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Synergetic theory for a jamming transition in traffic flow
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The theory of a jamming transition is proposed for the homogeneous car-following model within the

framework of the Lorenz scheme. We represent a jamming transition as a result of the spontaneous deviations

of headway and velocity that is caused by the acceleration/braking rate to be higher than the critical value. The

stationary values of headway and velocity deviations and time of acceleration/braking are derived as functions

of control parameter ~time needed for car to take the characteristic velocity!.

DOI: 10.1103/PhysRevE.63.036116 PACS number~s!: 05.70.Jk, 05.70.Fh, 89.40.1k

I. INTRODUCTION

In recent years, considerable study has been given to the
traffic problems @1#. It is shown, in particular, that the jam-
ming transition is similar to the conventional gas-liquid
phase transition, where the freely moving traffic and the
jammed traffic correspond to the gas and liquid phases, re-
spectively. The transition between them is caused by the
growth of car density above a critical value. The congested
traffic flow with an unstable uniform part leads to the forma-
tion of traffic jams where the freely moving traffic and
jammed traffic coexist. Within the framework of Ref. @2#, the
jamming transition is represented as a first-order phase tran-
sition, whose behavior is defined by headway ~car density!
that acts as the volume ~density! and by the inverted delay
time ~sensitivity parameter! that reduces to temperature.

Our approach is to take into consideration the complete
set of freedom degrees as equivalent variables. We obtain the
self-consistent analytical description of the jamming transi-
tion as a result of the self-organization caused by the positive
feedback of the headway deviation and acceleration/braking
time on the one hand, as well as the negative feedback of the
deviations of headway and velocity on the other hand.

The paper is organized as follows. In Sec. II the self-
consistent Lorenz system of the governed equations for the
headway and velocity deviations as well as for the
acceleration/braking time is obtained. The jamming transi-
tion is shown to be supercritical in character ~has the second
order! if the relaxation time for the first of the pointed out
quantities does not depend on its value; it transforms to the
subcritical regime with this dependence appearance. Section
III deals with the determination of steady-state values for the
headway deviation and the acceleration/braking time within
the adiabatic approximation. Out of the latter limit, the time
dependences for the headway and velocity deviations are
studied on the basis of the phase-portrait method. Section IV
contains a short discussion of the used assumptions.

II. BASIC EQUATIONS

Within the framework of the simplest car-following

model, the acceleration V̇ of a given vehicle as a function of

its distance Dx to the front vehicle is defined by equality V̇

5@vopt(Dx)2V#/t , where vopt(Dx)5Dx/t0 is the optimal
velocity function (t0 being a characteristic time interval!, h

5Vt0 is the optimal headway, and t is the time of
acceleration/braking needed for a car to reach the optimal
velocity. It is convenient to introduce deviations h[Dx2h

and v[D ẋ2h/t01V of headway Dx and its velocity D ẋ

from the corresponding optimal values h and h/t02V . Then,
the flow of cars can be described in terms of the pointed-out
quantities h , v , and t . The key point of our approach is that
the above degrees of freedom are assumed to be of dissipa-
tive type, so that, when they are not coupled, their relaxation
to the steady state is governed by the Debye-type equations
with corresponding relaxation times th ,t

v
,tt . Within the

simplest approach, equations for the time dependences h(t),

v(t), and t(t) are supposed to coincide formally with the
Lorenz system that describes the self-organization process
@3#.

The first of the stated equations has the form

ḣ52h/th1v , ~1!

where the dot stands for a derivative with respect to time t.
The first term on the right-hand side describes the Debye
relaxation during time th ; the second one is the usual addi-

tion. In a stationary state, when ḣ50, the solution of Eq. ~1!
defines the conventional linear relationship h5thv , so that
the headway deviation is proportional to the velocity devia-
tion.

The equation for the rate of quantity v variation is sup-
posed to have the nonlinear form

v̇52v/t
v
1g

v
ht , ~2!

where t
v

,g
v

are positive constants. As in Eq. ~1!, the first
term on the right-hand side of Eq. ~2! describes the relax-
ation process of velocity deviation v to the stationary value

v50 determined by a time t
v

. The second term describes
the positive feedback of the headway deviation h and the
time t of acceleration/braking on the velocity deviation v

that results in the increase of value v and, thus, causes the
self-organization process.

The kinetic equation for the acceleration/braking time t ,*Email address: olemskoi@ssu.sumy.ua
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ṫ5~t02t !/tt2gthv , ~3!

differs from Eqs. ~1! and ~2! as follows: the relaxation of
quantity t occurs not to the zero but to the finite value t0,
representing the stationary time needed for a car to reach the
characteristic velocity ~in other words, t0 is the car charac-
teristic!; tt is a corresponding relaxation time. In Eq. ~3! the
negative feedback of the quantities h and v on t is intro-
duced to imply the decrease of acceleration/braking time t
with the growth of the headway and velocity deviations (gt

.0 is a corresponding constant!.
Equations ~1!, ~2!, and ~3! constitute the basis for self-

consistent description of the car-following model driven by
the control parameter t0. The distinguishing feature of these
equations is that nonlinear terms that enter Eqs. ~2! and ~3!
are of opposite signs, while Eq. ~1! is linear. Physically, the
latter means just that the velocity deviation is the derivative
of headway deviation with respect to time. The negative sign
of the last term in Eq. ~3! can be regarded as a manifestation
of the Le Chatelier principle, i.e., since a decrease in the
acceleration/braking time promotes the formation of a stable
car flow, the headway and velocity deviations h and v tend
to impede the growth of the acceleration/braking time and, as
a consequence, the jamming. The positive feedback of h and
t on v in Eq. ~2! plays an important part in the problem. As
we shall see later, it is precisely the reason behind the self-
organization that brings about the traffic jam.

To explain the relaxation transition to the stable jamming
state, we shall show further that it is quite enough to use the
adiabatic approximation: t

v
50, tt50. Therefore, we could

proceed not from Eqs. ~2! and ~3! but from much simple
expressions,

v5a
v
ht , a

v
[t

v
g

v
, t5t02athv , at[ttgt ,

~4!

which are related to the stationary case v̇50,ṫ50 in Eqs. ~2!
and ~3!, respectively. The equalities ~4! have an absolutely
clear physical meaning: the increase of the headway devia-
tion h or acceleration/braking time t leads to a growth of the
velocity deviation v , whereas the increase of the headway h
and velocity v deviations should cause the decrease of
acceleration/braking time t in comparison with characteristic
time t0 if the car flow is not broken.

After introducing the suitable scales for quantities h ,v ,t ,

hm[~a
v
at!

21/2, vm[hm /th5th
21~a

v
at!

21/2,

tc[~ tha
v
!21, ~5!

Eqs. ~1!, ~2!, and ~3! can be rewritten in the simplest form of
the well-known Lorenz system:

ḣ52h1v , ~6!

e v̇52v1ht , ~7!

d ṫ5~t02t !2hv , ~8!

where the relaxation time ratios e[t
v

/th , d[tt /th are in-
troduced and the dot now stands for the derivative with re-

spect to the dimensionless time t/th . In general, the system
~6!–~8! cannot be solved analytically, but in the simplest
case e!1 and d!1, the left-hand sides of Eqs. ~7! and ~8!
can be neglected. Then, the adiabatic approximation can be
used to express the velocity deviation v and the acceleration/
braking time t in the form of the equalities ~4!. As a result,
the dependences of t and v on the headway deviation h are
given by

t5

t0

11h2
, v5

t0h

11h2
. ~9!

Note that, although h is in the physically meaningful range
between 0 and 1, the acceleration/braking time is a mono-
tonically decreasing function of h , whereas the velocity de-
viation v increases with h ~at h.1 we have dv/dh,0,
which has no physical meaning!.

Substituting the second equality ~9! into Eq. ~6! yields the
Landau-Khalatnikov relation:

ḣ52

]F

]h
~10!

with the effective potential given by

F5
1
2 h2

2
1
2 t0 ln~11h2!. ~11!

For t0,1, the h dependence of F is monotonically increas-
ing and the only stationary value of h equals zero, he50, so
that there is no headway deviation in this case. If the param-
eter t0 exceeds the critical value, tc51, the effective poten-
tial assumes the minimum with nonzero steady-state head-

way deviation he5At021 and the acceleration/braking time
te51.

The above scenario represents the supercritical regime of
the traffic-jam formation and corresponds to the second-
order phase transition. The latter can be easily seen from the
expansion of the effective potential ~11! in a power series of
h2

!1:

F'
12t0

2
h2

1

t0

4
h4. ~12!

So the critical exponents are identical to those obtained
within the framework of the mean-field theory @4#.

The drawback of the outlined approach is that it fails to
account for the subcritical regime of the self-organization
that is the reason for the appearance of the traffic jam and
analogous to the first-order phase transition, rather than the
second-order one. So one has to modify the above theory by
taking the assumption that the effective relaxation time
th(h) increases with headway deviation h from the initial
value th /(11m) fixed by a parameter m.0 to the final one
th @5#. The simplest two-parameter approximation is as fol-
lows:

th

th~h !
511

m

11~h/h0!2
, ~13!
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where 0,h0,1. The expression for the effective potential
~11! then changes by adding the term

DF5

m

2
h0

2 lnS 11

h2

h0
2D ~14!

and the stationary values of h are

he
m

5h00$17@11h0
2h00

24~t02tc!#1/2%1/2, ~15!

2h00
2 [~t021 !2tch0

2 , tc[11m .

The upper sign on the right-hand side of Eq. ~15! is for the
value at the unstable state hm where the effective potential
F1DF has the maximum; the lower one corresponds to the
stable state he . The corresponding value of the stationary
acceleration/braking time

tm
5

11h00
2

1A~11h00
2 !2

2~12h0
2!t0

12h0
2

~16!

smoothly increases from the value

tm511h0 A m

12h0
2

~17!

at the parameter t05tc0 with

tc05~12h0
2!tm

2 ~18!

to the marginal value tc511m at t05tc .

III. RESULTS

The t0 dependences of he , hm, and te are depicted in
Fig. 1. As is shown in Fig. 1~a!, when the adiabatic condition
tt ,t

v
!th is met and the parameter t0 slowly increases to

below tc , no traffic jam can form. At the point t05tc , the
stationary headway deviation he jumps upward to the value
A2h00 and its further smooth increase is determined by Eq.
~15!. If the parameter t0 then goes downward, the headway
deviation he continuously decreases up to the point where
t05tc0 and he5h00 . At this point, the jumplike headway
deviation goes down to zero. Referring to Fig. 1~b!, the sta-
tionary acceleration/braking time te shows a linear increase
from 0 to tc with the parameter t0 being in the same inter-

val. Then, after the jump down to the value (12h0
2)21 at

t05tc , the stationary time te smoothly decays to 1 at t0

@tc . When the parameter t0 then decreases from above tc

down to tc0, the acceleration/braking time te grows. When
the point ~18! is reached, the traffic becomes freely moving,
so that the stationary acceleration/braking time undergoes the
jump from the value ~17! up to the one defined by Eq. ~18!.
For t0,tc0, again the parameter te does not differ from t0.
Note that this subcritical regime is realized provided the pa-
rameter m, which enters the dispersion law ~13!, is greater
than the value

mmin5

h0
2

12h0
2

. ~19!

Clearly, according to the picture described, the jamming

generation is characterized by the well pronounced hyster-

esis: the cars initially at motion with optimal headway be-

tween them begin to deviate only if the acceleration/braking
time t0 of cars exceeds its limiting value tc511m , whereas
the acceleration/braking time tc0 needed for uniform car
flow is less than tc @see Eqs. ~17! and ~18!#. This is the case
in the limit tt /th→0 and the hysteresis loop shrinks with the
growth of the adiabaticity parameter d[tt /th . In addition to
the smallness of d , the adiabatic approximation implies that
the ratio t

v
/th[e is also small. In contrast to the former, the

latter does not seem to be realistic for the system under con-
sideration, where, in general, t

v
'th . So it is of interest to

study to what extent the finite value of e could change the
results.

Owing to the condition d!1, Eq. ~8! is still algebraic and
t can be expressed in terms of h and v . As a result, we
derive the system of two nonlinear differential equations that
can be studied by the phase portrait method @5#. The phase
portraits for various values of e are displayed in Fig. 2,
where the center O represents the stationary state and the
saddle point S is related to the maximum of the effective

FIG. 1. The t0 dependences of the stationary values of ~a! head-

way deviations he ,hm; ~b! acceleration/braking time te . The ar-

rows indicate the hysteresis loop.
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potential. As is seen from the figure, independently of e ,
there is the universal section, the ‘‘mainstream,’’ that attracts
all phase trajectories and its structure appears to be almost
insensitive to changes in e . Analysis of time dependences

v(t) and h(t) reveals that the headway and velocity devia-
tions slow down appreciably in this section in comparison to
the rest of the trajectories that are almost rectilinear ~it is not
difficult to see that this effect is caused by the smallness of
d). Since most of the time the system is in the vicinity of the
‘‘mainstream,’’ we arrive at the conclusion that finite values
of e do not affect qualitatively the above results obtained in
the adiabatic approximation.

IV. DISCUSSION

According to the above consideration, the simplest picture
of the dissipative dynamic of traffic flow in a homogeneous
car-following model can be represented within the frame-
work of the Lorenz model, where the headway h and veloc-
ity v deviations play the role of an order parameter and its
conjugate field, respectively, and the acceleration/braking
time t is a control parameter. The model is examined to
show that a jam is created if the car characteristic t0 is larger
than the critical magnitude tc . The above pointed-out dissi-
pative regime is inherent in the systems with small values of
the relaxation time tt for acceleration/braking, being appar-
ently a characteristic of a car-driver, and large ones th , t

v
for

the headway and velocity deviations. According to Ref. @5#,
in the opposite case tt>th ,t

v
, the system behaves in auto-

oscillation or stochastic manners.
It is worthwhile to note that the above synergetic scheme

allows us to explain the collective phenomena of jamming

transitions in the N-body problem with N→` . Then the fol-
lowing question arises: why do exactly three variables ~the
headway and velocity deviations h ,v and acceleration/
braking time t) permit us to explain the nontrivial behavior
of the N-body problem? The answer to this question gives
the theorem by Ruelle and Takens: the nontrivial collective
behavior of the many-body system ~the type of strange at-
tractor! can be represented only in the case in which the
number of variables is not less than three @3#. The interpre-
tation of this fact is the simplest: the first of the freedom
degrees can be chosen as the way along the phase trajectory,
and the second one corresponds to the negative Lyapunov
exponent, ensuring an attraction to this trajectory, the third
one acts in the opposite manner to give repulsion. In our case
of the self-organization process, the second v and third t
freedom degrees provide the positive and negative feedbacks
in Eqs. ~2! and ~3!.

The last question in our approach is why does only the
Lorenz scheme allow us to describe the main peculiarities of
the jamming transition? The answer is that this is the sim-
plest approach, permitting us to understand the self-
organization effects, just as the Landau phenomenological
theory of phase transitions describes the great variety of ther-
modynamical transformations in the simplest way @6#. Let us
note in this connection that the effective potential given by
the sum of equalities ~11! and ~14! plays a part in the Landau
free energy. But the above-stated synergetic scheme has a
principal difference from the Landau-type theory @2# because
the former takes into account feedback of the thermostat ~the
velocity deviation and the acceleration/braking time! with
the subsystem under consideration ~the headway deviation!,
whereas the latter does not.
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FIG. 2. Phase portraits in the h-v plane at

m51, h050.1, and t051.25tc for ~a! e51022;

~b! e51; ~c! e5102.
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