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Abstract. We apply the synergetic elimination procedure for the stable modes in nonlinear delay systems close
to a dynamical instability and derive the normal form for the delay-induced Hopf bifurcation in the
Wright equation. The resulting periodic orbit is confirmed by numerical simulations.
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1. Introduction. Within the last decades, synergetics has provided powerful concepts and
methods to describe self-organization processes in various branches of science [1, 2, 3, 4, 5, 6].
The spontaneous formation of spatial, temporal, or functional patterns in complex systems
has been successfully investigated by working out general principles and by mapping them
onto universal mathematical structures. The important result is due to the fact that in the
vicinity of a dynamical instability the high-dimensional set of nonlinear evolution equations
modeling a complex system on a microscopic or a mesoscopic scale can approximately be
reduced to a low-dimensional set of order parameter equations describing the evolving pattern
formation on a macroscopic scale. To obtain such a simplified, reduced description of self-
organization processes, the synergetic system analysis proceeds as follows. A linearization of
the evolution equations around a stationary solution shows that a dynamical instability is
always accompanied by a time-scale hierarchy between numerous fast modes s and few slow
modes u. A rigorous treatment of the full nonlinear evolution equations in the vicinity of the
dynamical instability leads to a characteristic interdependence between both hierarchy levels
which may be illustrated by a circular causality chain. On the one hand, the slaving principle
of synergetics states that the numerous fast modes s quasi-instantaneously take values which
are prescribed by the few slow modes u according to s(t) = h(u(t)) with the center manifold
h(u). On the other hand, an adiabatic elimination of the fast enslaved modes s yields equations
for the slow order parameters u which depend, in general, on the center manifold h(u) due to
the nonlinear feedback.

In its original formulation, the synergetic system analysis was developed for complex
systems which can be modeled by ordinary and partial differential equations as well as their
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stochastic generalizations. Some time ago, the general concepts and methods of synergetics
were extended to delay differential equations to deal with dynamical instabilities which are
induced by the finite propagation time of signals in feedback loops [7]. Taking into account the
infinite-dimensional character of a delay system [8, 9], the adiabatic elimination of the stable
modes leads to a low-dimensional set of order parameter equations which turn out to be of
the form of ordinary differential equations; i.e., they no longer contain memory effects. The
predictions of the synergetic system analysis have been quantitatively tested by investigating
the delay-induced Hopf bifurcation of the electronic system of a first-order phase-locked loop
(PLL) [7]. The periodic orbit which results from the corresponding order parameter equation
near the bifurcation point has been confirmed by both a multiple scale procedure and numerical
simulations [10, 11]. Although this application exemplarily proves the order parameter concept
for delay systems, it does not allow us to draw conclusions about the slaving principle. As
the lowest nonlinear term in the scalar delay differential equation of the PLL is a cubic one,
the center manifold does not influence the order parameter equation of the Hopf bifurcation
in the lowest order. In order to check both ingredients of the circular causality chain, i.e., the
order parameter concept and the slaving principle, for delay systems, it is thus indispensable
to study a scalar delay differential equation with a quadratic nonlinearity. Such dynamical
systems were studied, for instance, in the context of Lotka–Volterra models [12] and machining
models [13, 14].

Another candidate is provided by the evolution equation

d

dt
z(t) = R

[

z(t) − z(t− τ)2
]

.(1.1)

With vanishing time delay τ , it represents a system which is named after the Belgian math-
ematician P. F. Verhulst from the 19th century [15]. It is used as a simplified model for
the population dynamics of a species in an environment with limited food supply [16]. The
synergetic system analysis for the Verhulst system with time delay (1.1) has already been
performed in [10]. There also the well-known equation of Wright [17]

d

dt
z(t) = −Rz(t− τ) [1 + z(t)](1.2)

has been treated, where R denotes a system parameter and τ a delay time. This delay
differential equation is mentioned by Wright [17] as arising in the application of probability
methods to the theory of asymptotic prime number density. Cunningham [18] depicts it as
a “growth equation” representing a mathematical description of a fluctuating population of
organisms under certain environmental conditions. In addition, it may describe the operation
of a control system working with potentially explosive chemical reactions. Performing an
appropriate scaling of time

t = τ t′ , z′(t′) = z(τ t′)(1.3)

converts the Wright equation (1.2) to its standard form with the control parameter

R′ = τ R.(1.4)
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Thus varying the delay time τ corresponds to changing the control parameter R′. By omitting
the prime ′ for the respective quantities, the standard form of the Wright equation reads

d

dt
z(t) = −Rz(t− 1) [1 + z(t)] .(1.5)

In this paper, we restrict ourselves to analyzing this standard form of the Wright equation.
The Wright equation (1.5) shows a delay-induced instability, namely, a Poincaré–Andronov–

Hopf bifurcation at the critical value

Rc =
π

2
(1.6)

of the control parameter R. In [19], it is shown that the oscillatory solution in the vicinity
of this instability, i.e., the emerging limit cycle, can be calculated approximately using the
method of averaging. This approximation reads in the lowest order

z(t) = A

√

R− π

2
cos

(

π

2
t

)

+ O
(

R− π

2

)

,(1.7)

where the amplitude A has the value

A =

√

40

3π − 2
.(1.8)

In section 2, we start with a linear stability analysis of the Wright equation (1.5) which
confirms, of course, the delay-induced Poincaré–Andronov–Hopf bifurcation when the control
parameter R approaches the critical value (1.6). Near this instability, we perform a nonlinear
synergetic treatment in section 3 and study in detail how the center manifold influences the
order parameter equation. In section 4, the resulting order parameter equation is transformed
to the normal form of a Hopf bifurcation, where the emerging periodic orbit is determined
one order higher than the lowest-order result (1.7) and (1.8). The numerical investigations of
section 5 confirm the emerging periodic orbit; furthermore, we discuss the global bifurcation
scenario of the Wright equation (1.5).

2. Linear stability analysis. The solution of the delay differential equation (1.5) for times
t ≥ 0 depends on the initial values of the function z(t) in the entire interval [−1, 0]. In
order to properly define such an initial value problem, Hale [8] and Krasovskii [9] proposed to
transform the equation of motion (1.5) for a function z(t) in the usual state space Γ to the
extended state space C of continuous complex valued functions zt, which are defined on the
interval [−1, 0]:

d

dt
zt(Θ) = (G zt) (Θ) =











d

dΘ
zt(Θ), −1 ≤ Θ < 0,

F [zt], Θ = 0.

(2.1)

Following the notation of [7], we introduced not only the new function zt ∈ C, which is
connected to the original function z(t) ∈ Γ through

zt(Θ) = z(t+ Θ) , −1 ≤ Θ ≤ 0,(2.2)
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but also the nonlinear functional

F [zt] =
2
∑

k=1

∫ 0

−1
dΘ1 · · ·

∫ 0

−1
dΘk ω

(k)(Θ1, . . . ,Θk)
k
∏

l=1

zt(Θl)(2.3)

with the two scalar densities

ω(1)(Θ1) = −Rδ(Θ1 + 1),(2.4)

ω(2)(Θ1,Θ2) = −Rδ(Θ1 + 1)δ(Θ2).(2.5)

The stationary states of this system

zI
stat = 0 , zII

stat = −1(2.6)

are candidates for the reference state from which we start our further investigations. For the
main body of the article, we focus our attention on the stationary state zI

stat and choose it
as the reference state. The other stationary state zII

stat will be discussed in section 5 together
with the global bifurcation scenario of the Wright equation (1.5).

Then we linearize the system (2.1) with respect to the stationary state zI
stat = 0 by using

the decomposition

zt(Θ) = zI
stat + ζt(Θ) , −1 ≤ Θ ≤ 0.(2.7)

This leads to the following linearized equation of motion for the deviation ζt(Θ) from the
stationary state zI

stat = 0:

d

dt
ζt(Θ) = (GL ζt) (Θ) =











d

dΘ
ζt(Θ), −1 ≤ Θ < 0,

L[ζt], Θ = 0,

(2.8)

where the linear functional is given by

L [ζt] =

∫ 0

−1
dΘω(Θ)ζt(Θ)(2.9)

with the scalar density

ω(Θ) =
δF [zt]

δzt(Θ)

∣

∣

∣

∣

zt(Θ)=zI
stat

= −R δ(Θ + 1).(2.10)

Inserting the solution ansatz

ζt(Θ) = φλ(Θ)eλt, −1 ≤ Θ ≤ 0,(2.11)

into (2.8) leads to the eigenvalue problem of the infinitesimal generator GL:

λφλ(Θ) =
(

GLφλ
)

(Θ), −1 ≤ Θ ≤ 0.(2.12)
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Taking into account the definition of GL in (2.8), the eigenfunction φλ(Θ) is determined to be

φλ(Θ) = Nλe
λΘ, −1 ≤ Θ ≤ 0,(2.13)

and the eigenvalue λ follows from

λ = L(λ),(2.14)

where L(λ) is defined by

L(λ) =

∫ 0

−1
dΘω(Θ)eλΘ.(2.15)

Using the scalar density (2.10), we obtain the following transcendental characteristic equation:

−Re−λ − λ = 0.(2.16)

Thus the spectrum of the linear operator GL has the following properties [8]:

• It consists of a countable infinite number of eigenvalues which cumulate for ℜ(λ) →
−∞.

• It is confined by an upper threshold for the real parts of the eigenvalues.
• At the bifurcation point, i.e., the instability, some of the eigenvalues reach the imagi-

nary axes and thus become unstable.

Further properties of the eigenvalues of the characteristic equation (2.16) follow from the
Hayes theorem, which can be found in [20]. It states that all solutions of the transcendental
equation

p+ qe−λ − λ = 0(2.17)

possess a negative real part if and only if (a) p < 1 and (b) p < −q <
√

a2
1 + p2. Here a1

represents the solution of the transcendental equation a1 = p tan(a1) which lies in the interval
[0, π). For the special case p = 0, one can show that a1 is equal to π/2. The shaded region
in Figure 2.1 represents that region of the parameter space q, p where both conditions of the
Hayes theorem are fulfilled. The upper boundary line stems from (a) p < 1 and (b1) p < −q,
whereas the lower boundary line follows from (a) p < 1 and (b2) −q <

√

a2
1 + p2.

Comparing (2.16) with (2.17), we obtain the identification q = −R and p = 0. Changing
the control parameter R from 0 to π/2, the corresponding point in the parameter space q, p
moves along the q-axis from the point q = 0 to q = −π/2 (see the arrow in Figure 2.1). At
this critical value, it reaches the boundary of the shaded stability region; i.e., no longer do
all solutions of the characteristic equation (2.16) have a negative real part. Therefore, an
instability occurs at Rc = π/2.

Figure 2.2 confirms this result by illustrating the movement of the ten solutions of the
characteristic equation (2.16) with the largest real part when the control parameter is in-
creased from 0 to π/2. The eigenvalues were obtained with a Newton algorithm, and the
control parameter R was increased in equidistant steps. For R = 0, there exists only one
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Figure 2.1. The Hayes theorem is fulfilled within the shaded region.

real eigenvalue 0 as the linearized delay differential equation (2.8) degenerates to an ordi-
nary differential equation. For R > 0, this eigenvalue remains real and becomes negative.
Furthermore, a countable infinite number of conjugate complex eigenvalues and another real
eigenvalue emerge from an infinite negative real part. At the value R = 1/e, both real eigenval-
ues meet at the point (−1/0). They are converted to a pair of conjugated complex eigenvalues
for 1/e < R < π/2. These two complex conjugated eigenvalues have zero real part at the
instability Rc = π/2, which thus represents a Hopf bifurcation. We can further analyze this
instability by introducing the smallness parameter

ε =
R−Rc
Rc

⇐⇒ R = Rc(1 + ε)(2.18)

for the deviation from the critical control parameter Rc = π/2. In particular, we can determine
both eigenvalues λ±u (ε) with nearly vanishing real part at ε ≈ 0 from the characteristic equation
(2.16):

λ±u (ε) =
R2
c

1 +R2
c

ε± iRc

(

1 +
1

1 +R2
c

ε

)

+ O
(

ε2
)

.(2.19)

In the vicinity of the instability ε ≈ 0, we read off from Figure 2.2 that only the two eigenvalues
(2.19) have nearly vanishing real part; all other eigenvalues have a large negative real part:

ℜ[λ±u (ε ≈ 0)] ≈ 0; ℜ[λjs(ε ≈ 0)] < 0, j = 1, . . . ,∞.(2.20)

This characteristic property of the linearized system (2.8) leads to the time-scale hierarchy

T±
u =

1

ℜ[λ±u (ε ≈ 0)]
≫ T js =

1

ℜ[λjs(ε ≈ 0)]
, j = 1, . . . ,∞.(2.21)
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Figure 2.2. Movement of the ten solutions of the characteristic equation (2.16) with the largest real part.

Thus the infinite-dimensional extended state space C decomposes in a two-dimensional sub-
space U of the linear unstable modes and a remaining infinite-dimensional subspace S of the
linear stable modes [7]. As a consequence, the extended state function zt can be decomposed
near the instability according to

zt(Θ) = zI
stat + ut(Θ) + st(Θ) = ut(Θ) + st(Θ), −1 ≤ Θ ≤ 0,(2.22)

as we have zI
stat = 0. Here ut and st denote the respective contributions of zt in the subspaces

U and S. In order to project into these subspaces, we need the linear unstable modes

φλ
±
u (Θ) = Nλ±u

eλ
±
u Θ, −1 ≤ Θ ≤ 0,(2.23)

of the system (2.8) which have already been determined in (2.13). However, this knowledge
is not sufficient, as the infinitesimal generator GL is not self-adjoint. Therefore, we also need
the linear unstable modes

ψ†λ±u (s) = Nλ±u
e−λ

±
u s, 0 ≤ s ≤ 1,(2.24)

of the adjoint system

d

dt
ζ†t (s) = −

(

G†
L ζ

†
t

)

(s) =











d

ds
ζ†t (s), 0 < s ≤ 1,

−L†[ζ†t ], s = 0,

(2.25)

where the linear functional

L†
[

ζ†t

]

=

∫ 1

0
dsω(−s)ζ†t (s)(2.26)
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also contains the scalar density (2.10). Indeed, the solution ansatz

ζ†t (s) = ψ†λ(s)e−λs, 0 ≤ s ≤ 1,(2.27)

converts (2.25) to the eigenvalue problem

λψ†λ(s) =
(

G†
Lψ

†λ
)

(s), 0 ≤ s ≤ 1,(2.28)

which is adjoint to (2.12). Note that ψ†λ and ζ†t are elements of the dual extended state space
C†, which consists of continuous complex valued functions on the interval [0, 1]. The relation
between both extended state spaces C and C† is defined by the bilinear form [7]

(

ψ†|φ
)

= ψ†(0)φ(0) −
∫ 0

−1
dΘ

∫ Θ

0
dsψ†(s− Θ)ω(Θ)φ(s).(2.29)

Using this bilinear form, one can show that the eigenfunctions (2.23) and (2.24) are biorthonor-
mal:

(

ψ†λi |φλj
)

= δij , i, j = ±.(2.30)

This determines the yet unknown normalization constants to be

Nλ±u
=

1
√

1 + λ±u
,(2.31)

so they reduce near the instability because of (2.19) to

Nλ±u
=

1√
1 ± iRc

+ O (ε) .(2.32)

Furthermore, the bilinear form (2.29) allows us to define the projector into the two-dimensional
subspace U of the unstable modes:

(Pu •) (Θ) =
∑

i=±

φλ
i
u(Θ)

(

ψ†λiu
∣

∣

∣ •
)

.(2.33)

Correspondingly, the projector into the remaining infinite-dimensional subspace S of the stable
modes reads

Ps • = (I − Pu) • .(2.34)

Applying the projector Pu to zt ∈ C leads to ut ∈ U according to

ut(Θ) = (Puzt) (Θ) =
∑

i=±

ui(t)φλ
i
u(Θ), −1 ≤ Θ ≤ 0,(2.35)

where the amplitudes of the linear unstable modes φλ
±
u (Θ) are defined by

u±(t) =
(

ψ†λ±u
∣

∣

∣ zt
)

.(2.36)

Later on, these amplitudes represent the order parameters which indicate the emergence of
an instability. Analogously, the projector (2.34) leads to the stable modes

st(Θ) = (Pszt) (Θ), −1 ≤ Θ ≤ 0.(2.37)
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3. Nonlinear synergetic analysis. After having performed a linear stability analysis around
the reference state zI

stat = 0 in the vicinity of the instability Rc = π/2, we now return to our
original nonlinear evolution equation (2.1) in the extended state space C. We proceed by
decomposing the generator G into its linear part GL and a remaining effective nonlinear part:

d

dt
zt(Θ) = (GL zt) (Θ) +X0(Θ)Feff[zt], −1 ≤ Θ ≤ 0.(3.1)

Here we introduce the scalar function

X0(Θ) =

{

0, −1 ≤ Θ < 0,
1, Θ = 0,

(3.2)

and the effective nonlinear functional

Feff[zt] =

∫ 0

−1
dΘ1

∫ 0

−1
dΘ2 ω

(2)(Θ1,Θ2) zt(Θ1)zt(Θ2)(3.3)

with the scalar density (2.5). Using the projectors (2.33) and (2.34) and their properties
(2.35)–(2.37), we can investigate the respective contributions of the order parameters u±(t)
and the linear stable modes st ∈ S to the nonlinear dynamics (3.1). Thus we obtain the
following system of coupled nonlinear mode equations:

d

dt
u±(t) = λ±u u

±(t) + ψ†λ±u (0)Feff





∑

j=±

φλ
j
uuj(t) + st



 ,(3.4)

d

dt
st(Θ) = (GLst) (Θ) + ((I − Pu)X0) (Θ)Feff





∑

j=±

φλ
j
uuj(t) + st



 .(3.5)

It is still exact and describes completely the nonlinear dynamics. However, a solution to these
equations can only be found by means of an approximation method. Such a well-established
approximative solution is provided by the slaving principle of synergetics [1, 2, 3, 4, 5].

To this end, we start with the time-scale hierarchy (2.21) near the instability which leads
to the fact that the dynamics of the stable modes st ∈ S evolves much faster than the order
parameters u±(t). In [7] it has been shown for a quite general class of delay differential
equations that such a time-scale hierarchy leads to a slaving of the stable modes; i.e., the
numerous fast modes st ∈ S quasi-instantaneously take values which are prescribed by the few
slow order parameters u±(t). In our context, the slaving principle states mathematically that
the dynamics of the stables modes st ∈ S is determined by the center manifold h(Θ, u+, u−)
according to

st(Θ) = h
(

Θ, u+(t), u−(t)
)

.(3.6)

Inserting this ansatz into (3.5) leads to an implicit equation for the center manifold h(Θ, u+, u−):

∑

i=±

∂h (Θ, u+(t), u−(t))

∂ui(t)



λiuu
i(t) + ψ†λiu(0) Feff





∑

j=±

φλ
j
uuj(t) + h







(3.7)

= (GLh) (Θ) + ((I − Pu)X0) (Θ)Feff





∑

j=±

φλ
j
uuj(t) + h



 .
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It can be approximately solved in the vicinity of the instability as follows. We assume that
the order parameters u±(t) possess a certain dependence on the smallness parameter (2.18)
which is typical for a Hopf bifurcation:

u±(t) = O(ε1/2).(3.8)

Furthermore, we perform for the center manifold h(Θ, u+, u−) the lowest-order ansatz

h(Θ, u+, u−) =
∑

j1=±

∑

j2=±

Hj1j2(Θ)uj1(t)uj2(t),(3.9)

as r = 2 is the order of the effective nonlinear functional (3.3). From (3.8) and (3.9), it
follows then in lowest order of ε that the effective nonlinear functional Feff in (3.7) can be
approximated by

Feff





∑

j=±

φλ
j
uuj(t) + h



 ≈
∑

j1=±

∑

j2=±

F eff
j1j2u

j1(t)uj2(t),(3.10)

where the coefficients F eff
j1j2

read

F eff
j1j2 =

∫ 0

−1
dΘ1

∫ 0

−1
dΘ2 ω

(2) (Θ1,Θ2)φ
λ
j1
u (Θ1)φ

λ
j2
u (Θ2).(3.11)

Taking into account (2.5) and (2.23), these coefficients turn out to be

F eff
++ = F eff

−−

∗
= −RN2

λ+
u
e−λ

+
u , F eff

+− = F eff
−+ = −RNλ+

u
Nλ−u

e−λ
+
u .(3.12)

As a consequence, we conclude from (3.7) in lowest order of ε that the coefficients Hj1j2(Θ)
of the center manifold (3.9) are given by

Hj1j2(Θ) = F eff
j1j2Kj1j2(Θ),(3.13)

where the coefficients Kj1j2(Θ) follow from

Kj1j2(Θ) =
(

[GL − Λ]−1 (PuX0 −X0)
)

(Θ)(3.14)

with the abbreviation

Λ =
2
∑

k=1

λjku .(3.15)

In [7] it is shown that the operator [GL − Λ]−1 has the explicit representation

(

[GL − Λ]−1 χ
)

(Θ) =

∫ Θ

0
ds eΛ(Θ−s)χ(s)(3.16)

+ [L(Λ) − Λ]−1

(

χ(0) −
∫ 0

−1
dΘ

∫ Θ

0
ds eΛ(Θ−s)ω(Θ)χ(s)

)

eΛΘ,
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where L(λ) is already defined in (2.15). After some calculation, which also involves (2.10),
(2.23), (2.24), (2.33), and (3.2), it thus follows that the coefficients (3.14) are given by

Kj1j2(Θ) =
∑

j=±

N2
λju

λju − Λ
eλ

j
uΘ − eΛΘ

L(Λ) − Λ
.(3.17)

Thus, together with (2.10), (2.15), and (3.15), we obtain

K++(Θ) = K∗
−−(Θ) = −

N2
λ+
u
eλ

+
u Θ

λ+
u

+
N2
λ−u
eλ

−
u Θ

λ−u − 2λ+
u

+
e2λ

+
u Θ

Re−2λ+
u + 2λ+

u

,(3.18)

K+−(Θ) = K−+(Θ) = −
N2
λ+
u
eλ

+
u Θ

λ−u
−
N2
λ−u
eλ

−
u Θ

λ+
u

+
e(λ

+
u +λ−u )Θ

Re−(λ+
u +λ−u ) + λ+

u + λ−u
.(3.19)

This completes the lowest-order result for the center manifold h(Θ, u+, u−), which is given by
(3.9), (3.12), (3.13), (3.18), and (3.19).

Thus we can now consider the order parameter equation (3.4). In lowest order in ε we
take into account (2.5), (2.25), (3.3), (3.6), and (3.9) so that it reduces to

d

dt
u±(t) = λ±u u

±(t)(3.20)

−RNλ±u

2
∏

l=1





∑

j=±

φλ
j
u(ϑl)u

j(t) +
∑

j1=±

∑

j2=±

Hj1j2(ϑl)u
j1(t)uj2(t)



 ,

where we set

ϑl =

{

−1, l = 1,
0, l = 2.

(3.21)

Note that the order parameter equation (3.20) turns out to be an ordinary differential equation;
i.e., it no longer contains memory effects. Furthermore, we observe that the center manifold
explicitly enters the order parameter equation (3.20) as a direct consequence of the quadratic
nonlinearity of the Wright equation (1.5). We remark that this effect, which is essential for
the present synergetic analysis, was neglected in the neurophysiological study in [23]. In
the subsequent section we show how the order parameter equation (3.20) is converted to the
normal form of a Hopf bifurcation.

4. Normal form. Now we perform a nonlinear transformation of the order parameters
which eliminates those terms which are irrelevant for the normal form of a Hopf bifurcation.
As far as the so-called near identity transformation and the theory of normal forms in general
is concerned, we refer to the [19, 21, 22]. The terms in (3.20) which are relevant for the normal
form of a Hopf bifurcation read

d

dt
u±(t) = λ±u u

±(t) + q±0 u
±(t)

2
+ q±1 u

±(t)u∓(t) + q±2 u
∓(t)

2
+ k±1 u

±(t)
2
u∓(t)(4.1)
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as we can neglect quartic terms and nonresonant cubic terms due to the rotating wave ap-
proximation. The respective coefficients in (4.1) are given by

q±0 = −RNλ±u
φλ

±
u (−1)φλ

±
u (0) = −RNλ±u

3e−λ
±
u ,(4.2)

q±1 = −RNλ±u

[

φλ
±
u (−1)φλ

∓
u (0) + φλ

±
u (0)φλ

∓
u (−1)

]

(4.3)

= −RNλ±u
2Nλ∓u

(

e−λ
±
u + e−λ

∓
u

)

,

q±2 = −RNλ±u
φλ

∓
u (−1)φλ

∓
u (0) = −RNλ±u

Nλ∓u
2e−λ

∓
u ,(4.4)

k±1 = −RNλ±u

{

φλ
±
u (−1) [H+−(0) +H−+(0)] + φλ

∓
u (−1)H++(0)(4.5)

+ φλ
±
u (0) [H+−(−1) +H−+(−1)] + φλ

∓
u (0)H++(−1)

}

,

where we did not write down the explicit form of k±1 for simplicity. Then the previous or-
der parameters u±(t) are transformed to new order parameters v±(t) by the near identity
transformation

u±(t) = v±(t) + α±
0 v

±(t)
2
+ α±

1 v
±(t)v∓(t) + α±

2 v
∓(t)

2
,(4.6)

with the yet-unknown coefficients α±
0 , α±

1 , and α±
2 . As the u±(t) are small quantities in the

vicinity of the instability, the same holds for the v±(t). Inserting (4.6) in (4.1), we obtain a
system of ordinary differential equations of the form

M(t)
d

dt

(

v+(t)
v−(t)

)

=

(

w+(t)
w−(t)

)

,(4.7)

where the matrix M(t) is defined by

M(t) =

(

1 + 2α+
0 v

+(t) + α+
1 v

−(t) α+
1 v

+(t) + 2α+
2 v

−(t)
α−

1 v
−(t) + 2α−

2 v
+(t) 1 + 2α−

0 v
−(t) + α−

1 v
+(t)

)

.(4.8)

For simplicity, we do not write the explicit form of w+(t) and w−(t), but we note that they
contain v+(t) and v−(t) at least in first order. Thus we obtain from (4.7)

d

dt

(

v+(t)
v−(t)

)

= M−1(t)

(

w+(t)
w−(t)

)

,(4.9)

with the inverse matrix

M(t)−1 =
1

DetM(t)

(

M22(t) −M12(t)
−M21(t) M11(t)

)

,(4.10)

where the determinant has the form

DetM(t) = 1 + v+(t)
(

2α+
0 + α−

1

)

(4.11)

+ 2v+(t)v−(t)
(

α+
0 α

−
0 − α+

2 α
−
2

)

+ 2v+(t)
2
(

α+
0 α

−
1 − α+

1 α
−
2

)

+ c.c.
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Expanding the right-hand side of (4.9) in powers of v+(t) and v−(t) up to the third order, we
yield

d

dt
v±(t) = λ±v±(t)(4.12)

+
(

q±1 − α±
0 λ

±
)

v±(t)
2
+
(

q±0 − α±
1 λ

∓
)

v+(t)v−(t) +
[

q±2 + α±
2 (λ± − 2λ∓)

]

v∓(t)
2

+
[

k±1 + q±0 (α∓
1 − α±

0 ) − q∓0 α
±
1 + q±1 α

±
1 + 2q±2 α

∓
2 − 2q∓2 α

±
2 + α±

1 α
∓
1 λ

±

+ 2α±
2 α

∓
2 (2λ± − λ∓) + α±

0 α
±
1 (λ± + 2λ∓)

]

v±(t)
2
v∓(t).

Now we can fix the yet-unknown coefficients α±
0 , α±

1 , and α±
2 of the near identity transforma-

tion (4.6) in such a way that all quadratic terms vanish. This leads to the conditions

α±
0 =

q±0
λ±u

, α±
1 =

q±1
λ∓u

, α±
2 =

q±2
2λ∓u − λ±u

.(4.13)

Thus (4.12) reduces to the normal form of a Hopf bifurcation

d

dt
v±(t) = λ±u v

±(t) + b±v±(t)
2
v∓(t),(4.14)

where the Hopf parameter b± is given by

b± = k±1 +
q±0 q

±
1 (4λ±u

2 − λ∓u
2
) + q±1 q

∓
1 (2λ±u λ

∓
u − λ∓u

2
) + 2q±2 q

∓
2 λ

±
u λ

∓
u

λ±u λ
∓
u (2λ±u − λ∓u )

.(4.15)

Taking into account (2.18), (2.19), (2.23), and (2.32) as well as (3.12), (3.13), (3.18), and
(3.19) together with (4.2)–(4.6), this Hopf parameter b± reads in the vicinity of the instability
as

b± = − Rc

5(1 +R2
c)

3

2

[(3Rc − 1) ± i(Rc + 3)] + O (ε) .(4.16)

Performing the ansatz

v±(t) = r(t)e±iϕ(t),(4.17)

the normal form (4.14) is transformed to polar coordinates

d

dt
r(t) = r(t)

[

ℜ
(

λ±u
)

+ ℜ
(

b±
)

r(t)2
]

,(4.18)

d

dt
ϕ(t) = ±

[

ℑ
(

λ±u
)

+ ℑ
(

b±
)

r(t)2
]

.(4.19)

Thus, taking into account (2.19) and (4.16) near the instability, the oscillatory solution results
in

rstat =

√

√

√

√−
ℜ
(

λ±u
)

ℜ (b±)
=

√

5Rc
3Rc − 1

4

√

1 +R2
c

√
ε+ O (ε) ,(4.20)

d

dt
ϕ(t) = ±

[

ℑ
(

λ±u
)

+ ℑ
(

b±
)

r2stat

]

= Rc −
Rc

3Rc − 1
ε+ O

(

ε2
)

.(4.21)
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In order to compare this result with numerical simulations, we have to convert this oscillatory
solution back to the original state space Γ. At first we observe that we obtain, for zt ∈ C from
(2.22), (2.35), (3.6), and (3.9) near the instability,

zt(Θ) =
∑

j=±

φλ
j
u(Θ)uj(t) +

∑

j1=±

∑

j2=±

Hj1j2(Θ)uj1(t)uj2(t).(4.22)

Taking into account the near identity transformation (4.6) together with (2.23), this yields up
to the first order in ε

zt(Θ) = Nλ+
u
eλ

+
u Θv+(t) +Nλ−u

eλ
−
u Θv−(t)(4.23)

+a0(Θ)v+(t)
2
+ a1(Θ)v+(t)v−(t) + a2(Θ)v−(t)

2
,

where the coefficients a0(Θ), a1(Θ), a2(Θ) read as

a0(Θ) =
[

Nλ+
u
eλ

+
u Θα+

0 +Nλ−u
eλ

−
u Θα−

2 +H++(Θ)
]

,(4.24)

a1(Θ) =
[

Nλ+
u
eλ

+
u Θα+

1 +Nλ−u
eλ

−
u Θα−

1 +H+−(Θ) +H−+(Θ)
]

,(4.25)

a2(Θ) =
[

Nλ+
u
eλ

+
u Θα+

2 +Nλ−u
eλ

−
u Θα−

0 +H−−(Θ)
]

.(4.26)

Due to the relation (2.2) between z(t) ∈ Γ and zt ∈ C, we conclude from (4.23) that

z(t) = Nλ+
u
v+(t) +Nλ−u

v−(t)(4.27)

+ a0(0)v+(t)
2
+ a1(0)v+(t)v−(t) + a2(0)v−(t)

2
.

Near the instability, we obtain from (2.32)

Nλ±u
=

1
4
√

1 +R2
c

e±iψ1 + O(ε)(4.28)

with some phase ψ1, whereas (4.17)–(4.19) lead to

v±(t) = rstate
±iϕ(t)(4.29)

with the radius (4.20) and the phase

ϕ(t) = Ω(ε)t+ ϕ0.(4.30)

Here the frequency turns out to be

Ω(ε) = Rc −
Rc

3Rc − 1
ε.(4.31)

Furthermore, we yield from (4.24)–(4.26), by taking into account (3.12), (3.13), (3.18), (3.19),
and (4.28) in the lowest order of ε,

a0(0) =
1

√

5(1 +R2
c)
eiψ2 , a1(0) = 0, a2(0) =

1
√

5(1 +R2
c)
e−iψ2 ,(4.32)
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where ψ2 denotes some phase. Thus we obtain the following result for z(t) ∈ Γ near the
instability:

z(t) = c0(ε) + c1(ε) cos [ϕ(t) + ψ1] + c2(ε) cos [2ϕ(t) + ψ2] + O
(

ε
3

2

)

,(4.33)

where the respective coefficients read as

c0(ε) = 0, c1(ε) = 2

√

5Rc
3Rc − 1

√
ε, c2(ε) = 2

√
5Rc

3Rc − 1
ε.(4.34)

Now we compare the oscillatory solution (1.7), (1.8), which was obtained by using the method
of averaging, with ours, (4.30), (4.31), (4.33), (4.34), by taking into account the critical value
(1.6) of the control parameter. We conclude that both results coincide in the lowest order
ε1/2, but our result is even correct up to the order ε.

From the near identity transformation (4.6) as well as from (4.20) and (4.29), we conclude
that the order parameters u±(t) turn out to be of the order ε1/2. This result is consistent with
our original assumption (3.8), which was the basis of our approximate solution of the implicit
equation for the center manifold (3.7) in the vicinity of the instability. Thus our synergetic
system analysis is justified a posteriori by self-consistency.

Note that the same perturbative result (4.30), (4.31), (4.33), (4.34) for the oscillatory
solution above the Hopf bifurcation can be derived with the multiple scale method [10]. It
represents a technical procedure to deduce the normal form, once the bifurcation type is
known, by using the knowledge of how the respective quantities depend on the smallness
parameter ε = (R−Rc)/Rc. Although the multiple scale method was originally developed for
ordinary differential equations [24, 25, 26], it can be also applied to delay differential equations
(see, for instance, the treatment in [27]).

5. Numerical investigation. In order to numerically verify our analytical result, we in-
tegrated the underlying delay differential equation of Wright (1.5). By doing so, we varied
the control parameter R in the vicinity of the instability Rc = π/2 in such a way that the
smallness parameter ε = (R − Rc)/Rc took 200 equidistant values between 10−5 and 10−1.
We used a Runge–Kutta–Verner method of the IMSL library as an integration routine with
a step-size of 10−3 and performed a linear interpolation between the respective values in the
memory interval. In particular, in the immediate vicinity of the instability, the phenomenon of
critical slowing down led to a transient behavior. To exclude this, we iterated the discretized
delay differential equation for each value of the control parameter at least 106 times. After-
ward, we calculated the power spectrum with a complex fast Fourier transform (FFT) so that
the basic frequency Ω of the oscillatory solution could be determined with high resolution.
Then we performed a real FFT with the period T = 2π/Ω of the simulated periodic signal
z(t) = z(t+ T ):

z(t) =
a0

2
+

∞
∑

k=1

[ak cos (kΩt) + bk sin (kΩt)] .(5.1)
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Figure 5.1. Frequency Ω and Fourier coefficients c0, c1, c2 of the oscillatory solution of the Wright equation
after the Hopf bifurcation versus the smallness parameter ε = (R−Rc)/Rc.

The Fourier coefficients follow from integrations with respect to one period T = 2π/Ω:

ak =
2

T

∫ T

0
f(t) cos (kΩt) dt, k = 0, 1, . . . ,∞;(5.2)

bk =
2

T

∫ T

0
f(t) sin (kΩt) dt, k = 1, . . . ,∞.(5.3)

From (5.1) follows then the spectral representation

z(t) = c0 +
∞
∑

k=1

ck cos (kΩt+ φk)(5.4)

with the quantities

c0 =
a0

2
, ck =

√

a2
k + b2k, φk = − arctan

bk
ak
, k = 1, . . . ,∞.(5.5)

Thus our analytical result (4.30), (4.33) can be interpreted as the first terms within a spectral
representation (5.4), where the frequency Ω = 2π/T and the Fourier coefficients c0, c1, c2
are given by (4.31) and (4.34). Numerically analyzing the Hopf bifurcation with the FFT,
the results for Ω, c0, c1, c2 are plotted in Figure 5.1 versus the smallness parameter ε. Com-
paring the respective numerical and analytical results, we observe some deviations for small
and for large values of the smallness parameter ε. The former are due to the phenomenon of
critical slowing down (i.e., the system stays longer in the transient state when the instability
is approached), and the latter arise from the neglected higher-order corrections in the ana-
lytical approach. Therefore, we restricted our numerical analysis to the intermediate interval
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Table 5.1

Plotting the analytical and numerical values for the frequency Ω(ε) and the Fourier coefficients c0(ε),
ln c1(ε), c2(ε) of the oscillatory solution of the Wright equation after the Hopf bifurcation versus ε, we obtain
straight lines whose axes intercept and whose slopes are determined.

Quantity
Analytical
expression

Analytical
value

Numerical
value

Intercept Slope Intercept Slope Intercept Slope

Ω(ε) Rc

Rc

3Rc − 1
1.5708 −0.4231 1.5707 −0.4024

c0(ε) 0 0 0.0 0.0 −2 · 10−4 4 · 10−2

ln c1(ε)
1

2
ln

20Rc

3Rc − 1

1

2
1.06781 0.5 1.06126 0.4999

c2(ε) 0 2

√

5Rc

3Rc − 1
0.0 1.8923 2 · 10−4 1.832
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Figure 5.2. Oscillatory solutions of the Wright equation (1.5) for three values of the control parameter R:
1.7 (dotted line), 2.0 (dashed line), and 3.247 (solid line).

[10−5, 10−1] of the smallness parameter ε. In Table 5.1, we see that the analytically and nu-
merically determined quantities agree quantitatively very well. Thus our synergetic system
analysis for the delay-induced Hopf bifurcation in the Wright equation is numerically verified.

For the sake of completeness, we have also investigated oscillatory solutions for values of
the control parameter R which are larger than the critical one Rc = π/2. Figure 5.2 shows
that all these periodic solutions oscillate around the stationary state zI

stat = 0, which becomes
unstable at Rc = π/2. It turns out that a global bifurcation occurs for Rgc = 3.247 as then the
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few mode amplitudes u�(t)of the slowlinear unstable modes ���u (�)

many fastlinear stable modes st(�)

order parameter u�(t)enter manifoldst(�) = h(�; u+(t); u�(t))
order parameter equationsddtu�(t) = ��u u�(t) + y��u (0)Fe� 24 Pj=� ���u u�(t) + h35

Figure 6.1. Circular causality chain of synergetics for the Hopf bifurcation of a delay differential equation.
On the one hand, the center manifold of the slaving principle guarantees that many fast linear stable modes
st(Θ) quasi-instantaneously take values which are prescribed by the few slow linear unstable modes u±(t). On the
other hand, the adiabatic elimination of the fast enslaved modes st(Θ) influences the resulting order parameter
equation.

oscillatory solution comes close to the other stationary state zII
stat = −1, which turns out to

be linear unstable for all values of the control parameter R > 0. Indeed, performing a linear
stability analysis according to section 2 around the stationary state zII

stat = −1 leads to the
characteristic equation

R− λ = 0,(5.6)

so we have from (2.16) the identification p = R and q = 0. (Compare this with the shaded
stability region in Figure 2.1.)

6. Summary and outlook. In this article, a linear stability analysis of the Wright equation
(1.5) around the stationary state zI

stat = 0 showed that a delay-induced Hopf bifurcation occurs
at the critical value Rc = π/2 of the control parameter R. Within a subsequent nonlinear
synergetic analysis, we adiabatically eliminated the stable modes and derived the normal
form of this Hopf bifurcation. It is explicitly influenced by the center manifold in the lowest
order, as the Wright equation (1.5) has a quadratic nonlinearity. Solving the normal form, we
obtained a periodic solution above the Hopf bifurcation which was numerically verified.

In contrast to the corresponding analysis of the electronic system of a first-order PLL with
time delay [11], this paper not only confirms the order parameter concept for delay systems but
also represents a successful test for the slaving principle of synergetics, i.e., for the influence
of the center manifold on the order parameter equations. Thus the validity of the circular
causality chain of synergetics (see Figure 6.1) has been demonstrated for the Hopf bifurcation
of a delay differential equation.

It remains to investigate the circular causality chain for other bifurcations. For instance,
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it may be interesting to revisit a Hopf bifurcation of codimension two in delayed systems
as it occurs in some robotics applications [28]. Furthermore, the Floquet theory for delay
differential equations, and thus the linear stability analysis for a periodic reference state, was
already established in [29, 30, 31]. However, a corresponding synergetic system analysis which
derives the order parameter equations and the normal forms for bifurcations of oscillatory
solutions is still missing [10, 11, 32].
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