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Summary
Syndecan-4, a ubiquitous cell surface

proteoglycan, mediates numerous cellular

processes through signaling pathways that

affect cellular proliferation, migration,

mechanotransduction and endocytosis.

These effects are achieved through

syndecan-4 functioning as both a co-

receptor for the fibroblast growth factor

receptors (FGFR1–FGFR4) and its ability to

independently activate signaling pathways

upon ligand binding. As an FGFR

co-receptor, syndecan-4 strengthens the

duration and intensity of downstream

signaling upon ligand binding; this is

particularly evident with regard to

mitogen-activated protein kinase (MAPK)

signaling. In contrast, syndecan-4 also

functions as an independent receptor for

heparin-binding growth factors, such as

fibroblast growth factors (FGFs), vascular

endothelial growth factors (VEGFs) and

platelet-derived growth factors (PDGFs).

These signaling cascades affect canonical

signaling components, such as the

mammalian target of rapamycin (mTOR),

AKT1 and the Rho family of GTPases.

In combination with the integrin family

of proteins, syndecan-4 is also able

to form physical connections between

the extracellular matrix (ECM) and

cytoskeletal signaling proteins, and it has

a key role in regulation of integrin

turnover. This unique versatility of the

interactions of syndecan-4 is characterized

in this Cell Science at a Glance article

and illustrated in the accompanying

poster.

Introduction
Syndecan-4, a proteoglycan receptor, is

a central mediator of cell adhesion,

migration, proliferation, endocytosis and

mechanotransduction. The broad effects of

this molecule are exemplified by its unique

versatility in extracellular, cell membrane

and intracellular interactions.

Like all other proteoglycans, syndecan-4

contains a protein core to which linear

chains of polysaccharides are covalently

linked. Known as glycosaminoglycans,

these sugar chains are attached to the

extracellular domain of syndecan-4 and

mediate its extracellular interactions (see

the ‘Syndecan-4 structure’ panel in the

accompanying poster). The membrane-

spanning region of syndecan-4 is a

single-pass domain that is highly

conserved between each of the four

members of the syndecan family. In

contrast, the intracellular domain contains

a variable region that uniquely defines the

signaling pathways that are initiated by this

molecule. This variable region is flanked

by two domains that are conserved across

(See poster insert)
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all syndecans, which further expand their

signaling capabilities.

The intracellular domains of syndecans
endow them with the ability to interact with
numerous binding partners and initiate a

wide range of signaling processes. Diverse
physiological processes are initiated by the
networks of signal transduction downstream

of syndecan-4, including wound healing
(Kainulainen et al., 1998; Bass et al., 2011),
arterial development (Chittenden et al.,

2006; Lanahan et al., 2010), blood
pressure regulation (Partovian et al.,
2008), immunosuppression (Chung et al.,
2013) and protection from endotoxic

shock (Ishiguro et al., 2001). The roles
of syndecan-4 in these physiological
processes stem from its ability to function

in various signaling pathways, which are
described and illustrated here. This Cell
Science at a Glance and accompanying

poster will examine syndecan-4 biology in
terms of its extracellular, membrane-based
and intracellular signaling pathways.

Extracellular signaling
The extracellular-binding partners of
syndecan-4 can be generally classified into

heparin-binding growth factors, which are
involved in modulating the effects of
various extracellular signaling proteins,
and cell adhesion molecules, which are

responsible for establishing, stabilizing
and dismantling extracellular sites of
attachment.

As a proteoglycan with extracellular
heparan sulfate chains, syndecan-4
interacts with numerous heparin-binding
growth factors. These include the

fibroblast growth factors (FGFs), vascular
endothelial growth factors (VEGFs) and
platelet-derived growth factors (PDGFs)

among others (reviewed by Tkachenko
et al., 2005). Through the binding of
these growth factors, syndecan-4 is able

to organize their distribution in the
extracellular space. Interestingly, the
arrangement and concentration of these
proteoglycans in the extracellular space

has a greater influence on signal
transduction than proteoglycan structure,
which implies that there is a considerable

overlap in ligand-binding affinities and
significant redundancy in proteoglycan
signaling (Kreuger et al., 2006). In this

way, syndecan-4 and other heparan sulfate
proteoglycans generate variable spatial
distributions of not only growth factors

but also of other extracellular matrix
(ECM) components, such as proteases
and protease inhibitors (Kainulainen et al.,

1998). The physiological significance of
this function remains unclear at this time.

One mechanism through which

syndecan-4 mediates its extracellular
signaling is the cleavage and shedding of
its extracellular domain (see poster).

Proteolytic cleavage of the ectodomain
occurs constitutively and is accelerated
under certain physiological conditions,

such as inflammation (Kainulainen et al.,
1998; Subramanian et al., 1997). The
cleaved soluble syndecan-4 ectodomain

fragments are released into the ECM with
intact glycosaminoglycan chains, which
preserves their ability to bind growth
factors, such as fibroblast growth factor 2

(FGF2) (Elenius et al., 1992). In the
ECM, syndecan-4, in concert with
the glycoprotein tenascin-C, has been

implicated in matrix contraction, which is
an indispensable stage of wound healing
(Midwood et al., 2004). Although it

remains unclear what exact roles the
soluble syndecan-4 ectodomain fulfills
(i.e. whether it mediates growth factor

signaling, facilitates ECM contraction, or
sequesters extracellular proteases under
physiological conditions), it is likely that
these functions contribute to the regulation

of wound healing and inflammation,
during which syndecan-4 is expressed at
increased levels (Alexopoulou et al.,

2007).

The shed syndecan-4 ectodomain
also mediates cellular adhesion to the

surrounding matrix and is capable of
mediating the direct contact of cells with
ECM proteins, such as fibronectin (Tumova
et al., 2000). These interactions form

external points of cell attachment and
affect the directionality of cellular
migration (Bass et al., 2007a). In some

cases, these extracellular attachment sites
develop into focal adhesions, localized
membrane regions with characteristically

increased tensile strength, specialized
signaling and an enrichment of
cytoskeletal proteins that include vinculin,

paxillin and actin (Woods and Couchman,
2001). An extracellular NXIP motif, which
is present in syndecan-4, has been
specifically implicated in interactions that

mediate adhesion to the ECM, although the
underlying molecular details are not fully
understood (Whiteford and Couchman,

2006).

Although syndecan-4 is a crucial
mediator of focal adhesion formation, it

achieves this in concert with the integrins,
another family of transmembrane
receptors. Named for their ability to

integrate extracellular signals towards the
cytoplasm, integrins signal as a pair of a-

and b-glycoprotein-subunits that bind to
specific ECM components. At least 18 a-

and 8 b-subunits have been identified to
date, and each a–b combination (of which
24 have been characterized), binds with

high affinity to specific ECM components
(Hood and Cheresh, 2002). Sites of

attachment between a5b1 integrin and
extracellular fibronectin can mature into

functional signaling units, and this process
depends on the ability of syndecan-4 to
bind and activate protein kinase Ca
(PKCa) (Mostafavi-Pour et al., 2003).
The details of syndecan-4-mediated

activation of PKCa are described below,
and PKCa controls the endocytosis of b1
integrin and thus regulates signaling at

focal adhesions (Ng et al., 1999).

Syndecan-4 also activates ADP-

ribosylation factor 6 (ARF6), a Ras
superfamily GTPase involved in

membrane trafficking, actin cytoskeletal
remodeling and cell motility, which affects
the trafficking of a5b1 integrin (Brooks

et al., 2012). More specifically, the
phosphorylation of syndecan-4 by Src has

been shown to promote the binding of
syntenin, a PDZ (postsynaptic density
protein, disks large, zona occludens)-

domain-containing cytoplasmic protein
that regulates syndecan recycling

(Zimmermann et al., 2005) and the
subsequent inhibition of ARF6; this results

in a preferential endocytosis and
degradation of a5b1 integrin and an
upregulation of avb3 integrin at the cell

surface (Morgan et al., 2013) (see poster).
In this way, syndecan-4 influences the

assembly and disassembly of integrin
complexes at focal adhesion sites, and this
results in the preferential enrichment of

different combinations of heterodimeric
integrins. Similarly, syndecan-4 binding to

fibronectin is necessary for the activation of
focal adhesion kinase (FAK), a tyrosine

kinase that regulates focal adhesions
(Wilcox-Adelman et al., 2002). Beyond
the role in facilitating the formation of

focal adhesions, the heparan sulfate chains
of syndecan-4 have been suggested to

function as sensors of extracellular stress
that are capable of transmitting mechanical

force into signaling events (Florian
et al., 2003; Moon et al., 2005). This
occurs in the absence of integrin

engagement and involves downstream
intracellular signaling through the

mitogen-activated protein kinase (MAPK)
pathway (Bellin et al., 2009).

Journal of Cell Science 126 (17)3800



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

Recently, besides acting as an

extracellular receptor, syndecan-4 has

also been reported to act as a ligand. This

function has been primarily characterized

within the context of the immune system;

here, the extracellular domain of syndecan-

4 functions as a ligand for DC-HIL (also

known as GPNMB), an inhibitory type I

transmembrane receptor that is expressed

on the surface of antigen-presenting cells.

In the absence of syndecan-4, the

inhibitory effect of the DC-HIL receptor

is lost in transplanted immunologically

active (allo-reactive) T cells, which

results in increased mortality in animal

models of graft-versus-host disease (Chung

et al., 2012).

With these studies that characterized

new extracellular roles for syndecan-4, it

has become apparent that the functions of

syndecan-4 by far surpass its initially

postulated role as a low-affinity site for

growth factor binding. The mechanisms of

the extracellular interactions described

above represent indispensable means for

cells to interact with their environments;

however, they encompass only a few of

the numerous physiological functions of

syndecan-4. We will next concentrate on

interactions of syndecan-4 with other

proteins at the cell membrane and

its regulation of intracellular signaling

cascades.

Syndecan-4 signaling at the cell
membrane
At the cell membrane, syndecan-4 fulfills

three signaling functions. First, syndecan-4

non-covalently clusters into SDS-resistant

oligomers that directly activate signaling

cascades. This occurs upon the localized

concentration of syndecan-4 that is

induced by ligand binding (e.g. growth

factor binding at focal adhesion sites, or by

it forming a complex with FGFRs) (Oh

et al., 1997; Tkachenko and Simons, 2002)

and is dependent on the GxxxG

dimerization motif in the syndecan-4

transmembrane domain (Dews and

Mackenzie, 2007). Syndecan-4 multimers

have been detected in cholesterol- and

sphingolipid-rich regions of the cell

membrane known as lipid rafts, cellular

microdomains that can initiate numerous

downstream signaling events (Fuki

et al., 2000; Tkachenko and Simons,

2002; Tkachenko et al., 2004). These

microdomains serve to recruit scaffolding

and signaling molecules that facilitate

effective intracellular signaling, and the

localization of syndecan-4 into lipid rafts is
essential for its signaling functions.

Second, syndecan-4 serves to stabilize

the interaction between growth factors and
other cell membrane receptors (see poster).
This aspect has perhaps been best studied

for the FGFs, a family of 23 growth factors
that primarily signal through four tyrosine
kinase cell membrane receptors (FGFR1–

FGFR4) (Jastrebova et al., 2006;
Rahmoune et al., 1998). Although FGFs
are able to bind to FGFRs with high

affinity, this interaction and the
subsequent signaling events are amplified
by the presence of heparan sulfate chains
(Nugent and Edelman, 1992; Sperinde

and Nugent, 2000; Yayon et al., 1991),
probably through a heparin-binding
domain present in FGFRs (Kan et al.,

1993). This leads to the formation of
the ligand–heparin–receptor complex
with a 2:2:2 stoichiometry predicted by

the crystal structure (Schlessinger et al.,
2000). This facilitates prolonged high-
affinity ligand–receptor interactions and

effectively allows the activation of FGFRs
with lower absolute concentrations of
ligand (Forsten-Williams et al., 2005).

Enhanced FGF signaling in the presence

of heparin has been demonstrated for
several canonical FGF–FGFR signaling
pathways, including MAPK signaling, and

is primarily mediated by the extracellular
glycosaminoglycan chains of syndecan-4
(Nikitovic et al., 2007). In addition to

the extracellular domains of syndecan-4
mediating growth factor binding, its
cytoplasmic domains can also initiate
FGF-induced signaling independently of

FGFRs (Volk et al., 1999). This has been
demonstrated in the context of cell
migration through the activation of Rac1

(illustrated on the poster) (Horowitz et al.,
2002; Tkachenko et al., 2006), as well as for
the in vivo roles of syndecan-4 as an effector

of nitric-oxide-mediated vasodilation
(Zhang et al., 2003). The molecular details
of syndecan-4-mediated signal transduction

are discussed below.

The third function of syndecan-4 at the cell
membrane encompasses its ability to serve as
a direct link between the ECM and

intracellular signaling proteins. Syndecan-4
has been shown to simultaneously bind to
extracellular fibronectin and the intracellular

actin-associated protein a-actinin, thus
directly linking the actin cytoskeleton to
the ECM (Greene et al., 2003). Similarly,

syndecan-4 is able to recruit other proteins to
the sites of focal adhesion, including the
cytoplasmic signaling protein syndesmos

(Denhez et al., 2002). This protein, in turn,

binds to paxillin, a protein that is crucial

in maintaining focal adhesion functionality

(Turner, 2000). These interactions are

physiologically significant, as cells

deficient in syndecan-4 have been shown to

have abnormal cell morphologies and

deficiencies in migratory potential (Gopal

et al., 2010; Elfenbein et al., 2009).

Syndecan-4 establishes another

extracellular–intracellular connection at

the cell membrane through the recruitment

of PKCa to sites where focal adhesions

form and by mediating its subsequent

activation (Lim et al., 2003). The ability of

syndecan-4 to activate PKCa depends on its

binding to cytoplasmic phosphotidylinositol

(4,5)-bisphosphate [PtdIns(4,5)P2], which

is inhibited by phosphorylation of the

intracellular domain of syndecan-4 at

Ser183 (Horowitz and Simons, 1998b;

Horowitz et al., 1999) (see poster).

Structural data have likewise revealed

that phosphorylation at Ser183 inhibits

syndecan-4 oligomerization, whereas

PtdIns(4,5)P2 promotes it (Koo et al.,

2006). Phosphorylation of Ser183, which

is mediated by PKCd (Murakami et al.,

2002), inhibits the binding of PtdIns(4,5)P2

and thus prevents PKCa activation.

Dephosphorylation of Ser183, which is

accomplished by a protein phosphatase of

the IIa class, promotes PtdIns(4,5)P2

binding, in turn leading to activation of

PKCa signaling (Horowitz and Simons,

1998a).

Upon binding to PtdIns(4,5)P2,

syndecan-4 is able to mediate the

recruitment of other proteins to the cell

membrane, most notably that of syntenin

(Zimmermann et al., 2001), a protein that

has been shown to mediate the membrane

recycling of other syndecans (Zimmermann

et al., 2005) and the trafficking of different

integrin heterodimers to and from the

cell membrane (described above). The

localization of syntenin to the cell

membrane is mediated by the binding of

PtdIns(4,5)P2 to its PDZ domain, to

which syndecans also bind directly

(Zimmermann et al., 2002). As is the

case for its activation of PKCa, the

phosphorylation of syndecan-4 at Ser183

abrogates its ability to bind to the PDZ

domain of syntenin (Koo et al., 2006).

Beyond its role in integrin recycling at the

cell membrane, it has also been

demonstrated that syntenin is involved in

the formation of secretory vesicles (see

below).

Journal of Cell Science 126 (17) 3801
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Overall, the functions of syndecan-4 at the
cell membrane include the stabilizing of

growth-factor–receptor interactions, its
clustering into oligomers that are able to
signal independently of other receptors,
and to create a physical interface

between cytoplasmic proteins and the ECM.
Next, we discuss the underlying mechanisms
that facilitate the regulation of multiple

downstream intracellular signaling pathways.

Intracellular signaling
The wide-ranging signaling effects of
syndecan are largely due to its diverse
intracellular binding partners. As mentioned
above, one of its major binding partners is

synectin, to which it binds through the PDZ-
binding domain that is conserved among all
syndecans (Gao et al., 2000). In the absence

of ligand binding and syndecan-4
activation, the interaction between
syndecan-4 and synectin facilitates the

binding of Rho guanidine dissociation
inhibitor 1 (RhoGDI1; also known as
ARHGDIA and RhoGDI-a) (see poster)
and serves to sequester and suppress the

activity of Rho family GTPases that are
incorporated into the syndecan-4–synectin–
RhoGDI1 complex at the cell membrane

(Elfenbein et al., 2009). GTPases act as
molecular switches, alternating between an
inactive GDP- and an active GTP-bound

form, and specific Rho GTPases, including
RhoG, Rac1 and RhoA, orchestrate the
remodeling of the actin cytoskeleton at the

cell membrane, thus regulating cell motility
(Burridge and Wennerberg, 2004). By
sequestering and suppressing the activity
of Rho GTPases, such as RhoG and Rac1,

syndecan-4 ensures a low rate of cell
migration in the absence of growth factor
stimulation. In this basal state, the related

Rho GTPase RhoA exhibits high activity,
which is diminished upon stimulation of
syndecan-4 (Brooks et al., 2012). The

mechanism by which RhoG, Rac1 and
RhoA are regulated involves PKCa-
mediated phosphorylation of RhoGDI1, as

described below.

Although syndecan-4 maintains low
levels of RhoG and Rac1 activity in the
absence of growth factor stimulation, its

oligomerization by growth factors or other
ligands, such as fibronectin, triggers the
reversal of this suppression through its

ability to bind and activate PKCa. PKCa in
turn phosphorylates RhoGDI1 at Ser96,
which allows the release of sequestered

RhoG and Rac1. RhoG forms a trimeric
complex with ELMO1 and DOCK180,
forming a functional guanine exchange

factor (GEF) that subsequently activates
Rac1 (Katoh and Negishi, 2003). This, in

turn, leads to membrane ruffling, the
formation of cellular protrusions
and enhanced migration (Elfenbein
et al., 2009). RhoA activation is

similarly regulated by PKCa-mediated
phosphorylation of RhoGDI1, although at
a different site (Ser34) (Dovas et al., 2010).

In this way, syndecan-4 controls both the
suppression and activation of Rho GTPases
through distinct mechanisms that involve

different binding partners.

Equally as important, syndecan-4 has
been implicated in the establishment of cell
polarity (i.e. determining which parts of a

migrating cell lead and which trail behind).
In the absence of syndecan-4, the
suppression of Rho GTPases under

normal unstimulated conditions is lost,
and cells exhibit constitutively high
levels of RhoG and Rac1 activity.

Although high levels of Rac1 activity are
required for cell migration, cells that are
devoid of syndecan-4 paradoxically show
diminished migration; this is because the

spatial distribution of activated syndecan-4
also determines the locations at which
RhoG and Rac1 are activated. This spatial

control of Rac1 activation by syndecan-4
also helps to establish appropriate cell
polarity and ensures that only pools of

Rac1 at a specific location are activated
during directional cell migration (Bass
et al., 2007b; Elfenbein et al., 2009;

Pankov et al., 2005). Syndecan-4 has
been shown to regulate the migration of
neural crest cells in a similar manner,
through localized inhibition of Rac1

(Matthews et al., 2008).

The activation of RhoG and Rac1 by
syndecan-4 not only affects cell polarity,

actin polymerization and cell migration,
but also controls the form of endocytic
uptake known as macropinocytosis. This

mechanism of internalization involves
relatively large membrane regions that are
internalized after RhoG- and Rac1-mediated
membrane ruffling. Through its control of

RhoG and Rac1 activity, syndecan-4
regulates both the rate of macropinocytic
uptake and the signaling events that result

from the subsequent internalization of cell
surface receptors. The best-studied example
of this is the role of syndecan-4 in regulating

the kinetics of FGFR1-induced extracellular-
signal-regulated (ERK)1/2 activation, which
determines the duration and intensity of

ERK1/2 phosphorylation activity after
activation of FGFR1 (Elfenbein et al.,
2012). This presumably occurs by

syndecan-4 regulating the quantity and rate
of internalized vesicles that contain activated

FGFR1. Non-macropinocytotic uptake of
FGFR1 has also been reported (Haugsten
et al., 2008; Jean et al., 2010), although its
physiological significance is uncertain.

In addition to macropinocytosis,
syndecan-4 has also been implicated in
the regulation of caveolin- and dynamin-

dependent internalization of b1 integrins
within the context of wound healing (Bass
et al., 2011). It is therefore likely that

syndecan-4 can affect multiple endocytic
pathways, depending on the upstream
signal (e.g. fibronectin, FGF or other
heparin-binding growth factors). The

syndecans, especially syndecan-1 and -4,
have also recently been implicated in the
process of forming exosomes, or secreted

vesicles that affect intercellular signaling.
This occurs when the syndecan-binding
partner syntenin recruits another

cytoplasmic protein, ALIX (also known
as PDCD6IP), to the sites of cytoplasmic
vesicles. ALIX, in turn, recruits a
specialized multi-protein complex known

as the endosomal-sorting complex required
for transport III (ESCRT-III) to these
vesicles, which facilitates the formation

of cytoplasmic vesicular aggregations
known as multi-vesicular bodies (Baietti
et al., 2012). These intracellular cargo-

containing vesicles eventually fuse
with the cell membrane, releasing their
contents into the extracellular space and

subsequently initiating a diverse range of
intercellular signaling processes (see
poster) (Simons and Raposo, 2009).

Syndecan-4 also mediates multiple

intracellular signaling pathways that act in
parallel through the activation of effectors
that are common to these pathways. This is

perhaps best exemplified by its activation of
PKCa, which leads to RhoG and Rac1
activation (as noted above). However,

syndecan-4-dependent activation of PKCa
also has a crucial role in regulation of
assembly of the mammalian target of
rapamycin (mTOR) complex 2 (mTORC2)

and activation of PDK1. Both of
these enzymes, in turn, control the
activation of the serine/threonine

kinase AKT (see poster), which requires
two phosphorylation events: Thr308
phosphorylation accomplished PDK1, and

Ser473 phosphorylation by mTORC2 (also
called PDK2 in this context). In the absence
of syndecan-4, PKCa activation is reduced,

leading to impaired assembly of mTORC2
(Partovian et al., 2008) and diminished
activation of PDK1, which it controls

Journal of Cell Science 126 (17)3802
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through the p21-activated kinases 1 and 2
(PAK1/2) (Ju and Simons, 2013). Thus

AKT activity is reduced, which leads to an
increase in blood pressure; a phenotype that
can be rescued by introducing a

constitutively active PKCa construct
(Partovian et al., 2008).

In this way, diverse intracellular binding
partners of syndecan-4 facilitate its ability
to initiate several parallel signaling

pathways and regulate endosomal
trafficking. These downstream effects
collectively influence cellular processes
that include cell migration, establishment

of cellular polarity, endocytosis, vesicular
secretion of intracellular proteins and
cellular homeostasis involving the mTOR

signaling pathways.

Perspectives
Initially characterized as a ubiquitous low-

affinity co-receptor for heparin-binding
growth factors, syndecan-4 is now
understood to also independently control a

myriad of extracellular and intracellular
signaling processes. This broad
functionality is partially on account of the
promiscuity of syndecan-4 with regard to its

ligand-binding capabilities and, partially,
owing to its ability to interact with
numerous intracellular signaling partners.

The molecular mechanisms underlying
syndecan-4 function are also varied; this
proteoglycan serves not only as a co-

receptor for tyrosine kinase signaling, but
can also initiate independent signaling
cascades upon its oligomerization and

activation. Syndecan-4 furthermore
modulates these signaling responses
through a complex crosstalk with other
cellular processes, including receptor

endocytosis. Therefore, the unique
signaling capabilities of syndecan-4 have
defied the conventional notions of receptor-

mediated signal transduction that
encompass the initiation, modulation and
termination of signaling pathways.

The molecular mechanisms underlying
many syndecan-4-mediated processes

remain incompletely understood, and their
elucidation is likely to yield further insight
into the versatility of syndecan-4 signaling.
This, in turn, is likely to enhance our

understanding of biological processes as
diverse as wound healing, blood pressure
control, inflammation and atherosclerosis.
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