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Synergic bactericidal effects of 
reduced graphene oxide and 
silver nanoparticles against Gram-
positive and Gram-negative 
bacteria
Karthika Prasad1,2, G. S. Lekshmi3, Kola Ostrikov5, Vanessa Lussini1, James Blinco1, 
Mandhakini Mohandas3, Krasimir Vasilev5, Steven Bottle  1, Kateryna Bazaka1,2,4 & Kostya 
Ostrikov1,2,4

Reduced graphene oxide (rGO) is a promising antibacterial material, the efficacy of which can be 
further enhanced by the addition of silver nanoparticles (nAg). In this study, the mechanisms of 
antibacterial activity of rGO–nAg nanocomposite against several important human pathogenic multi-
drug resistant bacteria, namely Gram-positive coccal Staphylococcus aureus and Gram-negative rod-
shaped Escherichia coli and Proteus mirabilis are investigated. At the same concentration (100 µg/ml), 
rGO–nAg nanocomposite was significantly more effective against all three pathogens than either rGO 
or nAg. The nanocomposite was equally active against P. mirabilis and S. aureus as systemic antibiotic 
nitrofurantoin, and significantly more effective against E. coli. Importantly, the inhibition was much 
faster in the case of rGO–nAg nanocomposite compared to nitrofurantoin, attributed to the synergistic 
effects of rGO–nAg mediated contact killing and oxidative stress. This study may provide new insights 
for the better understanding of antibacterial actions of rGO–nAg nanocomposite and for the better 
designing of graphene-based antibiotics or other biomedical applications.

According to the report published by World Health Organization, bacterial resistance to antibiotics is a major 
global threat to public health akin that posed by global warming and terrorism1. In the European Union alone, 
annual health care costs and productivity losses attributed to bacterial resistance by major health care-associated 
bacterial infections is estimated to approach 2.5 million hospital days, 25,000 deaths and economic losses on 
the order of €1.5 billion2. Unsurprisingly, there is a signi�cant interest in the development of novel strategies 
to combat the spread of resistant microorganisms, e.g. by developing new antibiotics and other therapeutics3–5. 
Alternative therapies that positively contribute to the rational use of conventional antibiotics are particularly 
highly desired6.

Recently, graphene-based materials have emerged as promising antibacterial materials7–11. Originally actively 
researched for their excellent thermal, mechanical and electrical properties that make them well-suited for such 
applications as energy devices, sensors, and �eld-e�ect transistors12, 13, chemically modi�ed graphenes such as 
graphene oxide (GO) and reduced GO (rGO) have been shown to inhibit the growth of several clinically-relevant 
pathogens, including Escherichia coli14–16. �e observed antibacterial activity of GO and rGO has been attributed 
to the favorable combination of physical structure and chemical functionality17, where the basal planes and edges 
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of GO are decorated with exogenous functional groups such as hydroxyl, epoxy group and carbonyl groups18, 19. 
Upon contact with such a nanostructure, membrane stress induced by the sharp edges of graphene nanosheets 
has been shown to cause signi�cant physical damage to cell membrane, and subsequent loss of bacterial mem-
brane integrity and leakage of intracellular material20. As the case with other nanomaterials, smaller sized nano-
particles (<10 nm) of rGO were found to exhibit higher antibacterial activity, owing to the favorable combination 
of high surface area and mobility across cell membrane21, 22.

Stronger antibacterial activity can potentially be achieved by combining nanomaterials with complimentary 
action against multiple bacterial targets23. �e present study explores whether it is possible to complement mem-
branolytic and oxidative activity of rGO with the free radical formation of silver nanoparticles. �e antibacterial 
properties of silver and silver-based nanomaterials are well-documented24–26. �e bene�ts of Ag ions and Ag 
nanoparticles include their e�cacy against both Gram-positive and Gram-negative bacteria, and a multifaceted 
mechanism of action. �is multifaceted mechanism of action translates into attacking the bacteria on several 
fronts (e.g. blocking respiration by binding to bacterial DNA, binding to enzyme to block energy cycle, binding to 
protein disul�de bridges to disrupt function), which makes it di�cult for bacteria to develop resistance. �is gives 
silver advantages compared to traditional antibiotics which typically target only a single site of the bacterium 
cell. Importantly, Ag nanoparticles (nAg) show low or no cytotoxicity to human cells and are suggested in some 
reports that silver nanoparticles aids in reducing in�ammation27–30. �is combination of properties makes silver 
and silver nanoparticles very attractive in protecting medical devices prone to being infected.

�is investigation aims to explore the mechanisms of activity of rGO–nAg nanocomposites against patho-
genic multi-drug resistant bacterial species, namely Escherichia coli (gram negative), Staphylococcus aureus (gram 
positive), and Proteus mirabilis (gram negative).

Results
Structural and morphological characterization of nanomaterials. Successful formation of rGO was 
con�rmed by SEM and TEM microscopy.

�e microstructural analysis (Fig. 1a) shows a sheet-like structure with wrinkles, and a relatively large number 
of reactive edges indicative of the formation of rGO nano�akes. SEM imaging con�rmed a well dispersed solution 
of silver nanomaterials having approximately spherical shape (Fig. 1b). �e rGO dispersion remained homogene-
ous for several days, which facilitated uniform dispersion and binding of Ag nanoparticles to rGO sheets (Fig. 1c).

�e morphology of rGO–nAg nanocomposites was examined using high-resolution transmission electron 
microscopy (HRTEM). �e HRTEM images presented in Fig. 2a showed nAg with an average diameter of 5.36 nm 
to be uniformly distributed on the rGO. �e lattice fringes of nAg shown in Fig. 2b con�rm the crystalline struc-
ture of nAg. �e particle size distribution of rGO–nAg nanocomposite (Fig. 2c) was estimated using ImageJ 
so�ware and HRTEM image shown in Fig. 2a. Based on the size distribution histogram and HRTEM images the 
size of nAg was in the range of 1–15 nm.

�e FTIR spectra (Fig. 3a) of rGO signi�cantly di�ered from that of GO. �e peak at 3500 cm−1 is typically 
attributed to O–H stretching vibrations of adsorbed water molecules and structural OH groups, and the peak at 
1600 cm−1 is attributed to O–H bending vibrations31, 32. �e presence of carboxyl and epoxy functional groups 
can also be detected at around 1734 cm−1, 1225 cm−1 and 1053 cm−1, respectively32. Due to thermal reduction, 
some oxygen-containing functional groups are partially removed. �e intense absorption band at 3500 cm−1 is 
decreased a�er reduction. �e carboxyl stretching vibration is also decreased. �e absorption intensity of the 
band at 1080 cm−1, which is assigned to epoxide (C–O–C) group, is also weakened in reduced graphene oxide33.

�e investigated structure di�racts the monochromatic beam of x-rays. As can be seen on the spectrum for 
rGO (Fig. 3b), a new high index, strong broad peak is obtained at 2θ = 24.1° for (002) plane and a small peak 
is obtained at 2θ = 42.91° for (100) plane. It is the transitional stage between graphene oxide and graphene, as 
rGO is obtained with a peak value at 2θ = 23.1° for (002) plane and a small index peak of graphene existence is 
observed at 2θ = 43° for (100) plane with inter layer distance of 0.37 nm34. For the rGO–nAg composite, along 
with the observed di�raction peaks at 2θ = 23, 43°, the XRD pattern also showed peaks at 38°, 46° and 64°, which 
according to the JCPDS �les 04-0783 and 84-0713, correspond to (111), (200) and (220) crystal planes of nAg. 
�is con�rms the formation of rGO–nAg composite.

�e addition of nAg particles to rGO produces a characteristic absorption band at 426 nm (Fig. 3c,d). �at is, 
an intense longitudinal band has appeared due to the contribution from the dipole oscillation along the long axis 

Figure 1. SEM images of synthesized nanomaterials. (a) rGO nanosheets with a large number of reactive edges, 
(b) nAg nanoparticles of uniform size and near spherical shape, (c) rGO–nAg composite showing uniform 
distribution of nAg.



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 1591  | DOI:10.1038/s41598-017-01669-5

of the nanomaterials35. �e rGO–nAg formation was visually con�rmed as a continuous color change of the solu-
tion from light yellow to gray. �e UV-Vis spectroscopy of rGO showed a peak red-shi�ed to 260 nm, con�rming 
successful GO reduction (Fig. 3d).

�e ability of rGO–nAg to form free radicles was demonstrated using ESR spectroscopy. As can be seen form 
the spectrum (Fig. 4), a strong single signal with a proportionality factor g value of approximately 2 (g = 1.99916) 
indicates the formation of oxygen-centred free radical36, 37. As the free radicles are very short lived, their direct 
visualization is di�cult and requires the use of appropriate traps.

Zone of inhibition. Plates were inoculated with S. aureus, E. coli and P. mirabilis and allowed to grow to 
achieve con�uency. Wells containing various concentrations of rGO, nAg, rGO–nAg, or standard antibiotic nitro-
furantoin were made in the plates. Zones of inhibition were measured a�er 24 hr. of incubation. Figure 5 shows 
representative images of plates.

Survival rate vs time. �e survival rate vs time was calculated for both gram positive S. aureus and gram 
negative P. mirabilis. At the end of each exposure time of 24 hours, the samples were inoculated on plate count 
agar (PCA) and the results were tabulated as colony forming units (CFU/ml). Complete inhibition was detected 
at the end of 4 hours incubation in the presence of rGO and nAg, while rGO–nAg demonstrated complete inhi-
bition at the end of 2–2.5 hours (Fig. 6).

Discussion
Infections caused by multidrug resistant (MDR) isolates are usually di�cult to treat. �e pharmaceutical industry 
is now facing a great challenge due to the evolution of multidrug resistant and pandrug resistant organisms. �e 
discovery of new e�ective antibacterial agents is challenging, time consuming (it could take well over 10 years 
from discovery to obtaining all regulatory approvals) and expensive. Nanoparticles may address this need and 
provide a novel therapeutic solution to limit the problem of antibiotic resistance38.

�e antibacterial activity of rGO, nAg, and rGO–nAg composite was assessed against three important path-
ogenic bacterial species, namely S. aureus, E. coli and P. mirabilis. rGO exhibited considerable broad spectrum 
antibacterial activity against both Gram-positive S. aureus and Gram-negative E. coli and P. mirabilis bacterial 
pathogens, however it required a signi�cantly higher concentration to achieve the desired level of inhibition com-
pared to rGO–nAg. In the agar well di�usion method, rGO exhibited only a small zone of inhibition while rGO–
nAg composite was able to achieve a zone of inhibition twice the size of rGO used on its own. It is important to 

Figure 2. Representative HRTEM images of (a) rGO–nAg nanocomposite, (b) lattice resolved image of nAg in 
rGO–nAg nanocomposite. (c) Size distribution histogram of nAg in rGO–nAg nanocomposite presented in (a).
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note that inhibitory activity of rGO–nAg and rGO was observed against the multidrug resistant strain (resistant 
to more than three antibiotics, including nitrofurantoin) of E. coli used in this study. Time-resolved measurement 
of survival showed inhibition of P. mirabilis by rGO between 2–3 hr a�er exposure and complete inhibition a�er 
3 hr of incubation. Similar results were shown for S. aureus, where signi�cant inhibition was observed a�er 3 hr. 
A�er 18 hr of incubation, no viable organisms could be detected. �e results obtained from this study correlated 
well with the previously published �ndings39.

Time-resolved viability testing showed that nAg signi�cantly inhibited P. mirabilis a�er 3 hr and E. coli a�er 
4 hr of exposure. Even though nAg could not inhibit the growth of either P. mirabilis or E. coli when tested using 
well method, the coupling of nAg with rGO signi�cantly enhanced the inhibitory activity of the composite.

In addition to larger zone of inhibition, rGO–nAg composites signi�cantly reduced time necessary to achieve 
complete inhibition. Both S. aureus and P. mirabilis were completely inhibited a�er 2.5 hr of incubation, with a 
signi�cant reduction in the number of viable bacteria attained a�er 2 hr of incubation. �e required incubation 

Figure 3. Reduction of GO to rGO and subsequent incorporation of nAg was con�rmed spectroscopically: (a) 
FTIR spectra for GO and rGO; (b) XRD of rGO and rGO–nAg composite; (c) UV spectrum of nAg; (d) UV–Vis 
spectra for rGO and rGO–nAg composite.

Figure 4. ESR spectrum of rGO–nAg recorded at room temperature.
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time for rGO–nAg was not only shorter than that required for either rGO or nAg, but also shorter than that 
required to achieve the same reduction in viability using standard antibiotic nitrofurantoin (100 µg/ml).

While nitrofurantoin kills the bacterial by damaging bacterial DNA40, the mechanism of activity of rGO–
nAg is yet to be fully elucidated. Previous studies have suggested that one potential mode of action of sheet-like 
graphene-based materials involves cell physical wrapping and entrapment of bacterial cells by these nanomateri-
als. In addition to physical entrapment of the cell, the direct contact between the sharp edges of rGO sheets with 
cells can physically damage cell membrane, resulting in leakage of intracellular material and negatively a�ecting 
cell metabolism. �e edge of graphene nanosheets have relatively high aspect ratio which makes them an attrac-
tive nanostructure for direct contact inactivation of microorganisms20. From this standpoint, increasing the sheet 
area enhances the rate of inactivation41.

Figure 5. Well di�usion study. Representative plates of (a) P. mirabilis, (b) S. aureus, and (c) E. coli. Red 
circles indicate the zone of inhibition from wells loaded with nitrofurantoin; yellow circles indicate the zone of 
inhibition from wells loaded with rGO–nAg.

Figure 6. Viable count of bacteria a�er exposure to (a) rGO, (b) nAg, (c) rGO–nAg composite, and (d) 
standard antibiotic nitrofurantoin.
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Essential to cell growth and metabolism, bacterial respiration relies on electron transport mediated by extra-
cellular electron acceptors42. An electron conduit that forms between surface respiratory proteins of the microbial 
membranes and the extracellular environment generates energy needed to support cell activity. When surface res-
piratory proteins that display n-type semiconducting behavior and a bandgap of ~2.6–3.1 eV43 come into contact 
with semi metallic materials such as rGO, where the oxygen percentage content is low, Shottky barrier is formed 
and electrons are transferred from cell membranes to rGO electron acceptors driven by Fermi level alignment44. 
Since bacteria strive to maintain a negative resting membrane potential by means of proton gradient, contact with 
rGO may lead to steady loss of electrons over time44. �e value of the surface charge di�ers depending on the 
bacterial species, with Gram-negative E. coli having a less negatively charged surface compared to Gram-positive 
S. aureus, due to the former having the membrane isoelectric point pI = 4~5 and the latter having the pI of 2~3 
under culture medium conditions44. �e di�erences in surface electron states may account, at least in part, for 
the di�erences in inhibitory activity of rGO and rGO–nAg composites against Gram-positive and Gram-negative 
bacterial strains.

Oxidative stress induced by rGO nanosheets and nAg also play an important role39. rGO–nAg causes the oxi-
dative stress by an imbalance between the production of reactive oxygen and the ability of the biological system 
(such as bacterial cell) to readily detoxify the reactive intermediates or easily repair the resulting damage45. �e 
excess formation or insu�cient removal of highly reactive molecules, such as reactive oxygen species (ROS), and 
resultant oxidative stress can arise from an increase in oxidant generation, a decrease in antioxidant protection, or 
a failure to repair oxidative damage46. �is eventually leads to signi�cant cell damage and cell death47.

Depending on their size and oxidation level, rGO sheets can adsorb on the surface layer of the cell, embed and 
subsequently cross the lipid bilayer, or can be taken up by the cell via vesicular structures48. Graphene sheets with 
higher degree of oxidation can enter the cell more e�ciently owing to the lower energy state that exists between 
an oxidized graphene sheet and the membrane49, 50. It has been observed that the nature of the graphene edges, 
e.g. their sharpness and chemical composition, mediated the penetration of graphene in the lipid bilayers. �e 
initial piercing of the cell membrane by sharp and rough edges of graphene has been shown to lower the energy 
barrier for graphene penetration51.

Treatment with nAg also contributes to oxidative stress through the formation of free radicals52, 53. Among 
generated reactive oxygen species (ROS), superoxide, hydrogen peroxide and hydroxyl radicals were reported 
to play key roles in the observed oxidative activity54, 55. �e free radicals, which are short-lived reactive chemical 
intermediates that contain one or more unpaired electrons56, induce cellular damage when they pass this unpaired 
electron onto nearby cellular structures. �is leads to oxidation of cell membrane lipids and amino acids that 
make up proteins or nucleic acid57. Ag ion treatment has been shown to result in cytoplasm membrane shinkage 
and separated from the cell wall. �is led to release of cellular contents and signi�cant cell wall degradation58. 
Similarly, reduced graphene oxide induces ROS-dependent oxidative stress by excess accumulation of intracel-
lular ROS, such as hydrogen peroxide, superoxide anions, hydroxyl radicals and singlet molecular oxygen49, 59, 60. 
�e ability of carbon nanostructures to generate oxygen anions and hydroxyl radicals were studied and con�rmed 
by many researchers by employing ESR techniques61–63.

�e synergic e�ect of the individual components, nAg and rGO, as shown in Table 1 is responsible for the 
observed increase in antibacterial activity of rGO–nAg nanocomposite (Fig. 7)64. With regard to the rGO–nAg 
composite, physical interaction between the sharp edges of rGO sheets disrupts the cell membrane and facilitates 
the transport of silver ions across the cell membrane65–68. �e cell entrapment property of rGO ensures high local 
concentrations of Ag ions in the immediate proximity of the cell membrane. It is also possible that rGO contrib-
uted to increased permeation of silver ions into the bacteria. Similar e�ects have been observed in Ag nanoparti-
cles encapsulated in poly lactic acid polymer matrix, where lactic acid disrupted the bacteria cell membrane and 
thus facilitated entry of silver ions/nanoparticles into the Gram-positive and Gram-negative bacteria69.

An important characteristic of metals like silver is their capacity to participate in redox reactions. In addition 
to the a�nity of a metal for a donor ligand, reduction potential is a thermodynamic parameter that determines 

Isolates P. mirabilis E. coli S. aureus

rGO

50 µg/ml No zone No zone No zone

100 µg/ml No zone No zone No zone

200 µg/ml 18 ± 2 9 ± 1 No zone

nAg

100 µg/ml No zone No zone 8 ± 1

rGO–nAg

100 µg/ml 23 ± 2 25 ± 2 24 ± 1

Nitrofurantoin

100 µg/ml 24 ± 2 No zone 26 ± 1

Table 1. �e average zones of inhibition (in mm) of rGO, nAg, rGO–nAg, and nitrofurantoin. As expected, the 
zone of inhibition for rGO and nAg was concentration-dependent. �e concentrations of 50 µg/ml and 100 µg/
ml of rGO and nAg, respectively, were insu�cient to inhibit the organisms tested. At these concentrations, 
nitrofurantoin inhibited P. mirabilis and S. aureus, but not E. coli. rGO–nAg nanomaterial composite showed 
strong activity, inhibiting all pathogens tested, including E. coli shown to be resistant to standard antibiotic.
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the tendency of a metal species to acquire electrons from a donor and become reduced. �e donor species loses 
electrons and becomes oxidized; thus, reduction and oxidation always occur simultaneously70.

Another destruction mechanism of rGO nano sheets is by extracting phospholipids from lipid membranes51. 
Graphene’s unique two-dimensional structure with all sp2 carbons facilitates strong dispersion interactions 
between graphene and cell membrane lipid molecules. On the surface of graphene cooperative movements of 
extracted lipid molecules were observed due to the redistribution of the hydrophobic tails to maximize hydro-
phobic interactions with the graphene surface. �is lipid extraction mediated destructive method was demon-
strated by previous research for both outer and inner membranes of E. coli51. While exposure to rGO results in 
the dose-dependent loss of membrane integrity, as characterised by progressive extraction of adenine and protein 
from bacteria71, so� acids such as Ag tend to associate tightly with so� bases, such as the sulphhydryl (R–SH) 
groups that are found in proteins. Consequently, the antibacterial toxicity of these metals which is approximately 
proportional to their a�nity for –S destructs the cells by protein denaturation72, 73. Moreover, pore formation 
can occur when all phospholipids are oxidized and this allows reactive oxygen species to enter the cell and cause 
oxidative damage to intracellular macromolecules, such as DNA or proteins. Previous research have also found 
that high concentration of reactive oxygen and nitrogen species are produced during the treatment of the cell 
membrane with plasma, an ionised gas consisting of highly reactive ions, electrons, photons and neutral species, 
and this can even destroy the cell membrane of cancer cells74.

�e rGO–nAg composite may also disrupt the cellular donor ligands that coordinate Fe. �e direct or indirect 
destruction of [4Fe–4S] clusters could result in the release of additional Fenton-active Fe into the cytoplasm, 
resulting in an increased ROS formation70. While at low doses, cells may be able to upregulate ROS-detoxi�cation 
enzymes to withstand toxic doses of these elements, higher doses may in�ict irreversible damage on cells.

Together, the cell membrane penetrating properties of rGO sheets, the oxidative stress of rGO and nAg and 
the free radicle formation of Ag nanoparticles contribute to enhanced antibacterial e�cacy of rGO–nAg nano-
composites (Fig. 8).

The morphology of the cells plays a vital role in the bactericidal effect of rGO–nAg nanocomposite. 
Gram-positive and Gram-negative bacteria possess dissimilar cell wall structure and chemical composition75. 

Figure 7. A symbolic representation of the mechanism of process of destruction of bacteria from the 
cumulative e�ect of cell-wrapping as well as cell - trapping mechanisms of rGO nanosheets and cell penetration 
of Ag nanomaterial.

Figure 8. A symbolic representation of the mechanism by which the rGO–nAg nanoparticles kill the bacteria. 
�e rGO punctures cell wall and enter the cytoplasm. Silver nanoparticles directly enter into the cell, induces 
oxidative stress and damage the cell contents.
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In comparison with the delicate thin peptidoglycan cell membrane in Gram-negative bacteria, Gram-positive 
bacteria possess cell wall consisting of multiple layers of peptidoglycan which provide better cell membrane 
integrity and prevent cell disruption76, 77. Previously, exposure of S. aureus cells to rGO–nAg nanocomposite has 
been shown to result in cell wrinkling and damage, with some cells being completely covered by the rGO–nAg, 
whereas exposure of E. coli to the same concentrations of rGO–nAg led to complete cell fragmentation77. In other 
words, for Gram-negative E. coli, the primary mechanism of rGO–nAg bactericidal activity is through disruption 
of bacterial cell wall integrity, whereas for Gram-positive S. aureus, the e�ect is bacteriostatic and is associated 
with dramatic hindering of cell growth77.

Conclusion
In this study, rGO and nAg nanomaterials were �rst synthesized using wet chemical methods, and then com-
bined to form rGO–nAg nanocomposites. �e properties of individual materials and the uniform distribution 
of nAg on rGO sheets were con�rmed using microscopy and spectroscopy techniques. �e produced rGO–nAg 
nanomaterial composites exhibited enhanced e�cacy against all three pathogens tested. �e activity of rGO–nAg 
nanocomposite was also superior to that of conventional systemic antibiotic, nitrofurantoin, even for a multidrug 
resistant strain of E. coli used in this study. �e antibacterial activity of rGO–nAg composite against S. aureus is 
even more signi�cant, being far superior to that of nitrofurantoin. �ese results suggest that rGO–nAg nanocom-
posite may present a viable alternative to some conventional antibacterial agents.

Methods
Synthesis and characterization of rGO, nAg, and rGO–nAg nanocomposite. Graphene oxide was 
prepared from natural graphite following Hummers method78. Brie�y, 1 g of NaNO3 and 46 ml of H2SO4 was 
added to 1 g of natural graphite powder and stirred continuously in an ice bath to maintain the temperature of the 
mixture below 20 °C. �en, 6 g of KMnO4 was added slowly while stirring. A�er 1 hr, the ice bath was removed, 
the system was heated to 35 °C and the temperature was maintained at 35 °C for 30 min; 70 ml water was slowly 
added to the system and stirred for another 15 min. �en, 80 ml of hot (60 °C) water along with 30% H2O2 aque-
ous solution were added to reduce the residual KMnO4 until the bubbling has disappeared. �e product formed 
was washed several times to remove the remaining salt impurities. A�er thermal reduction at 200 °C for 3 hr, a 
black colored powder of rGO was obtained.

AgNO3 was reduced by sodium potassium tartrate in the presence of poly vinyl pyrolidone (PVP) (MW 
40,000) by �rst heating 50 ml solution of 1.2 mM PVP and 0.2 mM AgNO3 to 80 °C with vigorous stirring and 
then gradually adding 2 mM sodium potassium tartrate solution until complete reduction of AgNO3 had been 
achieved. �en the reaction mixture gradually became turbid and a light yellow suspension was obtained indicat-
ing the reaction was successful.

�e rGO and nAg nanomaterial solutions were combined at the ratio of 9:1 using vigorous stirring for 2 hr, 
yielding rGO–nAg nanocomposite. By weight, nAg contributed 24% to the composite, estimated using EDS data.

�e characterization of the synthesized composite was carried out using UV-Vis absorption spectroscopy, 
Fourier Transform Infrared (FTIR) spectrometry, X-Ray Di�raction Spectrometry (XRD), Scanning Electron 
Microscopy (SEM), Transmission Electron Microscopy (TEM) and Electron Spin Resonance (ESR) spectroscopy.

Bacterial growth. �e antibacterial activity of rGO, nAg and rGO–nAg nanocomposite was determined 
by modi�ed agar well di�usion method79 and survival rate determination methods80. Clinical bacterial isolates 
of S. aureus, P. mirabilis and E. coli used in this study were obtained from Department of Microbiology, Vels 
University, Chennai, India, where they were extensively tested using standard methods for antibiotic suscepti-
bility, e.g. using the double disc di�usion test and morphological characterization. Using Kirby-Bauer method, 
E. coli cultures isolated from UTI patients of a tertiary care hospital in Chennai were shown to be resist-
ant to β-lactam antibiotics, such as ampicillin (10 µg/ml), attributed to the production of extended spectrum 
β-lactamases, and non-β-lactam antibiotics, such as gentamycin (10 µg/ml), co-trimoxazole (1.25/23.75 µg/
ml), and cipro�oxacin (5 µg/ml)81. S. aureus isolates were found to be resistant to gentamycin (10 µg/ml), tet-
racycline (30 µg/ml), and trimoxozole (25 µg/ml), while being susceptible to chloramphenicol and o�oxacin at 
30 and 32 µg/ml, respectively82. P. mirabilis was resistant to chloramphenicol (30 µg/ml), amoiclav (30 µg/ml), 
methicillin (30 µg/ml), and streptomycin (30 µg/ml), with susceptibility to ce�riaxone (30 µg/ml) and nalidixic 
acid (30 µg/ml)83.

�e inocula for antibiogram assay were prepared following the recommendations of CLSI (2010 guidelines). 
Test organisms were incubated in standard nutrient broth at 37 °C for 4–6 hr. �e inoculum, visual turbidity of 
0.5 McFarland standards, was used to inoculate the surface of Mueller-Hinton agar plates. Wells of approximately 
6 mm in diameter were made in the plates using a sterile borer. Each well was loaded with one of the following: 
undiluted rGO (crude), rGO solution (at 50 µg/ml, 100 µg/ml, or 200 µg/ml), nAg nanomaterial, or rGO–nAg 
nanocomposite. A standard antibiotic nitrofurantoin, an antibiotic clinically used for the treatment of these path-
ogens, (100 µg) was loaded in the center of the well to compare the antibacterial activity of the graphene compos-
ite. �e plates were incubated at 37 °C for 18 hr.

�e survival rates of gram-negative and gram-positive pathogens were determined using spread plate method. 
�ree sets of �asks containing 100 ml of nutrient broth were inoculated with either S. aureus or P. mirabilis to the 
density of 3 × 108 CFU/ml. To each �ask, an antibacterial material, namely 0.1 g of rGO, 0.1 g of nAg, or 0.1 g of 
rGO–nAg was added. At regular time intervals, few ml aliquots of bacterial suspension were taken from each 
�ask, and transferred onto agar plates, spread evenly and allowed to incubate for 18–24 hr at 37 °C, 5% CO2. �e 
formed colonies were then counted using a plate counter.
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