,1], and all factors are positively related to the correlation

between the bounding boxes. The algorithm synthesizes and

integrates the correlation factors and conducts the correlation

judgment.

The correlation judgment function is:

si =

{

si, iou
(

bi, bj
)

∗ si ≥ Nc

0, iou
(

bi, bj
)

∗ si < Nc
(5)

Here, si is the original classification score of the bound-

ing box, iou
(

bi, bj
)

is the IoU of the bounding box bi and

the neighboring box bj, and Nc is the association judgment

threshold.

C. THRESHOLD SELECTION

The traditional NMS algorithm regards a manually set thresh-

old Nt as a constant, and any bounding box that is below

the threshold Nt will be suppressed. The algorithm conducts

an NMS operation, and the threshold Nt is also manually

set. In the experiment, Nt was set to a constant value of 0.5.

Similar to the traditional NMS algorithm,Nc is also a constant

threshold that is set manually, and its value range is [0,1].

If Nc is too high, then Syncretic-NMS is equivalent to tradi-

tional NMS and will not merge any neighboring bounding

boxes. However, if Nc is too low, too many neighboring

bounding boxes will remain, which will also substantially

affect the accuracy. In addition, for application scenarios,

to obtain the optimal results, it is necessary to adjust the

threshold Nc. Therefore, we design a method for optimizing

the threshold automatically. The detailed data and analysis are

presented in Section V.

D. ALGORITHM COMPLEXITY ANALYSIS

The time complexity of each step in Syncretic-NMS

is O(n), where n is the number of bounding boxes. For

Syncretic-NMS to process n bounding boxes, the computa-

tional time complexity is O(n2), which is the same as the

complexity of the traditional greedy NMS and that of the

classic improved algorithm, namely, Soft-NMS. Syncretic-

NMS adds additional traversal operations, although it will

slightly affect the calculation speed, but the step will not

increase the calculation complexity. It will not significantly

affect the running speed of the detector that is applied to each

detection network, and it can be easily added to the instance

segmentation algorithm pipeline. Quantitative data of time

cost are shown in Section V.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. CORRELATION FACTOR ABLATION STUDY

Correlation judgment is a key mechanism for controlling

whether adjacent boxes are retained. Neighboring boxes that

pass the correlation judgment will participate in the merging

of bounding boxes. To determine which form of the corre-

lation judgment performs best, we design an ablation study

among the correlation factors. The experiments are conducted

on a classic instance segmentation framework: Mask R-CNN

(mask region-convolutional neural network) [34]. The first

stage of Mask R-CNN uses Faster R-CNN for bounding

box regression and classification, and the second stage con-

ducts semantic segmentation of the returned bounding boxes.

The experiment uses the officially provided Mask R-CNN

(ResNet-101 FPN) model. When the NMS threshold Nt is

determined, merely the correlation judgment conditions are

changed. The correlation judgment is made using various

combinations of the three correlation factors that are specified

above and uses the threshold self-test procedure that will

be described later to dynamically determine the value of

the threshold Nc. The final prediction results of traditional

NMS and Syncretic-NMS that are obtained using several

correlation judgment methods are presented in Table 1.

TABLE 1. Comparison of the prediction results that were obtained using
various combinations of correlation factors under the same model.
AP denotes the average precision.

Compared with traditional NMS, the use of various com-

binations of the three correlation factors for correlation
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judgment can increase the prediction accuracy of the model.

According to the prediction results in Table 1, we finally

select the classification score and the IoU as the correlation

factors for correlation judgment.

B. THRESHOLD SELF-TEST

Among scenarios, image datasets often differ in terms of their

characteristics. For example, the image structure of the MS

COCO [35] dataset is typically complicated, and there is often

one or more large instances in the images. The images in

the Cityscapes [36] dataset contain many small objects. The

occlusions between objects are more severe, and the instances

are more concentrated on two categories: person and car.

The traditional NMS algorithm must adjust the threshold

according to the application scenario. This problem is also

encountered with Syncretic-NMS. When the application sce-

nario is changed, the threshold must be adjusted to control

the amplitude of the bounding box to avoid negative effects.

This article utilizes two manually set thresholds: Nt , as in

traditional NMS, must be manually adjusted to the optimal

value according to the model, and Nc, which is used to

control the correlation judgment, is set via a designed self-test

procedure.

The experimental results on the MS COCO and

Cityscapes datasets demonstrate that when Nc changes in the

range [0,1], there is always a unique peak in the sensitivity of

the network to Syncretic-NMS. As shown in Figure 2, in the

range of [0.1,1], the prediction performance is evaluated from

0.1 in increments of 0.1. The threshold changes from small

to large in the interval, and AP (average precision) increases

and, subsequently, gradually decreases. As the threshold Nc
approaches 1, the role of Syncretic-NMS weakens. When

Nc = 1, no bounding box is added or merged, which is the

same as traditional NMS. Therefore, the task of the threshold

self-test can be simply transformed into a task of finding the

peak in the interval [0,1].

FIGURE 2. Sensitivity of Mask R-CNN to Syncretic-NMS on various
datasets.

Based on this phenomenon, we design a threshold self-

test procedure. On 500 specified dataset images (the images

must use MS COCO-type annotations), the function first

determines the prediction accuracy at the default threshold

Nc = 0.5. Then, on these images, the prediction accu-

racy after the change of Nc is measured in increments and

decrements of 0.1. If a higher prediction accuracy is real-

ized, it continues to increase or decrease. When the accuracy

reaches the peak, the final threshold will be determined. The

final threshold is a constant value, and there is no need to

readjust the threshold in the dataset. This method does not

incur excessive time costs.

C. INSTANCE SEGMENTATION ON THE MS COCO DATASET

Syncretic-NMS is evaluated on the MS COCO dataset with

80 categories. The models we use are all publicly available

official models, and they are trained on the union of 115k

training images and 35k validation images (trainval 35k).

After replacement with Syncretic-NMS, the available model

was evaluated on a set of 5k validation images. To eval-

uate the performance of the model on instance segmenta-

tion, Syncretic-NMS is used to replace NMS on the classic

instance segmentation network, namely, Mask R-CNN, and

the current state-of-the-art instance segmentation network,

namely, MS R-CNN (mask scoring region-convolutional

neural network), for comparative quantitative experiments.

In addition, the influence of the selection of the threshold Nc
on the final result was evaluated. Finally, the effectiveness of

the comparison model is visualized.

In the experiment, the AP of the mask is selected as

the evaluation index, and the degree of approximation

of the ground truth by the mask was compared. If the

numbers of true-positive examples, true-negative examples,

false-positive examples, and false-negative examples of the

sample classification are defined as TP, TN, FP, and FN,

respectively, the accuracy is:

accuracy =
TP + TN

TP + TN + FP + FN
(6)

MS COCO’s main evaluation index, namely, AP, refers to

the average accuracy rates on 10 IoU levels and 80 categories.

The IoU threshold is from 0.5 to 0.95, and the accuracy

is evaluated once every step of 0.05. As the IoU threshold

increases, the prediction result is closer to the ground truth,

and the AP decreases. Then, the average of the 10 measure-

ments is regarded as the final AP. On MS COCO, the average

AP value of 80 categories is the final AP, also called mAP

(mean average precision). The ‘‘AP’’ in all tables of the

paper are mAP. AP50 and AP75 refer to the accuracies at IoU

thresholds of 0.5 and 0.75, respectively, while APS, APM, and

APL are average accuracies for small objects (area ≤ 322),

medium objects (322 < area ≤ 962), and large objects

(area> 962). The higher the AP is, the stronger the prediction

ability is.

According to Table 2, Syncretic-NMS yields significantly

higher values than NMS for each evaluation index and

realizes approximately 2% improvement on each model.

In addition, Syncretic-NMS realizes improvements on the

small-, medium- and large-object evaluation indicators.

To more clearly visualize the improved performance of
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TABLE 2. Comparison of the results of instance segmentation networks using traditional NMS and Syncretic-NMS on the MS COCO dataset. The backbone
networks are all ResNets [37] (residual networks). FPN [38] (feature pyramid network) and DCN [39] (deformable convolutional network) are utilized in
the experiment.

TABLE 3. Comparison results of Mask R-CNN using traditional NMS, Soft-NMS, Syncretic-NMS and the fusion version on the MS COCO dataset. All
experiments in the table are performed on a single model (Mask R-CNN with backbone of ResNet-101 FPN). In the fusion version,
Soft-NMS replaces the original NMS as the first step of Syncretic-NMS.

FIGURE 3. Visual comparison of Mask R-CNN using traditional NMS and
Syncretic-NMS. From left to right are the original image, the prediction
result that was obtained using NMS and the prediction result that was
obtained using Syncretic-NMS. Syncretic-NMS can effectively improve the
prediction result, the bounding boxes can more completely contain the
entire object, and the objects that are outside the bounding box can now
be correctly predicted.

Syncretic-NMS, we present a comparison effect chart

in Figure 3. According to Figure 3, in the prediction result that

is obtained using traditional NMS, the wheels and handlebars

of the bicycle are partially outside the detected bounding box;

hence, all pixels outside the bounding box fail to be predicted

during segmentation. The bounding box that is obtained using

Syncretic-NMS is larger, the bicycle is completely enclosed

within the bounding box, and the pixels at the wheels and

handlebars can be successfully predicted. Additional visual

comparisons are presented in the appendix at the end of the

paper.

In order to further prove the efficiency of Syncretic-

NMS, we also conducted the comparative experiments with

Soft-NMS and the fusion version (Syncretic-NMS built on

Soft-NMS). As shown in Table 3, on the single model Mask

R-CNN (ResNet-101 FPN), just the original NMS method is

replaced for evaluation, both Soft-NMS and Syncretic-NMS

TABLE 4. The efficiency of Syncretic-NMS against traditional NMS.

FIGURE 4. Examples of visual comparison on the Cityscapes dataset.
To show the effect of Syncretic-NMS more clearly, the example image is a
screenshot of the original image. The three columns of the image from
left to right are a screenshot of the original image, the prediction result of
Mask R-CNN, and the prediction result after using Syncretic-NMS. The red
area in the figure is the enlarged range of the bounding box, which was
manually labeled.

can improve the efficiency of the model. The performance of

Syncretic-NMS is even better than that of Soft-NMS. In addi-

tion, when Soft-NMS replaced the original NMS as the first

step of Syncretic-NMS, the efficiency of the fusion version

is slightly better than that of the original Syncretic-NMS.

Therefore, Syncretic-NMS is an effective and generalized

NMS method for instance segmentation.

According to the efficiency results shown in Table 4,

the evaluating results on an NVIDIA GTX 1080 Ti using
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FIGURE 5. More visual comparison of Mask R-CNN using traditional NMS and Syncretic-NMS. Each column from
left to right is the original image, the prediction result using NMS and the prediction result using Syncretic-NMS.
The red area in the figure is the enlarged range of the bounding box manually labeled.
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TABLE 5. Comparison of the results of instance segmentation networks using traditional NMS and syncretic-NMS on the cityscapes dataset.

500 validation images demonstrate that the average predic-

tion time per image is slightly increased. Syncretic-NMSdoes

not substantially increase the calculational burden.

D. INSTANCE SEGMENTATION ON THE CITYSCAPES

DATASET

Syncretic-NMS is also tested on the Cityscapes dataset.

In contrast to the MS COCO dataset, the images of the

Cityscapes dataset are from traffic scenes. There are more

small objects in the images, and the occlusions between

objects are more severe. We use the Mask R-CNN model

that was trained on the MS COCO dataset to test whether

Syncretic-NMS can adapt to other application scenarios on

the Cityscapes dataset.

The Cityscapes dataset contains 2975 finely labeled train-

ing images, 500 validation images, and 1525 test images, all

of which are the same pixel size. The core evaluation index,

namely, AP, of Cityscapes dataset is consistent with that of

the MS COCO dataset. The experiments also analyze the

prediction results of various types of segmentation. We use

Mask R-CNN (ResNet-50 FPN) that was trained on the MS

COCO dataset as a benchmark. A threshold self-test proce-

dure is used prior to testing. Table 5 presents the original

results and the prediction results of the model after using

Syncretic-NMS. Figure 4 presents a visualization example of

this experiment. The vehicle part near the left boundary of the

image can be correctly included in the bounding box under

the action of Syncretic-NMS, and the improved part has been

marked with a red box.

The experimental results demonstrate that Syncretic-NMS

can satisfactorily adapt to changes in application scenar-

ios, and when changing application scenarios, the threshold

self-test procedure performs effectively.

VI. CONCLUSIONS

Syncretic-NMS is proposed in this paper, which is suitable

for instance segmentation. It is used to obtain a bounding

box that can well contain the complete object of interest and

to obtain the relevant context information. Through corre-

lation judgment and the corresponding coordinate mapping,

the qualified neighboring boxes are merged using the tradi-

tional greedy NMS algorithm such that the returned bounding

box is more suitable for subsequent semantic segmentation

tasks. Through correlation judgment analysis, the most

suitable correlation judgment method is identified, and a self-

test procedure for the correlation judgment threshold is pro-

posed accordingly so that Syncretic-NMS can be applied to

various scenarios. Syncretic-NMS is easy to implement, does

not require substantial additional computational complexity.

In future research, we will develop a superior method for

determining the threshold of association judgment to further

improve the performance of the algorithm.

APPENDIX

See Figure 5.
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