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Ongoing urbanization forces us to reflect on how we can cater for multiple targets

when building cities. In this study, we investigate whether compactness as a common

urban development strategy, climate regulation as an example for an ecosystem service,

and vascular plant species richness as a measure of biodiversity form a synergistic

relationship or whether trade-offs exist. We use a genetic algorithm to optimize the

spatial allocation of three types of land cover blocks in a stylized urban region.

These blocks are categorized as high-, low-density, or park blocks, depending on

the proportion of green and built-up cells within each block. We systematically vary

landscape composition at the block level, but keep city size constant. Our most

important finding is that the relationships of target functions can shift between trade-

off and synergy, and this is shaped by landscape composition. For example, we found

a trade-off between species richness and urban compactness in landscapes with large

proportions of high-density areas and parks, while they have a synergistic relationship in

low-density landscapes. Such dependencies of trade-offs and synergies on landscape

composition need to be explored further, which may help address the wickedness of

urban planning problems.

Keywords: urban form, optimization, trade-off, biodiversity, climate regulation

INTRODUCTION

More than half of the world’s population is now living in cities and the share of urban population
is rising further (United Nations Department of Economic and Social Affairs Population Division
[UN DESA], 2018). Combined with increasing population globally, urbanization will likely induce
an increase in built-up land, with expected impacts on biodiversity (McDonald et al., 2020), the
urban climate (Chapman et al., 2017), food security (Abu Hatab et al., 2019) or carbon pools, for
instance due to forest loss for land clearing (Seto et al., 2012). Thus, it is imperative to discuss how
we want to “grow the world’s cities” (Lin and Fuller, 2013, p. 1161).
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In urban planning, one of the main strategies for urban
development is a compact city (e.g., Cortinovis et al., 2019)
to limit negative effects of urban sprawl, such as increased
congestion, greenhouse gas emissions and soil sealing (for many:
Yao et al., 2017). However, at least three arguments impede
straightforward solutions: First, a variety of ecosystem services
(i.e., the benefits humans derive from ecosystems, such as
carbon sequestration or water provision, Millennium Ecosystem
Assessment, 2005) needs to be considered. In the literature, both
direct and indirect relationships between ecosystem services have
been documented (Bennett et al., 2009): Direct relationships
result from interactions between the services, while indirect
relationships are due to the same driver affecting both services.
Such a potential common driver is landscape fragmentation.
Landscape fragmentation – with intertwined built-up and green
areas in a city – is beneficial for local climate regulation, as green
spaces providing the cooling and the areas benefiting from that
are next to each other. Other ecosystem services might rather
benefit from compact green spaces. Such opposite responses
indicate trade-offs between ecosystem services, while similar
responses indicate synergies (Cord et al., 2017).

The second argument originates from biodiversity
conservation. While urbanization threatens many species, urban
areas can host more species than intensively used agricultural
landscapes, increasing the relevance of cities for biodiversity
conservation (Secretariat of the Convention on Biological
Diversity, 2012). As a consequence, conserving biodiversity is
sometimes a goal of urban planning (Nilon et al., 2017). Species
richness (a common measure of biodiversity) in cities, however,
heavily depends on the existence of habitats of sufficient size
and quality (Beninde et al., 2015). If an increasing compactness
of cities is based on the sealing of open, vegetated spaces, it will
negatively affect biodiversity (Aronson et al., 2014). It is less
clear, though, how habitats should be distributed within cities in
order to support high biodiversity. For example, while a number
of case studies highlighted negative effects of fragmentation
on urban species richness, habitat loss has stronger effects and
some organism might even benefit from edge effects imposed by
fragmentation (Beninde et al., 2015).

The third argument originates in the land sharing versus land
sparing debate applied to cities (Lin and Fuller, 2013). Studies
making use of this framework have shown that ecosystem services
provision and use can depend on the proportions of different

types of land use/land cover in the city (e.g., for pest control:
Burkman and Gardiner, 2014; and other ecosystem services:
Stott et al., 2015). Also, it matters where these different land
uses/land covers are located (e.g., for recreation: Soga et al.,
2015). Finally, building density has an indirect influence: It can
change the way how the spatial arrangement of the city influences
biodiversity (Soga et al., 2014; Villaseñor et al., 2014; Caryl
et al., 2016). These studies clearly point out that differentiating
building density is crucial for better understanding the impacts of
landscape configuration onto biodiversity and ecosystem services
in urban landscapes.

Here, we explore whether urban compactness, ecosystem
services and biodiversity form a synergistic relationship or
whether trade-offs exist. We do so by investigating the spatial
configuration of landscapes consisting of blocks with different
building densities and varying landscape composition (Table 1).
It has to be noted that we do not consider biodiversity as an
ecosystem service. While this is sometimes done, the question
whether ecosystem services do include biodiversity or not, is
under debate (Mace et al., 2012; Silvertown, 2015).

One way of exploring the trade-offs or synergies for multiple
targets such as species richness and ecosystem services is through
the use of spatial optimization of landscapes (Cord et al., 2017).
Spatial optimization techniques fall into two types: Pareto-
based methods and scalarization. Pareto-based methods generate
multiple solutions simultaneously and can consider a (small)
number of multiple targets. Methods of scalarization integrate
multiple targets into a single target and provide one optimal
solution [summary of drawbacks by Duh and Brown (2007)].
Recent reviews of spatial optimization techniques for land use
allocation by Yao et al. (2017) and Kaim et al. (2018) provide an
overview on such studies and the individual methods available
for the two types.

For trade-off analyses with up to four targets, Kaim et al.
(2018) suggest Pareto-based algorithms; out of these, genetic
algorithms are frequently used. Also, Yao et al. (2017) see
a lot of potential for heuristics such as genetic algorithms
for optimization studies. So-called “multi-objective genetic
algorithms” can find optimal landscapes for the targets that have
been specified through quantitative models (Lautenbach et al.,
2013; Mouchet et al., 2014). Ideally, optimization of conflicting
targets delivers a Pareto-optimal set of landscapes (also called
non-dominated solutions). For any given landscape within this

TABLE 1 | Key terms to describe the landscape used in this study.

Term Definition Operationalization in the study

Composition Landscape composition describes which types of land use or land

cover are present in the landscape.

Proportion of the three density classes park, low- and high-density blocks

in the landscape. Due to the stylized approach, the relationship among the

proportions of the density classes is fixed (Figure 2, lower part).

Configuration Landscape configuration describes how the different land use or land

cover classes are spatially arranged in the landscape.

Moran’s I – a measure of spatial autocorrelation (Moran, 1950; Cliff and Ord,

1973) – for parks, low- and high-density blocks. Moran’s I lies within a

range between −1 and +1, where −1 indicates perfect dispersion, 0

random patterns and +1 perfect segregation.

Compactness Compactness is one element of landscape configuration, describing

whether cells or polygons of the same land use or land cover are

spatially clustered or spread across a larger area.

Normalized edge density at the block scale for built-up blocks, consisting of

low- and high-density blocks.
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set, any improvement in either target would lead to a worsening
in at least one other target. Plotting the values of such a set for
the case of three targets results in a Pareto frontier as sketched in
Figure 1.

Several studies have used spatial optimization or genetic
algorithms for urban land allocation (Table 2), but early work
optimized only few spatial entities due to limited computational
power. The majority of studies is about optimally allocating
additional built-up land into an existing city and, thus,
constraints about where and/or which land uses can be converted
are implemented. Few studies investigate optimal spatial patterns
for building a whole city landscape from scratch. Often,
compactness is included as one of the targets for optimization.

Our literature review delivered only the studies by Haque
and Asami [2011, follow-up in Haque and Asami (2014)] that
investigate differences in spatial configuration when landscape
composition is changing. In their study of Dhaka, Bangladesh,
they vary the changes in residential, commercial and office
space. Zhang et al. (2017) included the concept of service
providing area and benefiting area. No study compares results
for different densities of built-up areas, for instance high- or
low-density residential.

In this study, we investigate whether urban compactness,
ecosystem services and biodiversity form a synergistic
relationship or whether trade-offs exist. We chose local climate
regulation since it is an ecosystem service whose production and
service areas differ. Biodiversity is quantified as the number of
vascular plant species.

We set up a stylized model of an urban landscape consisting
of green and built-up cells (Figure 2). At a coarser resolution
– the block scale –, we distinguish high- and low-density as well
as park blocks.We systematically vary the composition of our city
landscape at the block scale, but keep city size constant. This also
implies that landscape composition of cell-level land use classes
(i.e., green and built-up) remains constant. We optimize this
stylized landscape according to our target functions by employing

FIGURE 1 | Stylized representation of our optimization approach to explore

the effects of landscape composition and configuration. Each scatterplot

indicates the levels for three target functions (location and color of the

symbols) before (stars) and after (dots) the optimization. The right and left

panes of the figure symbolize landscapes with different composition having

different values before optimization as well as for their Pareto frontier.

a genetic algorithm. After optimizing the landscapes, we analyze
the spatial configurations of the non-dominated solutions per
landscape composition at block scale.

With our study, we go beyond existing optimization
studies for urban landscapes: First, our approach of using
a virtual urban region, varying landscape composition at
the block scale, allows us to explore the relations among
our target functions for different landscape compositions
and to check whether optimal landscape configurations
remain the same when landscape composition at block
scale varies. Using an empirical case study with strong
restrictions on feasible changes would not allow such
an exploration. Second, we derived two of the target
functions from empirical data sets, thus, building on existing
empirical ecological relationships. Last, by optimizing urban
landscapes from scratch, we hope to find clearer patterns
of optimal configurations compared to studies allocating
incremental change.

MATERIALS AND METHODS

Virtual City
We employ a virtual city with a spatial extent of 10 by 10 km2 with
a total of 10,000 cells of 100 by 100 m2 each. We distinguish two
spatial scales (Figure 2): cells of 100 × 100 m2 size, and blocks
consisting of 100 cells (i.e., 1 km2 size). In favor of simplicity,
cells are either built-up or green. Blocks represent neighborhoods
that are

• Park blocks (0% built-up cells, 100% green cells),
representing e.g., urban parks or forests,

• Low-density blocks (50% built-up cells, 50% green;
arranged in a chessboard pattern), representing e.g., single-
family homes with gardens, and

• High-density blocks (100% built-up cells), representing
e.g., building blocks without gardens.

When describing the virtual city, we distinguish between
landscape composition and landscape configuration. Landscape
composition describes which types of land use or land cover
are present in a landscape. Here, we operationalized it as the
proportion of the park, low- and high-density blocks (Table 1).
Landscape configuration describes the spatial arrangement of
the land use or land cover classes. In this study, we focus on
fragmentation and use Moran’s I as an indicator (Table 1).
Furthermore, we include the compactness of built-up blocks
as a target function (Table 1, details in section “Quantifying
Urban Compactness”).

We fix the size of the city. We do so by keeping the
total amount of built-up and green cells equal within any
given landscape. Furthermore, we assume the same number
of stories for any kind of built-up cell. Thus, two low-
density blocks will provide the same number of built-
up cells (and floor space) as one high-density block. We
vary landscape composition by using different proportions
of low-, high-density, and park blocks. As the amount
of built-up and green cells are kept equal for both the
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TABLE 2 | Literature review on urban spatial optimization studies.

References # targets Targets Change allowed during

optimization

Case study Representation of

space

Method

Balling et al., 1999 3 Traffic congestion

Costs

Amount of change from the status quo

Incremental changes in

land use zoning and road

upgrading

Provo, UT, United States 130 land use zones

and 25 road corridors

Genetic algorithm

Cao et al., 2012 8 Economic benefit

Environmental and ecological benefit

Social equity

Conversion cost

Geological suitability

Ecological suitability accessibility

Not in my back yard

Compactness

Compatibility

Complete reshuffling

possible

Tongzhou Newtown in

Beijing, China

141 × 119 cells Goal programing

guiding a genetic

algorithm

Feng and Lin, 1999 2 Environmental harmony (compatibility of

neighboring land uses)

Development efficiency (combination of

accessibility and relevance of land uses)

Complete reshuffling

possible

Planned new town in

Tanhai, Taiwan

17 cells Genetic algorithm

Haque and Asami (2011)

and Haque and Asami

(2014) follow-up on that:

several uses allowed in the

same location (i.e., different

floors of one building)

2 Land price

Compatibility among adjacent land uses

Incremental change among

office, commercial and

residential use

One residential area within

Dhaka, Bangladesh

1471 plots Genetic algorithm

Ligmann-Zielinska et al.,

2005

4 Open space development

Redevelopment

Compatibility of adjacent land uses

Distance to already developed areas

Incremental addition of new

built-up area (commercial,

residential, and industrial)

Hypothetical landscape 20 × 20 cells Linear programing

Liu et al., 2015 1 Weighted sum of suitability and

compactness

Incremental addition of

newly developed land

Gaoqiao Town, China 546 × 516 cells Genetic algorithm

combined with game

theory

Li and Parrott, 2016 4 Economic benefit

Ecological benefit

Suitability

Compactness

Incremental change in land

cover

Regional district of Central

Okanagan, BC, Canada

364 × 482 cells Genetic algorithm

Porta et al., 2013 2 Suitability

Shape-regularity of the resulting land use

patches

Incremental change in land

cover

Guitiriz, Spain 138,175 plots Genetic algorithm

Schwaab et al., 2017 2 Agricultural productivity

Urban compactness

Incremental addition of

residential land

12 municipalities,

Switzerland

# depends on

municipality, cell size 1

ha

Genetic algorithm

Stewart et al., 2004 3 Natural value

Recreational value

Cost of changing land use

Incremental change in land

use

Jisperveld region,

Netherlands

20 × 20 cells Genetic algorithm

Zhang et al., 2017 2 Daytime cooling

Night time cooling

Incremental addition of new

urban green space

Phoenix, Arizona, AZ,

United States

11,466 cells Greedy algorithm
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total city area and the low-density blocks, the proportions
of high-density blocks and park blocks are always equal
(Figure 2, lower part).

Formalizing the Target Functions
We used empirical relationships of landscape structure and target
functions obtained in comparable contexts, i.e., climate zone
and overall urban structure. For plant richness and cooling,
we made use of empirical data for neighboring cities in the
same climate zone (Halle and Leipzig in Central Germany,
located ca. 40 km apart from each other). For both target
functions, we had access to site-based studies (described in
sections “Quantifying Biodiversity” and “Quantifying Local
Climate Regulation”) and gradient studies. Urban-rural gradient
studies usually describe gradients of vegetation cover, proportion
of built-up area or human population density (McDonnell
and Hahs, 2008). Often, however, gradient studies use equally
sized plots (e.g., Wania et al., 2006; Lososová et al., 2012),
not allowing for the calculation of species-area relationships.
Also, gradient studies hardly cover spatial interaction effects,
for instance effects of neighboring green spaces onto a low-
or high-density plot (Schwarz et al., 2012). Therefore, we
only used site-based studies and focused on the cell scale,
since this was consistent with the spatial resolution of the
site-based studies.

Quantifying Biodiversity

Biodiversity can be quantified with a range of indicators,
e.g., measures of the richness or abundance of habitats,
species, species’ traits or of genetic diversity. We chose
the number of species in an area, i.e., species richness for
estimating biodiversity. Species richness is easier to measure
than functional, genetic or phylogenetic diversity and thus
widely applied (Gaston, 2000) and it has been the target of
conservation and policy (Ricketts et al., 2005). We focused
on the species richness of vascular plants. While former
urban studies assessed the effects of land sharing versus land
sparing on the diversity of bats (Caryl et al., 2016), birds
(Sushinsky et al., 2013) and their predators (Jokimäki et al.,
2020), ground beetles and butterflies (Soga et al., 2014),
vascular plants have been neglected in the debate. As primary
producers, plants are the basis of food webs and they provide
many ecosystem services such as carbon sequestration or local
climate regulation.

For operationalizing species richness, we re-analyzed data on
the number of vascular plant species in 27 protected areas of
various size (0.8–120 ha) within the city of Halle (Knapp et al.,
2008; Bräuniger et al., 2010; cf. Data Availability Statement).With
these data, we fitted a general linear model with quasipoisson-
distribution of errors. Quasipoisson distribution is applicable
for count data (such as species richness) and does account
for overdispersion (Crawley, 2007), which was present in our

FIGURE 2 | Schematic representation of the virtual city landscape with the translation from cell to block scale (above) and 11 composition settings I to XI and

examples of landscape configurations (below).
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model. In the model, we predicted the logarithm of number of
species with

• Logarithm of the area of the protected site;
• Shape index, calculated as the total edge of the protected

area divided by the square root of its area. The shape
index indicates the zone of potential interaction with the
surroundings, compared to a round shape of equal size;

• The percentage of built-up area in a 500 m buffer around
the protected site;

• Nearest neighbor distance, i.e., the distance of one
protected area to the next, measured from edge to edge;

and interaction effects between

• Logarithm of the area and shape index;
• Logarithm of the area and percentage of built-up area;
• Logarithm of the area and nearest neighbor distance;
• Shape index and percentage of built-up area.

With the given data, we were not able to distinguish between
different types of protected areas such as urban forests, public
parks et cetera. This starting model (Table 3, upper row) was
simplified during stepwise model reduction, leading to a model
with only the logarithm of the area and the shape index as
predictors of species richness (Table 3, middle row, Eq. 1). The
underlying raw data and the modeled results are depicted in
Supplementary Figure S2.1.

log
(

species richness (i)
)

= intercept + slope area × log (area (i))

+slope shape × mean shape index(i) (1)

with i = green patch.
This simplified model provides an estimation of the logarithm

of species richness per patch, with each patch consisting of either
one or more adjacent cells of the same density class (sharing an
edge, i.e., a von Neumann neighborhood). Thus, each green cell
in a low-density block is considered one patch; likewise, a whole
park block surrounded by built-up blocks is considered one
patch. In order to derive a value to be fitted for the optimization,
species richness per patch is normalized by the number of cells for
that patch. The arithmetic mean of these normalized patch-level
species richness values (i.e., the overall mean per green cell) shall
be maximized during optimization. Species richness for built-up
patches is set to zero.

Quantifying Local Climate Regulation

Here, we use air temperature measurements to quantify the
cooling effects of urban green onto residential areas (e.g., Bowler
et al., 2010), as this is directly relevant for urban inhabitants. By
doing so, we focus on the flow of this ecosystem service and not
solely on its supply. For the optimization, we re-analyzed data
sampled by Jaganmohan et al. (2016) for Leipzig, Germany. The
authors measured temperature gradients from green spaces into
residential surroundings. They quantified cooling effects with (a)
maximum temperature difference (delta T max) between a green
space and its surroundings and (b) distance at which the cooling
effect levels off (cooling distance). In the original empirical
study (Jaganmohan et al., 2016), linear regression models were

employed to estimate the effects of the following predictors
ontomaximum temperature difference and cooling distance: size,
shape, and type (park versus forest) of urban green spaces and
their interactions, percentage of tree/shrub cover within the green
space, area of waterbody, distance to city center, type of housing,
percentage of tree/shrub cover in 25-m buffer, month of sampling
and average wind speed. Adjusted R2-values were 0.42 (cooling
distance) and 0.26 (maximum temperature difference).

Since many of these factors were not meaningful in our
stylized city (e.g., water bodies, wind speed, or month of
sampling), we used the original data to run a simplified linear
regression model with only two predictors and their interaction,
namely area and shape index (Table 4). The results are used to
estimate maximum temperature difference and cooling distance
for urban green spaces, i.e., green patches, in the virtual city.
In line with the quantification of biodiversity, neighboring
cells were combined into patches based on the von Neumann
neighborhood, leading to either one cell being one patch (within
a low-density block) or at least 100 green cells combined into
one park block. Green patches can also consist of more than 100
green cells, if a park block is next to one or more other parks
or a low-density block. Thus, the following equations are used
to determine the cooling effect of a green patch:

delta Tmax (i)

= 4.7 − 0.4 × log (area (i)) − 3.9 × mean shape index (i)

+0.4 × mean shape index (i) × log (area (i)) (2)

with i = green patch.

cooling distance (i)

= −957.3 + 122.4 × log (area (i))

+363.0 × mean shape index (i)

−42.8 × mean shape index (i) × log (area (i)) (3)

with i = green patch.
Results of Eqs 2 and 3 were combined to determine the

temperature decrease induced by a specific green patch, assuming
a square root function between distance and temperature
decrease (Eq. 4).

temperature decrease (x)

=
delta Tmax (i)

√

cooling distance (i)
×

√
x − delta T max(i) (4)

with i = green patch and x = distance to green patch i;
x < cooling distance.

This simplified model implies, for instance, that a 4 km2-park
(four blocks) has a stronger cooling effect at its boundary than
smaller parks, and its cooling effect also extends further into
the surroundings (Supplementary Figure S2.2). Supplementary

Figure S2.2 also indicates the cooling effects of a 1 km2-park
surrounded by four high-density blocks and a 1 km2-park
surrounded by three high-density blocks, and one low-density
block. The latter makes a slightly larger green patch due to the
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TABLE 3 | Generalized linear model for count data [in R: glm (y ∼ x, family = quasipoisson)], explaining vascular plant species richness.

Model version to

predict number of

vascular plant

species

Intercept Log (area) Shape index % built Nearest

neighbor

distance

Interactions

Shape

index: log

(area)

Log (area):

% built

Log (area):

nearest

neighbor

distance

Shape

index: %

built

Starting model 4.01 ns 0.022 ns −0.325 ns −0.021 ns 0.00034 ns 0.04 ns 0.0013 ns −0.000043

ns

0.00099 ns

Final model 0.984 0.296*** 0.108** – – – –

Values used in

optimization

0.98 0.30 0.11

Note that quasi-models do not provide R2-values and as the use of pseudo R2-values is debatable (Hosmer and Lemeshow, 2000) we do not report those. Significant

codes: ***0.001; **0.01; ns, not significant.

neighboring green cells stemming from the low-density block
and has a higher shape index. This leads to cooler temperatures
at the boundary, but its cooling effect levels off earlier than for
the compact park. In our stylized landscape, a maximal cooling
distance of almost 1000 m can be reached if all park blocks are
combined in one patch.

The optimization approach requires any target function to
deliver a single number at landscape scale. Therefore, the
individual temperature effects of individual green patches, first,
were mapped onto built-up cells. If a single built-up cell
experiences a cooling effect by more than one green patch,
the largest cooling effect is considered only, in other words,
temperature decreases by several green patches onto the same
built-up cell are not added up. After that, the total cooling effect
on the landscape scale is quantified as the sum of the cooling
effect on built-up cells, divided by the total number of cells. The
optimization maximizes the total cooling effect.

Quantifying Urban Compactness

As a third target function, we included urban compactness
since a compact city is a goal often pursued in urban
planning, for instance to reduce exhaust fumes and soil sealing.
Multiple indicators exist to measure urban compactness (Burton,
2002; Tsai, 2005). One of the common indicators to compare
compactness across cities is edge density, the total edge of built-
up areas divided by the total built-up area (Herold et al., 2002;
Schwarz, 2010; Cortinovis et al., 2019). Here, we compare the
spatial configuration of the same total built-up area which is
divided into low- and high-density blocks, and the proportions
of these blocks vary across simulations with different landscape

TABLE 4 | Linear regression model results as basis for the quantification of

cooling effects.

Type of Intercept Log Shape Interaction shape Adjusted

cooling effect (Area) index index: log (area) R2

Delta T max 4.7 –0.4 –3.9* 0.4* 0.18

Cooling distance –957.3 122.4 363.0 –42.8 0.32

Significant code: *0.05. The level of significance is only given to provide complete

information. The linear regression model was simplified based on Akaike’s

information criterion, implying that the remaining variables are statistically relevant,

even if they are not significant here.

compositions. Thus, we adapt the edge density metric as follows:
First, we recode low- and high-density blocks into the same
category of built-up blocks, create patches out of them and
compute the total edge of these patches. By considering also inner
edges (e.g., of a donut-shaped patch), compact patches without
holes have smaller values. In order to compare results across
different landscape compositions, we normalized the value to
range from 0 (maximally dispersed pattern) to 1 (most compact)
(Eq. 5). Optimization was then pursued by maximization.

compactness = 1 −
∑

total edge(j) − minimum edge

maximum edge − minimum edge
(5)

with j = built-up patch; minimum edge = theoretical minimum
edge in the landscape given the number of built-up blocks,
assuming all built-up blocks are combined in one compact patch;
maximum edge = theoretical maximum edge in the landscape for
the given number of built-up blocks, assuming all built-up blocks
are arranged in a chessboard-style pattern.

Optimizing Landscapes
We employed a multi-objective genetic algorithm (NSGA-II,
Deb et al., 2002) to search for optimal spatial configurations
regarding the three target functions. Therefore, we used a recently
developed landscape optimization tool, CoMOLA (Verhagen
et al., 2018; Strauch et al., 2019), that implements inspyred, a
free, open source framework for creating biologically inspired
computational intelligence algorithms in Python. CoMOLA
supports user-defined models or target functions and allows for
basic land use constraints, such as limiting the total proportion
of each land use class. The software is available at https://github.
com/michstrauch/CoMOLA.

Based on an initial landscape and pre-defined constraints,
CoMOLA starts an evolutionary process by first creating a
set of different yet constraint-satisfying (so-called “feasible”)
landscapes. As the algorithm is inspired by biological evolution,
its terminology and principles are likewise: Each landscape is
called an individual and is represented by a genome, i.e., a
string of integers encoding the land use of each grid cell.
All landscapes of one generation form a population which
changes over generations due to selection and variation (i.e.,
combination and mutation): Using the target functions described
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above, each individual is assigned fitness values representing
the achieved values for the three targets. The genetic algorithm
then applies a Pareto ranking for each individual based on
its fitness values. The algorithm archives best individuals and
selects individuals for mating to generate a new (offspring)
population. In mating, each offspring individual is generated
by a random combination (crossover) of two genomes. The
likelihood of mating increases for individuals with a higher
Pareto rank. Additional random mutations increase the diversity
of genomes to consider a wide range of different spatial
configurations. Mating can result in constraint-violating (so-
called “infeasible”) offspring individuals. Hence, genomes of
infeasible individuals are modified using a repair operation
specifically developed for land allocation optimization with
small tolerance in terms of land use class proportions. The
entire procedure, from fitness value calculation to offspring
generation and genome repairing, is repeated for a pre-defined
number of generations.

Over generations, the Pareto front, i.e., the set of points
where no further increase of one target function is possible
without decreasing another, successively moves away from the
coordinate origin. Considering the vast number of possible
landscapes, no optimization algorithm can guarantee to find
the global optimum in a finite number of generations; yet,
genetic algorithms are known for their good performance
in reasonable run-time (Deb et al., 2002). The combination
of crossover and mutation prevents them from getting stuck
at local optima. To tackle the question of how much run-
time/how many generations are needed, we observed the
above-mentioned movement of the Pareto front. Technically,
we measured the volume (“hypervolume,” Zitzler and Thiele,
1999) the Pareto front spans with the coordinate origin. As
its increase slows down, we take that as an indicator for
approaching global optima.

To always host the same number of inhabitants in the city and
not change city size, we did not allow for changing landscape
composition on the cell scale, meaning that always 50% of all
cells are green and 50% are built-up. However, on the block
scale, landscape composition can vary from 100% low-density
blocks to 50% high-density, and 50% park blocks (Figure 1).
The optimization algorithm works on the block scale, meaning
that the spatial arrangement of blocks is varied, not the cell
scale pattern. This allowed us to work with the city size as
described in section “Virtual City” with a constrained landscape
composition. We ran the optimization for 10 different settings
of landscape composition: Low-density blocks in a range from
0 to 90% in intervals of 10%, and high-density and park blocks
in a range from 5 to 50% in intervals of 5%, respectively (see
also Figure 2). In order to constrain landscape composition
in each of the 10 settings, we applied the repair mutation
algorithm implemented in CoMOLA (Strauch et al., 2019). For
each setting, we ran the optimization for a total of 250 generations
with a population size of 50, a crossover rate of 0.9, and a
mutation rate of 0.01.

To determine whether two target functions form a trade-
off, synergy or do not have a relationship, we investigate
pairwise correlations. To account for non-linear relationships

(scatterplots in Supplementary Material S1), we use Spearman’s
rank correlations.

RESULTS AND DISCUSSION

In the following, we present and discuss results of our
optimization runs. To ease understanding, we first explore
one example simulation (section “Exploring One Example
Simulation”), before analyzing whether we find trade-offs or
synergies between the target functions (section “Trade-Offs
or Synergies in the Virtual City?”) Afterward, we investigate
the relations between landscape configuration and the targets
(section “Relations With Landscape Configuration”). We close
with limitations of our study (section “Limitations of the Study
and Future Research”).

Exploring One Example Simulation
Figure 3 depicts the front of non-dominated solutions for plant
species richness, cooling and compactness for a park block
proportion of 20%, and proportions of 20% high-density, and
60% low-density blocks. The scatterplot indicates a negative
relationship, i.e., trade-off, between cooling and plant richness,
which is confirmed by a strong negative correlation of rS =−0.96,
p < 0.001 (Table 5). Also, a weaker negative relationship between
cooling and compactness is visible (rS = −0.36, p < 0.001);
while the slightly positive relationship between plant richness and
compactness is hard to detect (rS = 0.12, p < 0.05).

For maximum plant richness, Figure 3 (map 3) shows park
blocks organized in four patches, with a Moran’s I value of
0.5 indicating clustering. Parks and low-density blocks (Moran’s
I = 0.6) are separated from each other by high-density blocks
(Moran’s I = 0.1). This pattern avoids merging individual
green cells within the low-density blocks with park blocks.
Therefore, the influence of individual green cells on species
richness is maximized.

The spatial pattern for maximum compactness (Figure 3, map
2) is easily related back to its target function, which abstracts
high- and low-density blocks to built-up. The maximum value
is reached for a compact city with a park partly surrounding the
built-up center (Moran’s I park = 0.6; Moran’s I for high- and
low-density blocks combined = 0.6).

The spatial pattern for maximum cooling (Figure 3, map
1) is different, since here also high-density blocks tend to
cluster in one large patch. Thus, all three block types are
clustered, which is reflected in similar Moran’s I values of 0.5.
When quantifying cooling, low-density blocks are translated
to chessboard-like patterns of green and high-density cells
at the cell scale. Hence, the green structure at the bottom
right is one large green patch with a maximum cooling of
6.6 K at its edge. The large temperature difference is also
due to the larger shape index, since the individual green
cells of the neighboring low-density blocks are assigned to
the large green patch. This is supposedly the reason why
the large high-density patch is not adjacent to the large
green patch but instead separated by low-density blocks. To
further explore this pattern, we compared its cooling effect
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FIGURE 3 | Front of non-dominated solutions for an example composition of 20% park blocks, 20% high- density, and 60% low-density built-up blocks and maps

for solutions with maximum values for cooling (1), compactness (2), and biodiversity (3). The maps indicate the location of parks in white, low-density blocks in gray,

and high-density blocks in black.

TABLE 5 | Correlation matrix for all optimization runs (varying park block proportions) based on Spearman’s rank correlations among the three target functions.

Variable All runs Park block proportion Variable

5 10 15 20 25 30 35 40 45 50

Within target functions

Plant richness −0.19 −1.00 −0.98 −0.97 −0.96 −0.91 −0.88 −0.81 −0.84 −0.80 −0.70 Cooling

Plant richness 0.70 0.77 0.60 0.09 ns 0.12* −0.05 ns −0.00 ns −0.21 −0.51 −0.79 −0.85 Compactness

Cooling −0.01ns −0.80 −0.71 −0.28 −0.36 −0.31 −0.43 −0.36 0.03 ns 0.28 0.25 Compactness

Within configuration indicators

Moran park 0.67 0.39 0.06 ns −0.24 0.12* 0.58 0.59 0.61 0.83 0.98 1.00 Moran high

Moran park 0.12 0.65 0.36 −0.13* 0.06 ns 0.13** 0.34 −0.15 −0.48 −0.67 NA Moran low

Moran high 0.07 0.13 ns −0.53 −0.05 ns −0.07 ns −0.19 0.44 0.07* −0.41 −0.64 NA Moran low

Configuration and target functions

Moran park 0.48 0.70 0.61 0.40 0.32 0.05 ns −0.10* −0.23 −0.60 −0.83 −0.87 Plant richness

Moran park 0.18 −0.74 −0.71 −0.55 −0.52 −0.42 −0.34 −0.33 0.12 0.35 0.29 Cooling

Moran park 0.90 0.96 0.97 0.82 0.77 0.92 0.95 0.98 0.98 0.99 1.00 Compactness

Moran high −0.05 −0.15 ns −0.64 −0.70 −0.57 −0.66 −0.80 −0.82 −0.89 −0.88 −0.87 Plant richness

Moran high 0.29 0.12 ns 0.55 0.73 0.50 0.37 0.47 0.42 0.53 0.44 0.29 Cooling

Moran high 0.59 0.31** 0.07 ns −0.20** 0.06 ns 0.62 0.50 0.59 0.77 0.96 1.00 Compactness

Moran low 0.84 0.90 0.87 0.63 0.75 0.75 −0.05 ns 0.22 0.53 0.63 NA Plant richness

Moran low −0.38 −0.89 −0.82 −0.47 −0.63 −0.72 −0.12* −0.13 −0.32 −0.32 NA Cooling

Moran low 0.54 0.67 0.33 −0.54 0.27 0.10* 0.30 −0.14 −0.40 −0.67 NA Compactness

Composition and target functions

Park block proportion −0.97 – – – – – – – – – – Plant richness

Park block proportion 0.05 – – – – – – – – – – Cooling

Park block proportion −0.81 – – – – – – – – – – Compactness

See Supplementary Material S1 for underlying scatterplots. If not stated otherwise, Spearman’s rank correlations are significant at p < 0.001. Other levels of significance

are: **0.01; *0.05; ns, not significant. Significant negative correlations are indicated in light gray, significant positive correlations in dark gray.

with a landscape consisting of fully segregated block types,
i.e., without any low-density blocks in both the park and
the high-density blocks. We found smaller cooling effects
onto built-up cells in this landscape, which suggests that the

low-density blocks inserted in the park and high-density patches
are not accidental results of the mutation but rather stem
from the cooling effects of green cells included in the low-
density blocks.
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FIGURE 4 | Fronts of non-dominated solutions for cooling, biodiversity, and compactness differentiated by landscape composition with different shares of park

blocks (10–50%) in the landscape. Note that the absolute values for biodiversity strongly depend on the share of park blocks in the landscape.

Trade-Offs or Synergies in the Virtual
City?
When exploring the fronts of non-dominated solutions and

the trade-offs/synergies among the three target functions for
all optimization runs (Figures 3, 4 and Table 5), the first

obvious pattern to notice is the effect of landscape composition
at block scale on the target functions, especially plant species

richness: A decrease in park blocks, implying at the same
time an increasing proportion of low-density blocks, increases

plant richness and compactness, but slightly limits the cooling

effect. This is reflected in the correlations between the three
target functions and proportion of park blocks (Table 5). For

compactness, this result is consistent with its definition, i.e.,

the number of combined patches comprising low- or high-
density blocks shall be minimized. The lower the proportion

of park blocks in a landscape, the easier it is to achieve high
compactness. For cooling, decreasing the proportion of park

blocks in the landscape limits its effect since scattered green cells
in low-density blocks have a lower capability of extending their

cooling effect into the surroundings than park blocks. For plant

richness, an increase in richness with a decrease in park block
proportion first seems counterintuitive; however, the convex

shape of the species-area relationship (Gleason’s exponential

curve as a widely used approach for calculating the relationship;
Scheiner, 2003) implies that the increase in species richness with

an increase in area slows down the larger the area gets. Thus,
theoretically, a single green area of e.g., 100 m2 surrounded by

built-up areas should harbor more species than a green 100 m2

area nested within a larger green area (note that neither did
the optimization allow accounting for nestedness, nor was the

biodiversity data underlying our calculations nested). Chessboard
pattern-like low-density blocks will thus be favored, i.e., many
single green cells. A range of case studies on the urban-rural
gradient showed peaks of species richness at low-density sites
[as summarized by Pautasso (2007)], which is in line with our
quantification of the target function and the resulting spatial

patterns. Green corridors support urban biodiversity across taxa
(Beninde et al., 2015), so low-density areas have the potential
to support a high number of species as long as they are well
connected among each other. Generally, however, there is no
standard response of biodiversity to increasing density. Rather,
depending on their functional traits, some taxa will decline and
some will increase in richness with density, while others will
peak in richness at intermediate density (McDonnell and Hahs,
2008). Accordingly, while several studies concluded that urban
biodiversity responds less negatively to land sparing than land
sharing, they indicate that this response will vary depending on
species’ habitat preferences (Soga et al., 2014; Jokimäki et al.,
2020) and sensitivity to urbanization (Sushinsky et al., 2013). It
needs to be emphasized that we did neither distinguish among
groups of plant species (e.g., native versus non-native, rare versus
common species or different functional groups) nor did we
consider other taxa. Still, the strong relationships of biodiversity
and compactness with landscape composition are in line with
other studies documenting influences of landscape composition
on biodiversity and ecosystem services (Burkman and Gardiner,
2014; Stott et al., 2015).

The second, and at a first glance surprising, result is the
change of relationships among the three target functions for
different landscape compositions at block scale (Figure 4). In
fact, the trade-off between plant richness and cooling is the only
stable relationship among the three, and highly significant for
all park block proportions (Table 5). However, their correlation
across all optimization runs is much lower (rS = −0.19) than
for the individual compositions, since the levels of plant richness
change considerably with park proportion. Thus, averaging
across all optimization runs – and thus different landscape
compositions – can provide misleading results. We were only
able to discern this by comparing correlations between different,
fixed landscape compositions. One likely reason for these changes
from synergies to trade-offs due to landscape composition is the
different response of the individual target functions to landscape
composition which we have discussed above. Since the literature
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also pointed out moderating effects of landscape composition
onto the relationship of configuration and biodiversity, we also
investigate these in the next section.

Relations With Landscape Configuration
For plant richness and compactness, we identified a transition
from trade-off to synergy with increasing proportions of low-
density blocks. Why is this the case? Given our target function,
plant richness is highest when green cells are spread over
as many patches as possible. For landscapes with a high
proportion of parks, built-up blocks mainly consist of high-
density blocks. When they form a single built-up block to
maximize compactness, parks need to be arranged in a ring
around it, thus, creating larger green patches. This is reflected
in a strong positive correlation (Table 5) between Moran’s I for
parks and compactness for landscapes with a high proportion
of park blocks. This, in turn, leads to lower plant richness, and
overall to a trade-off between compactness and plant richness for
these landscapes. On the contrary, landscapes with a low park
proportion achieve maximum values for plant richness when
park blocks are separated from low-density blocks so as to avoid
forming larger green blocks. One way of achieving this is to
surround low-density blocks with high-density blocks, which is
visualized in Figure 3. This leads to a synergy between plant
richness and compactness for such landscapes.

We also identified such a change for cooling and compactness.
For a landscape mainly consisting of parks and high-density
blocks, compact, i.e., larger, parks have a positive influence on
cooling, likely since their cooling effect at the border is stronger.
This is underlined by a positive correlation betweenMoran’s I for
parks and cooling, indicating that more clustered parks are better
for cooling in landscapes with many park blocks. This correlation
is reversed for low park block proportions (Table 5), meaning that
dispersed, small parks have a positive impact on cooling for these
landscapes. According to our formulation of the target function
(Supplementary Material S2), an increase in shape index leads
to a much stronger cooling effect at the boundary of the park for
small green patches of almost similar size, while the loss of cooling
distance is negligible. Averaging over many different landscape
compositions at block scale blurred the effect of a transition
between trade-off and synergy.

To complement our analysis, we ran linear regression models
to predict the three target functions with the park proportion,
Moran’s I for all three block types and one way interactions
between park proportion and Moran’s I (Supplementary

Material S3). The adjusted R2-values suggest that plant richness
and compactness can be completely predicted, while for cooling,
at least one predictor is missing.

This finding has a clear implication for the land sharing versus
land sparing debate in cities: There is no single answer to the
question how to grow the world’s cities, since an optimal spatial
configuration of the city depends on its composition. So far, only
few other studies have investigated interaction effects between
landscape composition and configuration onto biodiversity. For
instance, Villaseñor et al. (2014) found interaction effects between
landscape composition (housing density) and configuration
(urban edge) on forest-dwelling mammals in Australia; and

the direction of effects differed per species. Soga et al. (2014)
investigated butterflies and ground beetles in Tokyo, Japan, and
also found interactions between composition (building density)
and configuration, and the responses were different for both
taxa. We are not aware of other empirical studies explicitly
testing interaction effects between landscape composition and
configuration for explaining urban ecosystem services. Also, the
two optimization studies that allow for a complete reshuffling
of the landscape (Feng and Lin, 1999; Cao et al., 2012) did not
investigate changing landscape composition and its effects. The
findings of our optimization study thus clearly point out a need
for further research.

Limitations of the Study and Future
Research
Clearly, we have had to simplify tremendously in order to
create the virtual city and quantify our target functions. We
took on the challenge of trying to base our target functions on
empirical data where possible. Each target function could also
be quantified in a different way, for instance by using other
indicators for biodiversity than plant species richness; taking
into account daytime versus night time cooling (Zhang et al.,
2017); or weighting compactness of low- versus high-density
blocks differently. Also, since the optimization only varied area
and shape of patches in the virtual landscape, many other
factors influencing the target functions were not considered,
thus limiting the explanatory power of the target functions.
Thus, reality is – of course – more complex than the virtual
landscape simulated here. What is more, we did not consider
how different target functions might interact. For instance,
biodiversity can also influence ecosystem services (Schwarz et al.,
2017) such as cooling – different habitat types, for example, differ
in their cooling potential (Lehmann et al., 2014; Jaganmohan
et al., 2016). Further research could investigate to what extent
other (also formulations of) target functions imply that trade-
offs and synergies depend on landscape composition. Especially
functional traits of species have the potential to explain responses
of biodiversity to changing landscape composition (Tscharntke
et al., 2012) and at the same time they can be linked to ecosystem
services, helping us to better understand synergies and trade-offs
among services and biodiversity (Schwarz et al., 2017).

Also, we needed to aggregate two of our target functions
into one value each for the whole landscape to feed it into
the optimization algorithm, since the target functions for plant
richness and local climate regulation were quantified at the patch
scale, i.e., the number of species per green patch and its cooling
effect. Thus, for both indicants, we had to identify ways of
integration across the landscape. This is challenging for plant
richness, as species-area curves only consider the number of
species, not their identity. Summing up the number of species per
patch to a total number of species results in double-accounting
many species. Our approach of first downscaling species richness
of patches onto cells and then maximizing mean species richness
per cell (section “Quantifying Biodiversity”) does not prevent that
and in fact fosters fragmentation: The species-area relationship
is not linear, but logarithmic. Therefore, dividing the estimated
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species richness per patch by the number of cells leads to high
species richness per cell for small patches. For aggregating the
cooling effect, it is not clear whether, and if so, to which extent
the cooling effects of neighboring green patches onto a specific
built-up area are adding up. We decided to use the largest
cooling effect onto a single built-up cell stemming from any
of the neighboring green patches, but did not add them up as
Zhang et al. (2017) did since we had no reliable data on that.
Potentially, using process models instead of simple, empirical
relationships could circumvent these challenges. However, such
process models would pose serious challenges for computation
time when used within a genetic algorithm.

For our virtual city, we chose a very simple, stylized landscape.
Even within this stylized approach, there is room for further
investigation. By introducing an equivalent of high-rise buildings,
we may introduce more heterogeneity in terms of block types
and thus landscape compositions. This is extremely relevant
since urbanization in many parts of the world also means a
strong increase in building heights (e.g., Frolking et al., 2013).
A challenge related to this is to conceptualize empirical studies
that explicitly take into account building height as a covariate.
What is more, green infrastructure such as green walls and green
roofs (Pauleit et al., 2018) indicate that the differentiation into
built-up and green areas is also simplistic, as is the assumption
that all green cells are equal, not distinguishing into different
habitat types and qualities. Finally, effects of city size need to
be explored, as small cities might inhibit patterns that can only
evolve in larger cities; also topographic features, average wind
directions et cetera would be useful to include.

Finally, we believe more research on modeling stylized cities
by building them from scratch (our study, Feng and Lin, 1999;
Cao et al., 2012) would be a promising avenue to investigate
generic relationships. Also other modeling methods, for instance
agent-based modeling, could be worthwhile to explore further, as
for instance done by Orsi (2019).

CONCLUSION

We showed that ecosystem services (here: local climate
regulation), biodiversity (here: vascular plant species richness)
and one of the main strategies for urban development, i.e., a
compact city, do not have a stable relationship but either form
synergies or trade-offs, depending on landscape composition.
Recent reviews investigating the relationships among biodiversity
and a range of ecosystem services showed that these can be
positive, neutral, negative, or inexistent (Harrison et al., 2014;
Ziter, 2016; Schwarz et al., 2017). While these studies indicated
that synergies among different targets of urban planning cannot
be taken for granted, we show that landscape composition is
a key factor to be considered. Therefore, we strongly suggest
researchers to investigate trade-offs and synergies for different
landscape compositions, also when using more complex target
functions. Such research can result in recommendations to urban
policy and planning, especially in countries where rising shares of
urban population necessitate re-thinking the allocation of green
and built spaces within cities or even the construction of novel

cities from scratch. Also, in addition to landscape composition,
the size of the landscape/urban region could be varied to see
whether basic patterns change.

Urban planning often encounters “wicked problems” (Rittel
andWebber, 1973) that, among other issues, do not allow for one
single solution that fits all needs. This is also the case here, and
even worse, target functions that go hand in hand in one type
of landscape are conflicting in others. Our findings also imply
that the resolution of the land sharing versus land sparing debate
might depend, in large part, on the composition of a given city.
This poses an even greater challenge for decision-making in real
world situations: For instance, our study suggests that empirical
findings on trade-offs and synergies for a specific landscape
composition (e.g., city district with specific building density)
cannot easily be transferred to another withmuch higher or lower
building density – or another city, for that matter. More research,
also including meta-studies (van Vliet et al., 2016), is required
to further disentangle the effects of landscape composition onto
trade-offs and synergies for urban landscapes.
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