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Abstract The fast Padé transform (FPT) is further optimized for encoded in vivo
MRS time signals. This is achieved by a judicious combination of spectra averaging
and time signal extrapolation. The motivation is in strengthening suppression of the
over-sensitivity of signal processing to changes in model order K . Implementation
is carried out in the FPT variant FPT(+) which, by numerically performed analytical
continuation, converts divergent into convergent series. Convergence of reconstruc-
tions is monitored for a sequence of successive values of K . Comparison is made
with the corresponding retrieval without spectra averaging and time signal extrapo-
lation. Variances are dramatically reduced for the reconstructed parameters (complex
frequencies and complex amplitudes) when spectra averaging and extrapolation are
performed. Negligible variances imply convergence, which is accomplished herein
using a single averaging procedure (no iterations). This has important implications
in practice with encoded MRS data, providing remarkable efficiency, robustness and
accuracy of Padé-based quantification. Algorithmically, spectra averaging and time
signal extrapolation consist of four steps. First, the encoded time signal is used to
compute total shape spectra (envelopes) for a sequence of model orders K , which is
the number of resonances. Second, these envelopes are averaged (spectra averaging).
All the spectra are computed at the same sweep frequencies whose number consider-
ably exceeds the number of data points in the encoded time signal. Third, the complex
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average envelope is inverted to yield a new time signal which is longer than the encoded
data (time signal extrapolation). Fourth, the Padé extrapolated time signal is quanti-
fied for a sequence of K to monitor convergence of the reconstructed parameters. All
four steps are applied to in vivo MRS data encoded on a 3 T scanner from a border-
line serous cystic ovarian tumor. We focus on this clinical problem to help develop
effective methods for early detection of ovarian cancer, in order to improve survival
for women afflicted with this malignancy. It is anticipated that the presently refined,
multi-purpose Padé-based methodology with its practical advantages for in vivo MRS
can contribute to this goal.

Keywords Magnetic resonance spectroscopy · Ovarian cancer diagnostics ·
Mathematical optimization · Fast Padé transform

Abbreviations

Ace Acetic acid
AcNeu N -Acetyl neuraminic acid
Ala Alanine
Au Arbitrary units
Av Average
Bet Betaine
BW Bandwidth
Cho Choline
Cit Citrate
Cr Creatine
Crn Creatinine
DFT Discrete Fourier transform
DWI Diffusion weighted imaging
E Ersatz
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FWHM Full width at half maximum
GE General electric
Glc Glucose
Gln Glutamine
Glu Glutamate
Gly Glycine
GPC Glycerophosphocholine
His Histidine
HLSVD Hankel–Lanczos singular value decomposition
IDFT Inverse discrete Fourier transform
IFFT Inverse fast Fourier transform
Iso Isoleucine
Lac Lactate
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Leu Leucine
Lip Lipid
Lys Lysine
Mann Mannose
Met Methionine
m-Ins Myoinositol
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
NAA N -Acetyl aspartate
NEX Number of excitations
NPV Negative predictive value
PC Phosphocholine
PCr Phosphocreatine
ppm Parts per million
PPV Positive predictive value
PRESS Point resolved spectroscopy
Pyr Pyruvate
Rad Radian
RMS Root-mean-square
SNR Signal-noise ratio
SNS Signal-noise separation
SRI Spectral region of interest
SVD Singular value decomposition
TE Echo time
Thr Threonine
TR Repetition time
TVUS Transvaginal ultrasound
Tyr Tyrosine
U Usual
Val Valine
WET Water suppression through enhanced T1 effects

1 Introduction

Advanced signal processing methods are indispensable for handling data encoded via
magnetic resonance spectroscopy (MRS). These methods are particularly important
for early detection of ovarian cancer, for which the need is very great. In this paper
we apply the fast Padé transform (FPT) to in vivo MRS time signals encoded from the
ovary. We focus upon the combination of spectra averaging and time signal extrapola-
tion as a further optimization of this advanced signal processing method for practical
applications related to the mentioned public health problem of utmost importance.
Before embarking on a detailed presentation of the mathematical features of the pro-
cedures for signal processing in MRS, we briefly review the medical aspects of the
problem.
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1.1 The clinical problem: the need for accurate and timely detection of ovarian

cancer

Ovarian cancer is the sixth most frequently occurring malignancy among women
worldwide and even more frequent in the USA, Scandinavia and Israel. Moreover,
there appears to be a trend towards increasing incidence of this malignancy in many
parts of the world [1–4]. The case fatality rate for ovarian cancer is very high; more
than 14 000 women die each year from this disease in the USA alone [5,6].

The high mortality rate is mainly due to late detection, at Stage III or IV with tumor
spread outside the true pelvis [7]. When detected early, ovarian cancer has an excellent
prognosis, especially when confined to a single ovary (Stage Ia) with five-year survival
rates over 90% [8]. The difficulty is that early stage ovarian cancer is very frequently
silent, i.e. without any symptoms. Further obstacles arise due to the small size of the
ovary (6.1 to 1.8 cm3, normally diminishing with age) and that it is not necessarily
enlarged with early-stage cancer [9].

The most generally utilized diagnostic methods to screen for ovarian cancer are
transvaginal ultrasound (TVUS) and serum cancer antigen (CA-125).1 While there is
some recent evidence that may possibly be to the contrary [10], the general consensus
from large-scale randomized trials is that the combination of CA-125 and TVUS
to screen for ovarian cancer in asymptomatic women does not reduce mortality nor
contribute to earlier ovarian cancer detection and that this strategy is associated with
a large percentage of false positive findings [11,12]. The latter have a number of
deleterious consequences, the most serious of which is that many women will undergo
surgical intervention for benign ovarian lesions [13–15]. Thus, the overall view is that
for women who are not at clearly high risk for ovarian cancer, the “harms” of routine
screening for ovarian cancer outweigh the benefits [16]. Although the possibility of
employing biomarkers other than CA-125 has been examined [17–21], none of these
appear to sufficiently improve diagnostic accuracy to recommend their use for routine
ovarian cancer screening [22].

Magnetic resonance imaging (MRI), through its high spatial resolution, has some-
times been found to be helpful in distinguishing benign from cancerous ovarian lesions
that are indeterminate on TVUS [23–25]. Still, almost one-fourth of benign ovarian
lesions were reportedly misdiagnosed as cancerous using TVUS with MRI as a second
imaging technique [23]. In general, MRI is very sensitive, such that ovarian cancer will
usually be detected, but many benign lesions will also be misdiagnosed as malignant.
Diffusion-weighted imaging (DWI) can provide some additional help in assessing
adnexal lesions, but many false positives also occur with DWI [26,27].

Magnetic resonance spectroscopy, MRS, offers the possibility of going beyond
anatomy, to evaluate the metabolic features of tissue or organs. Thereby, the molecular
changes reflecting the cancer process, i.e. “hallmarks of cancer” [28] can potentially
be revealed [29]. For almost two decades, it has been suggested that MRS could be
the method of choice for early ovarian cancer detection [30,31]. That potential has not

1 Serum cancer antigen, CA-125, is a protein whose presence is often associated with ovarian cancer.
However, it has poor sensitivity for early stage ovarian cancer and is also non-specific, being present in
other malignancies as well as in a number of non-cancerous conditions, including pregnancy.
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yet been realized, however, due mainly to the limitations of the manner in which MRS
time signals are analyzed. We now proceed to outline the specific limitations of the
conventional Fourier-based signal processing method for MRS and to list the gains
from an advanced approach to handling MRS time signals, as offered by the fast Padé
transform, FPT.

1.2 Signal processing procedures in MRS

1.2.1 The conventional Fourier-based approach

It should be recalled that currently all clinical magnetic resonance (MR) scanners
employ the fast Fourier transform (FFT) for converting the encoded time signal or free
induction decay (FID) curve into its spectral representation in the frequency domain.
The formula for generating the Fourier spectrum is:

FFT : Fm =
N−1
∑

n=0

cn exp(−2π imn/N ), 0 ≤ m ≤ N − 1. (1)

This is seen to be a single polynomial, with the fixed mth Fourier grid frequency
2πm/T (m = 0, 1, . . . , N − 1) . The expansion coefficients of the Fourier polyno-
mial (1) are contained in the set of complex-valued time signal points {cn}. The total
signal duration is T , where T = Nτ , with N being the total signal length and τ

is the sampling time (dwell time, sampling rate). The inverse of τ is the bandwidth
(BW). The variables exp (±2π imn/N ) are the undamped sinusoids and cosinusoids
(nmτ/T = nm/N ). The continuous time variable t is discretized (digitized) accord-
ing to t = nτ (0 ≤ n ≤ N − 1). Insofar as the signal lengths are in the composite
form, N = 2k (k = 1, 2, 3, . . .) , only N log2 N multiplications are required. This is
the basis of the computational efficiency of the FFT algorithm. However, whenever
N is non-composite, i.e. any positive integer, the FFT from (1) becomes the discrete
Fourier transform (DFT) requiring N 2 multiplications.

The time signal can be retrieved from the Fourier spectrum through the inverse
Fourier transform (IFFT) for N = 2k (k = 1, 2, 3, . . .):

IFFT: cn = 1

N

N−1
∑

m=0

Fm exp(2π imn/N ), 0 ≤ n ≤ N − 1. (2)

Insofar as N is non-composite N �= 2k (k = 1, 2, 3, . . .), Eq. (2) will be the inverse
discrete Fourier transform (IDFT).

Fourier-based processing has no possibility for interpolation, since the total shape
spectrum is produced from pre-assigned frequencies whose minimal separation is fixed
by the given acquisition time T . Attempts to improve resolution in the FFT inevitably
deteriorate Signal-noise ratio (SNR). The reason is that this entails use of a longer
T , which means that the physical part of the MRS time signal will have decayed
and, thus, encoding would collect mainly noise. Such a worsening of SNR occurs
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particularly in clinical MR scanners (1.5 and 3 T) [32]. Poor resolution and low SNR
are also due to the lack of extrapolation capabilities and to the linearity of the Fourier
method. Due to the latter, noise is imported as intact from the time to the frequency
domain. Regarding the former, without extrapolation, information is limited to that
obtained from c0 up until the final encoded signal point, cN−1. It is common practice
in the FFT to perform zero-filling of the original set {cn} (0 ≤ n ≤ N − 1) to e.g.
double the time signal length. Whereas this may somewhat enhance the appearance
of the generated spectrum (notwithstanding the sinc-type artificial oscillations on the
baseline), no new information is provided thereby and, consequently, there is no actual
improvement in resolution. Crucially, Fourier-based processing is non-parametric and,
thus, only a total shape spectrum can be forthcoming. Post-processing through fitting
is often performed thereafter. The latter entails a presupposition about the number and
nature of the resonances present in the total shape spectrum. Clearly, however, this
guessing procedure can easily be incorrect, with consequent inaccuracies in estimating
metabolite concentrations that are clinically most informative [33].

1.2.2 Advanced signal processing for MRS through the fast Padé transform

The fast Padé transform, FPT, is an advanced signal processor which has been shown to
be highly suitable for handling MRS time signals [32–36]. Through the unique ratio of
two polynomials, PK /QK , of degree K in the diagonal form, the spectrum generated
by the FPT is a non-linear response function. With the FPT, there is no requirement for
a fixed Fourier mesh 2πm/T (m = 0, 1, 2, . . . , N − 1) . Consequently, the spectrum
can be computed at any sweep frequency ν, where the angular or circular (ω) and linear
(ν) frequencies are related by ω = 2πν. Thus, with Padé-processing, the dilemma
does not arise whereby attempts to improve resolution require increased T which, in
turn, worsens SNR.

In the FPT, an additional degree of freedom is provided by the numerator (PK )
and denominator (QK ) polynomials, helping to cancel noise from the Padé spectrum
PK /QK . Namely, PK and QK through the expansion coefficients of these two poly-
nomials, contain a similar amount of noise from {cn}. This cancellation coheres with
the typical circumstances in which for any two observables A and B generated either
experimentally (or theoretically through numerical computations with finite precision),
there is considerable noise cancellation in the ratio A/B. Overall, the non-linearity of
the FPT improves resolution and SNR by suppressing noise [32,33,36].

In sharp contrast to Fourier processing, through the FPT, extrapolation beyond the
acquisition time T is achieved. This extrapolation capability is based upon the unique
polynomial quotient PK /QK , extracted directly from the investigated FID.

Crucially, the FPT can reconstruct not only total shape spectra, but also their compo-
nents through parametric processing (quantification). Thereby, the number of genuine
resonances and their spectral parameters, i.e. the fundamental frequencies {ωk} and the
associated amplitudes {dk}, through the set {ωk, dk} (1 ≤ k ≤ K ) inherently present
in the specified time signal {cn} (0 ≤ n ≤ N −1), are reconstructed with a high level of
accuracy. It is only from these retrieved parametric data that metabolite concentrations
can be correctly computed [33,36].
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The two variants of the FPT There are two variants of the FPT denoted by the FPT(+)

and FPT(−), that are defined in terms of variables z and z−1, respectively. The for-
mer converges inside (|z| < 1) and the latter outside (|z| > 1) the unit circle in
the complex plane of the harmonic variable z. Moreover, via the Cauchy analytical
continuation, the FPT(+) and FPT(−) are convergent, as well, in their complementary
domains (outside and inside the unit circle, respectively). The FPT(−) for |z| > 1 is an
accelerator of the already convergent input series given by the Green function in the
harmonic variable z−1. In contrast, through the Cauchy analytical continuation, the
FPT(+) must force convergence of the input series which diverges inside the unit circle,
|z| < 1 [37].

Concomitant with achieving this more difficult task, the FPT(+) has a number of
advantages for practical applications, as needed for the in vivo MRS setting. Namely,
the FPT(+) is more powerful than the FPT(−) in handling noisy MRS time signals.
Separation of noise from signal is more efficient in the FPT(+) through which genuine
and spurious resonances are strictly partitioned into two opposite regions, inside and
outside the unit circle, respectively. In contrast, with the FPT(−), both these resonance
types are mixed together, since they are all located outside the unit circle, |z| > 1.

Internal cross-validation is provided by the mentioned two variants of the FPT.
Whenever complete convergence is attained in the FPT (±), it would follow that ω+

k ≈
ω−

k as well as d+
k ≈ d−

k , and these parameters can jointly be denoted as ωk and dk ,
respectively. Here, the parameters {ωk, dk}, reconstructed by both the FPT(+) and
FPT(−), are the initially unknown complex frequencies and amplitudes from the input
encoded time signal {cn}, which is modeled by the geometric progression:

cn =
K

∑

k=1

dkeinτωk (Input time signal or FID). (3)

Mathematically, integer K ≥ 1 is the model order, as well as the common degree of
the polynomials PK and QK in the spectrum PK /QK , whereas in physics it represents
the number of resonances. In the present paper, we will from here on, refer exclusively
to the FPT(+), with the understanding that, as in all previous work, in the final analysis,
both the FPT(+) and FPT(−) are always used for cross-checking.

The response function The exact response function is given by the infinite-rank Green
function G(z−1), which is defined as the Maclaurin series:

G(z−1) =
∞
∑

n=0

cnz−n, z = eiτω (Exact Green series). (4)

Therein, the time signal points {cn} are the expansion coefficients. In realistic situa-
tions, however, the total number N of available signal points {cn} is finite (N < ∞).
Thus, a truncated response function is needed. This is provided as the finite-rank Green
function given by the Green polynomial G N (z−1):
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G N (z−1) =
N−1
∑

n=0

cnz−n (Exact Green polynomial). (5)

Another terminology can also be used, namely that of discrete time series. Then, the
infinite- and finite-rank Green functions can alternatively be called the infinite and
finite z-transform [33].

In the FPT(+), the input response function G N (z−1) from (5) is approximated by
the causal Green–Padé function G+

K (z) as, e.g. the diagonal rational polynomial in the
harmonic variable z:

G N (z−1) ≈ G
(+)
K (z) ≡

∑K
r=1 p+

r zr

∑K
s=0 q+

s zs
; FPT(+)(Causal Green–Padé function). (6)

Here, the term “causal” means that the system must first be perturbed before giving its
response. For example, if the excitation started at the initial instant t0 = 0, the system’s
response through the FID, {cn}(tn = nτ, τ > 0), would not appear at any t < t0,
which implies that for cn = 0 and n < 0. If such a time signal is used, the resulting
frequency response function G

(+)
K (z) from (6) would also be causal. Alternatively,

G
(+)
K (z) can be called the advanced Green–Padé function since it is associated with

time evolution of the system along the positive portion of the time axis. Similarly,
G

(−)
K (z−1) from the FPT(−) is called the anti-causal Green–Padé function because of

its association with time evolution of the system at the negative portion of the time axis.
These associations in G

(±)
K (z±1) are rooted in the harmonic variables z±1 which act as

operators that propagate the system at positive and negative times, respectively. The
two descriptions by the G

(±)
K (z±1) are equivalent by reference to the so-called micro-

reversibility of physical processes, as well-known in quantum-mechanical resonance
scattering theory. The usual notion of time evolution is propagation in the future, i.e.
at positive times. Propagation at negative times is also used as an equivalent notion
for theoretical descriptions of time evolution in the past, as per the mentioned micro-
reversibility principle.

Via G
(+)
K (z), the FPT(+) employs the variable z and converges inside the unit circle

(|z| < 1), which is where the exact Green function G(z−1) diverges. Then, as noted,
via the Cauchy concept of analytical continuation, the FPT(+) induces convergence
into the input divergent series from (4). The convergence radii RN of G(z−1) and R+

K of
G+

K (z) differ greatly, where the former is exactly zero, RN = 0 at N = ∞ for |z| < 1,
whereas the latter is strictly non-zero, R+

K > 0, in the same region |z| < 1. Thereby,
the FPT(+) extends the validity of the response function (spectrum) to |z| < 1, where
the input Green series G(z−1) does not exist, because of its divergence inside the unit
circle.

Note that the FPT(+) from (6) has built-in both interpolation and extrapolation fea-
tures. Interpolation is present because the sweep frequency ν in z = exp(2π iτν) can
take any value. Extrapolation, which secures prediction in the mathematical model-
ing by the FPT(+), is implicit in G

(+)
K (z) from (6), since the polynomial reciprocal
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1/(
∑K

s=0 q+
s zs) is an infinite sum, i.e. a series: 1/

∑K
s=0 q+

s zs =
∑∞

s=0 η+
s zs where

η+
s = −

∑s−1
s′=0 ηs′q+

s−s′(s ≥ 1; q+
0 ≡ 1, η+

0 = 1) [33].

Extraction of the expansion coefficients The expansion coefficients of the polynomials
P+

K and Q+
K are, respectively, {p+

r } and {q+
s }, as per (6). It should be noted that there

is no free term p+
0 in the expansion for G

(+)
K (z), i.e. p+

0 ≡ 0. Using definition (6),
the expansion coefficients {p+

r , q+
s } of the numerator P+

K (z) and denominator Q+
K (z)

polynomials are extracted uniquely from the time signal points {cn} by solving a
single system of linear equations. The FPT(+) usually requires a larger number of
signal points compared to the FPT(−), i.e. a more over-determined system of linear
equations for the polynomial expansion coefficients. This is related to its requirement
to induce convergence into the divergent input expansion of G(z−1) for |z| < 1.

Solutions of the characteristic equations The solutions of the characteristic equations,
P+

K (z) = 0 and Q+
K (z) = 0, have the roots denoted by z+

k,P and z+
k,Q(1 ≤ k ≤ K ),

respectively. Here, the second subscripts P and Q in the variables z+
k,P and z+

k,Q are

introduced to distinguish the roots of the polynomials P+
K (z) and Q+

K (z), respec-
tively. The Cauchy residues of the spectrum P+

K (z)/Q+
K (z) taken at the fundamental

harmonics z ≡ z+
k,Q are the fundamental amplitudes d+

k . When the roots represent
simple poles alone, which occurs for non-degenerate (unequal, i.e. non-coincident)
roots of Q+

K (z), these amplitudes are given by:

d+
k =

P+
K (z+

k,Q)

Q+′
K (z+

k,Q)
, Q+′

K (z) ≡ d

dz
Q+

K (z), 1 ≤ k ≤ K . (7)

A similar and more involved expression also exists for degenerate (coincident roots),
as given in Ref. [33]. From the equivalent canonical representation of spectrum
P+

K (z)/Q+
K (z) [33], it follows that the amplitudes d+

k are proportional to the pole-
zero distance (a metric):

d+
k ∝ z+

k,Q − z+
k,P . (8)

This Cauchy residue, consequently, reflects the behavior of a line integral of a mero-
morphic function around a specified pole. The Padé spectrum P+

K /Q+
K has its poles

as the only singularities and, thus, represents a meromorphic function. Hence, the
zeros and poles of P+

K /Q+
K are given by the roots of the characteristic equations

P+
K (z) = 0 and Q+

K (z) = 0, respectively. It is through these outlined steps that
the FPT(+) accomplishes reconstruction of the 2K complex fundamental parame-
ters {ω+

k,Q, d+
k }(1 ≤ k ≤ K ) with the earlier notation ω+

k relabeled as ω+
k,Q where

ω+
k,Q = [1/ (iτ)] ln z+

k,Q .

Modes of the component spectra The component spectra can be displayed in two
different modes. The absorption and dispersion components are mixed together in
the “usual” (U) mode of component spectra. Since the phases ϕ+

k are non-zero,
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the amplitudes {d+
k }(1 ≤ k ≤ K ) are all complex-valued. When there are numer-

ous overlapping resonances, the “absorption” components often appear as skewed
absorptive Lorentzians. When setting the reconstructed phases ϕ+

k “by hand” to zero,
ϕ+

k ≡ 0 (1 ≤ k ≤ K ) , we generate the “ersatz” (E) mode of component spectra.
Thereby, interference effects have been eradicated and purely absorptive Lorentzians
are the result. The “ersatz” and “usual” modes of the component spectrum for the kth
resonance are defined as:

(

P+
K (z)

Q+
K (z)

)E

k

≡
∣

∣d+
k

∣

∣ z

z − z+
k,Q

(Ersatz component k), (9)

(

P+
K (z)

Q+
K (z)

)U

k

≡
d+

k z

z − z+
k,Q

(Usual component k), (10)

respectively. When ϕ+
k = 0, we can return from (10) to (9), through substitution of

d+
k ≡ |d+

k | exp (iϕ+
k ) by |d+

k | which is the magnitude of the amplitude d+
k [38].

The peak positions (chemical shift, Re(ν+
k )) in the usual and ersatz mode coincide

when the former, i.e. Re(P+
K /Q+

K )U
k , is in the absorption mode. On the other hand,

when Re(P+
K /Q+

K )U
k is a dispersive component, it will have two lobes. In such a case,

the peak position Re
(

ν+
k

)

for Re(P+
K /Q+

K )E
k will be located between the two lobes of

Re(P+
K /Q+

K )U
k , as per visual inspection when juxtaposing the plots for Re(P+

K /Q+
K )U

k

and Re(P+
K /Q+

K )E
k .

The numerator (P+
K ) and denominator (Q+

K ) polynomials in (9) and (10), have the
following explicit expressions, implied by (6):

P+
K (z) =

K
∑

r=1

p+
r zr , Q+

K (z) =
K

∑

s=0

q+
s zs, p+

0 ≡ 0. (11)

The expansion coefficients
{

q+
s

}

for the polynomial Q+
K (z) are extracted by solving

the system of linear equations
∑K

s=0 q+
s cs′+s = 0 deduced from (6). The solu-

tions
{

q+
s

}

are thereafter refined by singular value decomposition (SVD). Once
the set

{

q+
s

}

becomes available, the expansion coefficients
{

p+
r

}

in P+
K are com-

puted from the analytical expression p+
r =

∑K−r
r ′=0 cr ′q+

r ′+r
. The free term, q+

0 can
be set to e.g. 1 or −1 and this does not affect the spectra or the spectral param-
eters {ω+

k,Q, d+
k } (1 ≤ k ≤ K ) reconstructed by the FPT(+). Note that there is a

coherence between the two sets
{

p+
r

}

and
{

q+
s

}

because the former depends on the
latter.

The ersatz component spectra are often useful for visualizing the extent of the
overlap of closely lying or hidden resonances, due to lack of interference between
the absorption and dispersion modes. Whereas the number of component resonances
(P+

K /Q+
K )U

k and (P+
K /Q+

K )E
k is the same, their full widths at half maximae (FWHM)

differ. Thus, the peak areas of a given kth component are also different in the usual
and ersatz modes. The parameters {ω+

k,Q, d+
k } with ϕ+

k �= 0 from the usual compo-
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nents (P+
K /Q+

K )U
k are to be utilized for computing metabolite concentrations, since

interference effects occur for ϕ+
k �= 0. The peak areas are affected by ϕ+

k �= 0 and so
are the metabolite concentrations. Consequently, the usual components (P+

K /Q+
K )U

k

together with {ω+
k,Q, d+

k } should be used to compute the metabolite concentrations,

and not the ersatz components (P+
K /Q+

K )E
k with {ω+

k,Q,
∣

∣d+
k

∣

∣}.

Computation of the total shape spectra via the Heaviside partial fraction expansions

The total shape spectra from (6) can alternatively be computed by using the Heaviside
partial fraction expansions:

P+
K (z)

Q+
K (z)

=
K

∑

k=1

d+
k z

z − z+
k,Q

(Heaviside Partial Fractions). (12)

The total shape spectra in the ersatz and usual modes are provided using (9) and (10)
to construct the Heaviside partial fractions:

(

P+
K (z)

Q+
K (z)

)E

≡
K

∑

k=1

(

P+
K (z)

Q+
K (z)

)E

k

=
K

∑

k=1

∣

∣d+
k

∣

∣ z

z − z+
k,Q

(Ersatz envelope), (13)

(

P+
K (z)

Q+
K (z)

)U

≡
K

∑

k=1

(

P+
K (z)

Q+
K (z)

)U

k

=
K

∑

k=1

d+
k z

z − z+
k,Q

(Usual envelope), (14)

respectively. The difference between the lhs of (10) and (14) for the kth usual compo-

nent (P+
K /Q+

K )U
k and the usual envelope

(

P+
K /Q+

K

)U
is that the subscript k is omitted

in the latter. Similarly, for the ersatz modes in (9) and (13).
Note that the polar structure in the Heaviside partial fraction representation of the

FPT(+) in e.g. (14) is, by definition, best suited for functions with polar singularities
such as those describing spectra in MRS. It is through the Heaviside representa-
tion that the FPT(+) can “swallow” (filter out) all the poles in the sense of properly
decomposing the examined total shape spectrum into its true components. By con-
trast, all the response functions given by a single polynomial are utterly inadequate
for describing spectra with peaks, as is clear from the FFT in (1) which is not a polar
representation.

Efficiency of the FPT algorithms The algorithms in the FPT(+) are both efficient and
straight-forward. The only required numerical work is to solve a single system of lin-
ear equations for the expansion coefficients

{

q+
s

}

, and then to root the characteristic
polynomials P+

K (z) and Q+
K (z). The fundamental frequencies {ω+

k,Q} are reconstructed

from the roots z+
k,Q of Q+

K (z). The other set of roots {z+
k,P } from the characteristic equa-

tion P+
K (z) = 0 serves to separate genuine from spurious resonances, depending on

whether ω+
k,P �= ω+

k,Q or ω+
k,P = ω+

k,Q , respectively, where ω+
k,P = [1/ (iτ)] ln z+

k,P .

In contrast to e.g. the Hankel–Lanczos singular value decomposition (HLSVD) by
which obtaining the amplitudes requires solving yet another system of linear equa-
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tions, the FPT(+) generates the set
{

d+
k

}

from the analytical formulae as the Cauchy
residues given by (7). The characteristic polynomial rooting is achieved (to machine
accuracy) by solving the equivalent eigenvalue problem of the extremely sparse Hes-
senberg or companion matrix [33].

Signal-noise separation through the FPT(+) Via the spectral poles and zeros, one
obtains the physical parameters of the system which generated the time signals as the
system’s response to an external excitation. Since d+

k ∝ z+
k,Q − z+

k,P , as per (8), there
is also a direct relation of the amplitudes with the spectral poles and zeros.

Stability or resilience against external perturbation indicates that the poles are phys-
ical. On the other hand, poles that show marked changes with exposure to even minimal
perturbation are unstable and, consequently, unphysical. Moreover, unstable poles do
not ever converge, as their behavior is noise-like, and just like random fluctuations,
they do not ever stabilize due to lack of coherence.

The relation between spectral poles and zeros in the FPT(+) can also distinguish
physical from unphysical poles. Unstable structures show pole-zero confluence, i.e.
z+

k,Q = z+
k,P or z+

k,Q ≈ z+
k,P and they are termed Froissart doublets. For stable struc-

tures, the poles and zeros are distinct, i.e. z+
k,Q �= z+

k,P . In keeping with (8), genuine

resonances (z+
k,Q �= z+

k,P ) have non-zero amplitudes, d+
k ∝ z+

k,Q − z+
k,P �= 0, whereas

spurious resonances (z+
k,Q = z+

k,P or z+
k,Q ≈ z+

k,P ) have zero or close to zero ampli-

tudes (d+
k = 0 or d+

k ≈ 0). Crucially, genuine and spurious resonances have positive
and negative imaginary frequencies, Imω+

k,Q > 0 and Imω+
k,Q < 0, respectively. This

implies that the exponentials in the reconstructed time signal:

c+
n ≡

∑K ′

k=1
d+

k einτω+
k,Q =

∑K ′

k=1
d+

k exp
(

inτReω+
k,Q − nτ Imω+

k,Q

)

, (15)

are damped and exploding with increasing time nτ for genuine and spurious res-
onances, respectively. Unattenuated harmonics best justify their binning as the
unphysical part of the retrieved time signal, {c+

n }. Occasionally, genuine resonances
may also have very small amplitudes, d+

k ≈ 0, but nevertheless, it is their feature
Imω+

k,Q > 0 (alongside stability) which allows us to bin them as the physical portion
of the recovered FID from (15).

Subsequent to stabilization of the model order K in P+
K /Q+

K , i.e. once all the
genuine resonances have been reconstructed, further computation of the Padé spectra
for a higher degree polynomial, K + m (m = 1, 2, 3, . . .), would only produce more
non-physical resonances. These would exhibit pole-zero coincidences (z+

k,Q = z+
k,P )

resulting in d+
k = 0 for k = K + m (m = 1, 2, 3, . . .). Consequently, pole-zero

cancellation occurs, and this yields stabilization of the computed spectra:

P+
K+m(z)

Q+
K+m(z)

= P+
K (z)

Q+
K (z)

(m = 1, 2, 3, . . .) . (16)

It should be emphasized that the number of physical resonances, i.e. the number of
fundamental harmonics K is also considered unknown. In the Padé methodology, this
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is a parameter whose value must also be reconstructed, rather than guessed. When
the reconstructed frequencies and amplitudes have converged, K will then become
determined. Simply stated, the model order K ′ (or equivalently, the degree K ′ of
the Padé rational polynomial P+

K ′/Q+
K ′) for which the reconstructed frequencies and

amplitudes have stabilized, will be the exact number K of harmonics contained in the
input FID from (3).

To summarize, by gradually augmenting the running common degree K ′ of the
Padé polynomials in the diagonal FPT(+) until the set of reconstructed frequencies
and amplitudes stabilize, any further augmentation of K ′ would yield only spuri-
ous resonances. The latter are recognized by having negative imaginary frequencies,
Imω+

k,Q < 0, as well as by their instability, together with coincidence of poles and
zeros, that, in turn, yield zero or near-zero amplitudes. The Froissart concept is called
“Signal-noise separation” (SNS) and has been extensively validated for MRS time
signals [39,40], with analytical confirmation of its mechanism given in Ref. [41]. This
stabilization via pole-zero cancellation is a unique feature of the FPT, due to the special
form of the rational polynomials for the Padé spectra. Overall, pole-zero coincidences
can occur only in the quotients of two polynomials and subsequently, there are pole-
zero cancellations. Identifying Froissart doublets through pole-zero confluences with
the ensuing stabilization of the Padé spectra is the essential indication that the full infor-
mation from the input time signal has been exhausted by the FPT(+). It is in this way
that the genuine parameters from all the reconstructed data {ω+

k,Q, d+
k }

(

1 ≤ k ≤ K ′)

in the FPT(+) can be identified as the true fundamental frequencies and amplitudes
{ωk, dk} (1 ≤ k ≤ K ) from the encoded FID modeled by (3).

In the SNS concept, the phenomenon of coherence is behind the emergence of the
system’s stability. The time signal cn is said to be built from the 2K stable complex pairs
{ωk, dk} into a coherent sum (3) with the interference effect for the non-zero phases
(ϕk �= 0, k ∈ [1, K ]). Such a stable system can then be viewed as being closed. An
attempt to add more configurations beyond the saturation number K would result in a
temporary amalgamation of the new components in (3). These, as incoherent, would be
unstable and as such, rejected by being assigned zero-valued amplitudes in (3) which
correspond to pole-zero cancellation in the Padé spectrum. Quantum-mechanically, an
amplitude dk is the probability of transition from one configuration to another. Thus,
if the system assigns dk = 0, this means that there is zero chance for incorporating
a new configuration (i.e. a new resonance or metabolite) into (3) beyond the K fully
occupied states. In this way, by connecting the phenomena of coherence/incoherence
with stability/instability and genuine/spurious, the FPT(+) is able to suppress and
indeed eliminate the redundant and extraneous degrees of freedom of the system.

Reliable Padé-based extrapolation of in vivo encoded MRS time signals The most
important feature of mathematical modeling is prediction. The following argument
explains how the fast Padé transform achieves prediction based upon extrapolation
in the time domain where MRS encoding is made. In (15), the reconstructed time
signal c+

n , associated with spectrum P+
K ′/Q+

K ′ , the running or sweep model order K ′

is the total number of resonances (genuine K and spurious KS , i.e. K ′ = K + KS)
extracted from the encoded data {cn}. For its part, {cn} is modeled by (3) with K
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resonances in total which, alongside the relation K ′ = K + KS (i.e. K ′ > K ),
would suggest that over-modeling had occurred in the retrieved time signal

{

c+
n

}

from (15). However, the FPT(+) is safe-guarded against this obstacle, since all the KS

extra resonances, being spurious (unstable), have zero-valued amplitudes that, in turn,
reduce the sum in (15) to K terms alone, i.e. c+

n ≡
∑K

k=1 d+
k exp(inτω+

k,Q). Here,

upon convergence, as stated, the set {ω+
k,Q, d+

k } can be denoted by {ωk, dk}, so that

c+
n ≡

∑K
k=1 dk exp (inτωk). The latter exactly reconstructs the input data cn modeled

by (3) and thus {c+
n } = {cn} for the first N points (0 ≤ n ≤ N − 1). The additional data

points for n ≥ N in the full set {c+
n } relative to {cn} are the Padé-based extrapolations

that would have been available had the encoding continued after cN−1 beyond the total
acquisition time T , i.e. at times nτ > T . Thus, the FPT(+) is a method with predictive
power.

1.3 The fast Padé transform for processing in vivo MRS time signals encoded

from the brain

The FPT has been used to process MRS time signals encoded in vivo on 1.5 T MR
scanners from pediatric brain tumor [38], pediatric cerebral asphyxia [41,42] and
from healthy adult brain [43]. This method has also been applied to MRS time signals
encoded in vivo from healthy adult human brain using 4 and 7 T MR scanners [32,33,
36,44–46]. The fast Padé transform has consistently demonstrated superior resolution
of total shape spectra compared to the FFT. The parametric capability of the FPT has
been the most noteworthy, especially for spectrally dense chemical shift regions of the
brain, where very closely-overlapping resonances including cancer biomarkers, were
clearly resolved and quantified [36,38,41,42].

1.3.1 The problem of the giant water residual

Successful strategies should handle major problems arising with data encoded from
clinical 1.5 T scanners. One of these problems is the (still) giant residual water res-
onance. Via a step function with the non-parametric FPT, an information-preserving
windowing procedure for suppressing residual water was introduced and shown not to
affect the spectral components within the spectral region of interest (SRI) [38]. There
were some non-essential effects at the edges outside the SRI when comparing the
water residual suppressed and unsuppressed Padé constructions. Full equivalence of
the non-parametrically and parametrically generated total shape spectra was confirmed
in the FPT and, therefore, we chose the latter in a more recent study [41]. Therein,
we used only the components (P+

K /Q+
K )k with chemical shifts from the SRI selected

to avoid the giant residual water resonance. We computed the parametrically gener-
ated envelopes via P+

K /Q+
K employing the Heaviside partial fraction sum (12). It was

shown that with the parametric FPT and the given SRI, the water residual suppression
problem could be entirely overcome without the need for windowing.
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1.3.2 Spectra averaging

Another severe problem which arises with in vivo MRS is the destabilizing effect of
marked changes in the sought model order K . To cope with this over-sensitivity to
alterations in K , iterative averaging of spectra was introduced. This is an effective
strategy for regularizing spectra by taking the arithmetic average of a set of envelopes
computed for a string of selected values of K . The generation of an average envelope
can be viewed as a counterpart to “signal averaging” which is routinely carried out
by averaging some 200 encoded FIDs in the time domain, to improve SNR. However,
there is more to spectra averaging because it can be iterated any number of times due to
very efficient reconstructions in the fast Padé transform. No such advantage is afforded
in signal averaging where repetition would only extend the patient’s examination time
which is already one of the main concerns in encoding FIDs by MRS. Notably, for
different values of model order K , numerous and relatively large noise-like spikes
appear in the spectra. Using a sequence of values of the model order K , the 1st
average envelope (arithmetic average) was produced. This complex average envelope
was inverted via the IFFT or IDFT (depending on whether N is 2k (k = 0, 1, 2, . . .) or
not) to generate the 1st reconstructed FID. The latter was subjected to the FPT to obtain
the next set of envelopes for the same sequence of values of K as considered in the
previous iteration. This new sequence of envelopes was averaged and the procedure
was repeated until the prescribed accuracy of the reconstructed spectral parameters was
attained. With each iteration, there was progressively greater suppression of spurious
spectral structures. In addition to the total shape spectra, all four Padé-reconstructed
spectral parameters for each genuine resonance also showed progressively diminished
fluctuations with consecutive iterations. The values of the spectral parameters were
fully stabilized to the minimal level of variance consistent with stochasticity in encoded
FIDs, indicating that convergence had indeed been achieved [41].

Spectra averaging (performed just once or iteratively), as a general concept, is an
objective and unbiased way of mitigating the effect of redundancy and unphysical
degrees of freedom from the reconstructions. This nuisance is a non-coherent part of
the extracted information, present both in the input encoded FIDs (noise as well as other
uncertainties) and in the reconstructed data (computational round-off errors, unstable
recovered resonances, etc.). Since most such errors are random, their appearance is
manifested in spectral envelopes through stochastic spikes roaming around from one
chemical shift band to another. It is through spectra averaging of envelopes for a
number of values of K that various errors can be corrected in the stabilized quotient
P+

K /Q+
K . We are then talking here about the powerful concept of error self-correction

through the unique coupling of averaging of Padé spectra and the rational function
response of the examined system to external perturbations.

From these most recent in vivo studies on the brain [38,41,42], we concluded that
this multi-faceted Padé-based strategy could have other clinical applications. Among
these are areas of cancer diagnostics where in vivo MRS would be of greatest added
value. We have highlighted early ovarian cancer diagnostics, where for nearly two
decades, as noted, the need for an effective in vivo MRS-based screening method
has been underscored [30,31]. We proceed now to succinctly review the course of
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applications of in vivo MRS to the ovary, starting with conventional Fourier processing
and then with the fast Padé transform.

1.4 MRS of the ovary: results to date

1.4.1 In vivo encoded MRS time signals using conventional Fourier-based processing

There is a fairly small number of published studies applying conventional FFT-based
in vivo MRS to the ovary [47–60]. In Ref. [61], we performed a systematic review and
meta-analysis of these studies. Altogether there were 134 malignant ovarian lesions,
114 benign ovarian lesions and 3 lesions of the ovary that were classified as “border-
line”. Encoding was performed via clinical (1.5 or 3 T) MR scanners. For all these in
vivo studies, the 1H MRS time signals were processed by the FFT, with fitting-based
post-processing in Refs. [49,55,56,58,59].

The main peaks resolved were: lipid (Lip) at 1.3 ppm (parts per million), a lactate
(Lac) doublet also at around 1.3 ppm (J-modulated and appearing as inverted for TE =
136 ms), creatine (Cr) at 3.0 ppm, choline (Cho) at 3.2 ppm or total Cho between 3.14
and 3.34 ppm and Lip at 5.2 ppm. A peak whose resonance frequency was between
2.0 and 2.1 ppm was found in some of the studies [52–55,59]. According to in vitro
analysis, this peak was comprised of N -acetyl aspartate (NAA) as well as N -acetyl
groups from glycoproteins and/or glycolipids [54]. In this context, the NAA component
may be related to a molecular water pump [52]. Choline is a marker of membrane
damage, cellular proliferation and cell density, reflecting phospholipid metabolism of
cell membranes. Creatine is a marker of energy metabolism. Anaerobic glycolysis
is indicated by Lac. The metabolic information was mainly described qualitatively
(presence or absence of a given peak), and these are the data that were pooled for meta-
analysis. In the literature [48,49,55,56,58,59], diverse procedures were performed
aimed at quantifying Cho, such that those data could not be pooled in Ref. [61].
Metabolite concentration ratios of Cho to Cr were reported in two of the studies, with
the [Cho]/[Cr] ratio significantly higher in cancerous ovarian lesions than in the benign
ovaries [55,59].

Only two metabolites, Cho at 3.2 ppm and Lac at 1.3 ppm, were more often detected
with statistical significance in cancerous compared to benign ovarian lesions. How-
ever, based on the detection of Cho alone, some 50 benign ovarian lesions would be
erroneously classified as cancerous, i.e. false positive results, indicated by a positive
predictive value (PPV) of 66%. Some 20 malignant ovarian lesions would be incor-
rectly considered benign based upon lack of detected Cho, i.e. false negative results,
with a negative predictive value (NPV) of 57.4%. Lactate alone provided better PPV
and NPV with a statistically more significant logistic regression model, but data were
available for only 25% of the patients. Logistic regression models with adjustment for
age and magnetic field strength, B0, generated a stronger model for Cho with better
NPV than did the unadjusted model, but with markedly fewer patients included. The
adjusted model with both Lac and Cho, also with a total of fifty patients, provided
the best PPV, NPV and overall accuracy. Even with this strongest logistic regression
model, four of twenty-six patients with benign ovarian lesions were wrongly pre-
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dicted to have ovarian cancer, and four of twenty-four patients with ovarian cancer
were incorrectly predicted to have benign lesions.

The overall conclusion from this meta-analysis [61] was that, although some
insights were provided with conventional Fourier-based processing, in vivo MRS still
did not adequately distinguish cancerous from benign ovarian lesions. Motivations for
application of the FPT were provided by the quite extensive data using in vitro MRS
[30,54,62–69]. Further, as thoroughly reviewed in Ref. [61], there are many MR-
observable compounds that do distinguish malignant versus benign ovarian lesions,
and such metabolites need to be reliably quantified.

1.4.2 Studies applying the fast Padé transform to MRS time signals to the ovary

Proof of principle studies The FPT(−) was first applied to synthesized noiseless time
signals [70,71] associated with MRS data for benign and cancerous ovarian cyst fluid
analyzed in Ref. [64]. All the spectral parameters taken from Ref. [64] were cor-
rectly reconstructed by the FPT(−), for each of the input twelve true metabolites. This
included the closely-lying resonances, isoleucine (Iso) at 1.023 ppm and valine (Val) at
1.042 ppm. The metabolite concentrations were accurately computed with only 64 sig-
nal points (N/16) of the full time signal N = 1024 [70,71]. At longer signal lengths,
these results remained stable. In comparison, at the partial signal length NP = 64, the
FFT provided exceedingly rough spectra that were entirely uninterpretable. In order
to resolve all 12 resonances, some 8192 signal points were needed, but even then,
several of the peak heights were incorrect in the FFT. To provide converged absorp-
tion total shape spectra for the noiseless data corresponding to benign and malignant
ovary, the FFT needed a formidable 32768 signal points [64,70,71]. The superior
resolving power of the FPT(−) for handling time signals from the ovary was clearly
demonstrated thereby [70,71].

The FPT(−) was applied thereafter to simulated noisy MRS time signals associated
with ovarian cancer, for which the noise level was σ = 0.01156 RMS, where RMS is
the root-mean-square of the noise-free time signal [72–74]. Convergence required 128
signal points (N/8, N = 1024) with this noise level in order to exactly reconstruct
all the spectral parameters for the input twelve physical resonances. The 52 spurious
resonances were identified by their pole-zero confluences as well as the associated
zero-valued amplitudes [72].

At higher levels of noise (σ = 0.1156 RMS, σ = 0.1296 RMS and σ = 0.2890
RMS), the pole-zero coincidence in the FPT(−) was not complete in all instances and
near-zero amplitudes were found for some of the spurious resonances [73,74]. Noting
that the concentrations of genuine metabolites could be low, their peak heights would
be very small. Consequently, the question was how to distinguish non-physical from
genuine resonances with full confidence? This question was critical when proceeding
from synthesized FIDs to encoded time signals for which the number of resonances and
their parameters are unknown prior to spectral analysis. By varying the partial signal
length NP and/or also by adding yet more noise, it was shown that a set of resonances,
even those with very small amplitudes, was detected by their stability. These were
classified as genuine resonances. Moreover, another set of resonances was identified
by the FPT(−) as unstable even with a slight change in partial signal length or noise
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level σ . These were binned as spurious resonances that are, as such, discarded. In this
way, all the true metabolic information was kept in the denoised spectrum [73,74].
Detailed analysis [75] was next performed on the synthesized noise-corrupted benign
ovarian cyst time signals reminiscent of those encoded in the study from Ref. [64]. At
short total signal lengths, both FPT variants, the FPT(+)and FPT(−), identified all the
genuine resonances, and computed the correct metabolite concentrations. The FPT(+)

provided the most effective Signal-noise separation, SNS, because in the complex
z-plane the genuine and spurious resonances were separated inside and outside the
unit circle, respectively. Equivalently, also in the complex frequency plane, FPT(+)

distinctly separates genuine and spurious resonances, since they have Imω+
k,Q > 0

and Imω+
k,Q < 0, respectively. The pole-zero coincidence of spurious resonances

remained complete in the FPT(+), with a denoised spectrum produced automatically
for these simulated MRS data from benign ovary. These latter findings suggested
that the FPT(+) could be especially helpful for processing in vivo MRS time signals
encoded from the ovary.

Besides applying the FPT to theoretically synthesized FID data similar to time
signals encoded from the ovary, several proof-of-principle studies have also been per-
formed using data from other tissues. Padé-processing of MRS time signals provides
quantitative information for many metabolites from cancerous, benign and/or normal
brain, breast and prostate, as shown in studies on simulated time signals [34–36,76–
84]. A proof-of-principle MRS study was also performed on the signals encoded from
the standard General Electric (GE) phantom head [85]. The convergence process was
examined in detail via “parameter averaging”, confirming the accuracy and stability
of the Padé-reconstructed spectral parameters, even for those resonances that were
very closely overlapping. These parameters were the complex-valued fundamental
frequencies {ω+

k,Q} and the associated amplitudes
{

d+
k

}

.

The first study applying the fast Padé transform to in vivo MRS time signals encoded

from the ovary The first study [61] has just been completed applying the fast Padé
transform to MRS time signals encoded in vivo from a borderline serous cystic ovarian
tumor on a 3 T MR scanner. At a relatively short partial signal length of NP = 800,
the FPT-generated total shape spectrum was found to be better resolved compared to
that produced via Fourier processing. This corroborates the mentioned benchmarking
studies [70–75] on synthesized MRS time signals from the ovary, in which the high
resolution capabilities of the FPT were demonstrated.

The spectra averaging procedure was further confirmed to be an effective way to
stabilize shape estimation in face of a marked sensitivity to alteration in model order
K . The total shape spectrum generated as the real part of the complex average of eleven
usual envelopes was seen to be informative, and was very dense, due to the encoding
at a short echo time (TE) of 30 ms, such that many short-lived metabolites had not
yet decayed. Further, the complex average envelope was inverted to generate a new
time signal. Using the latter FID, subsequent parametric analysis through the FPT(+)

reconstructed dense component spectra in the usual, U, and ersatz, E, mode. Recall that
in the former, the absorption and dispersion components are mixed. However, in the
latter, only the absorptive Lorentzian components exist, since the reconstructed phases
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are set to zero in order to artificially eliminate interference effects. A large number
of metabolites, including potential cancer biomarkers, were identified and quanti-
fied. These included Iso, Val, Lip, Lac, alanine (Ala), lysine (Lys), NAA, N -Acetyl
neuraminic acid (AcNeu), glutamine (Glu), Cho, phosphocholine (PC), myoinositol
(m-Ins). Many of these resonances are difficult if not impossible to detect with Fourier
plus fitting of in vivo MRS data from the ovary.

1.5 Aim of the present study

In the first study [61] employing the FPT for in vivo MRS time signals encoded from
the ovary [54], the reconstructed spectral parameters, the complex frequencies {ω+

k,Q}
and associated complex amplitudes

{

d+
k

}

were assessed for a single value of K . In
the present paper, we aim to examine the convergence of these spectral parameters by
scrutinizing Padé quantification at several values of K for these same in vivo MRS time
signals encoded from the ovary [54]. Proving stability of reconstructions, i.e. finding
minimal variance of the retrieved parameters for varying model order K , will be the
most stringent test of accuracy, as was previously shown in our studies of phantom
head data [85] and in vivo time signals encoded from the brain [41].

In Ref. [61], we employed a single averaging procedure with a wider increment
among the model orders than in our previous studies [41,42] in which iterative aver-
aging was benchmarked. The former, i.e. a single averaging procedure would be the
most practical for clinical implementation. The question then arises as to what is the
true added value of the averaging procedure within the FPT, vis-à-vis convergence of
the spectral parameters. This question will be scrutinized in the present paper. With
the aim of further optimizing the practical implementation of MRS for in vivo encoded
time signals, we will also examine the contribution of the extrapolation features of
the FPT, i.e. its unique capability as a rational function, to glean salient information
beyond the last encoded signal point cN−1 (i.e. at t > T ) .

2 Methods

2.1 Acquisition of the MRS time signals

The encoded FID data are from a 56 year-old patient with an enlarged left ovary, as
detected on TVUS, and who was included in the in vivo MRS study of Ref. [54]. These
data were kindly provided to us by our colleagues from the Department of Obstetrics
and Gynecology, Radboud University Nijmegen Medical Center in the Netherlands.
The MRS time signals were encoded using a 3 T Magnetom Tim Trio, Siemens MR
clinical scanner. Each FID contained 1024 data points. The bandwidth was BW =
1200 Hz, and the Larmor frequency was νL = 127.732 MHz corresponding to the
magnetic field strength B0 = 3 tesla (B0 = 3 T). The sampling time was τ = 0.833
ms (τ = 1/BW ≈ 0.833 ms).

A point-resolved spectroscopy sequence (PRESS) was used for this single-voxel
proton MRS study. The voxel of interest (3 cm × 3 cm × 3 cm) was located in the
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inferior cystic part of the tumor. The repetition time (TR) was 2000 ms. In the study
of Kolwicjk and colleagues [54] two echo times, TE = 30 and 136 ms were used. A
total of 64 time signals were encoded and subsequently averaged to improve SNR,
such that according to the standard terminology within MRS, the number of excita-
tions (NEX) was 64. Herein, we examine only the FID encoded at 30 ms. The giant
water peak was partially suppressed through encoding via WET (water suppression
through enhanced T1 effects) [54]. After the in vivo MRS encoding, the ovarian tumor
was surgically removed. Histopathologic analysis revealed a borderline serous cystic
lesion [54].

2.2 Reconstructions of the MRS time signals via the FPT

The encoded FID of length N = 1024 was not corrected for the zero-order phase
ϕ0. Using the definition in (6), the expansion coefficients of the polynomials P+

K and
Q+

K in the FPT(+) were calculated directly from the time signal {cn}. Following this
first step of the analysis, the non-parametrically computed total shape spectra were
obtained at a chosen set of equidistant real-valued sweep frequencies ν. If the phases
ϕ+

k of the reconstructed FID amplitudes d+
k =

∣

∣d+
k

∣

∣ exp(iϕ+
k ) were all equal to zero,

ϕ+
k = 0 (1 ≤ k ≤ K ), the real and imaginary parts of the spectra, i.e. Re

(

P+
K /Q+

K

)

and Im
(

P+
K /Q+

K

)

, would be purely absorptive and dispersive, respectively.
In encoded MRS time signals, the phases ϕk of the FID amplitudes dk are most

often non-zero (ϕk �= 0), due to dephasing which takes place during encoding.
Consequently, the reconstructed values ϕ+

k are also such that ϕ+
k �= 0. Thus, in

both Re
(

P+
K /Q+

K

)

and Im
(

P+
K /Q+

K

)

absorption and dispersion lineshapes are mixed
together. Parametric analysis through the FPT(+) was carried out with reconstruction
of the component spectra in the Usual, U, and Ersatz, E, modes, as described in detail
in Sect. 1.2.2. Note, that in the Sect. 3 all the envelopes and components will be plotted
at 1024 sweep frequencies, irrespective of whether time signal extrapolation is used or
not.

2.3 Averaging procedure and extrapolation through the FPT

As reviewed, arithmetic averaging of spectra has been demonstrated to overcome
over-sensitivity of spectra (envelopes, components) as well as of the fundamental
frequencies and amplitudes to changes in model order K [41,42]. In Padé-processing
of FIDs encoded from the brain, spectra averaging was previously done with three [42]
and nine [41] iterations, to benchmark this procedure. In Ref. [61], on the in vivo MRS
data encoded from the ovary, a single averaging of envelopes gave sufficiently accurate
reconstructions. As done in Refs. [42,61], prior to averaging, we shall presently also
use only the non-parametric FPT(+) to generate a number of envelopes for a range of
model orders K .

It was noted that in the Padé rational functions, as per (15), the spurious res-
onances cancel out with stabilization for systematically and gradually increased
polynomial degree K + m(m = 1, 2, 3, . . .). This is due to pole-zero cancellations
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that occur because spurious resonances display coincidence or near-coincidence of
their poles and zeros [41]. These confluences (Froissart doublets) render spurious
resonances highly unstable, particularly for changes in the model order K . Each enve-
lope P+

K+m/Q+
K+m(m = 1, 2, 3, . . .) will show different spuriousness because of the

random distributions of spurious poles and zeros in the complex frequency plane.
In Refs. [41,42], the increment 	K for equidistantly augmenting the value of K

was equal to unity, 	K = 1. With this small 	K , some 31 envelopes for K ∈ [375,
415] were generated for iterative averaging [41,42]. Alternatively, in our study on in
vivo MRS time signals encoded from the ovary [61], a larger interval for K was chosen
to be spanned, i.e. K ∈ [575, 625], but with a longer increment, 	K = 5, in generation
of 11 envelopes for spectra averaging. Any two adjacent spikes were likely to be more
markedly different from each other in the case with 	K = 5 than for 	K = 1. In
the present study, we also use the increment 	K = 5, to produce 11 envelopes for

spectra averaging. The complex 11 usual envelopes
(

P+
K /Q+

K

)U
will be computed for

K = 575, 580, . . . , 625 in increments of 5 (i.e. 	K = 5) from the FID encoded at
TE = 30 ms. Thereafter, we take the arithmetic average of these 11 envelopes, with the

result denoted by
{

FPT(+)
}U

Av. The subscript Av denotes Average (Av). The complex

average envelope
{

FPT(+)
}U

Av is then subjected to the IDFT to generate a new FID, to
which the parametric FPT(+) is applied. This is the concept of spectra averaging used
in Ref. [61], where the recovery of the spectral parameters was done at a single value
of K (K = 600, the middle of the mentioned interval 575 ≤ K ≤ 625). The current
work goes beyond this by extending reconstructions of spectral parameters to several
values of K with and without spectra averaging.

In the present study, we directly apply the extrapolation, as well as interpolation
capabilities of the FPT. Recall that the encoded FID was of length N = 1024.
The length of the encoded FID determines the number of Fourier grid frequencies
νF

m ≡ m/T (0 ≤ m ≤ N − 1) in the FFT. By contrast, in the FPT, the Padé spectrum
P+

K /Q+
K can be computed at arbitrary sweep frequency ν between any two adja-

cent values of νF
m and for ν > νmmax , amounting to interpolation and extrapolation,

respectively. Herein, we compute the complex envelopes
(

P+
K /Q+

K

)U
at 5N (5120)

equidistant sweep frequencies ν for K ∈ [575, 625] with increment 	K = 5. Subse-
quently, the arithmetic average of these spectra gives the complex average envelope
{

FPT(+)
}U

Av at the same 5N frequencies ν. Inverting
{

FPT(+)
}U

Av by the IDFT yields
the reconstructed FID of length 5N . Prior to quantification, for convenience, this
reconstructed FID is truncated to 2N (2048). This is how Padé-based extrapolation,
as well as interpolation, of the time domain data, are achieved, with extension of
the time signal to twice the original T . The FID reconstructed from the complex

average envelope
{

FPT(+)
}U

Av is quantified by the parametric FPT(+) for 6 values
of model order K ∈ [575, 625] with an increment of 10. The ensuing 6 group of
spectral parameters are compared with their counterparts for K = 575, 585, . . . , 625
retrieved from the encoded FID supplemented with 2K -1024 signal points with zero
amplitudes. In other words, this latter group of 6 sets of spectral parameters do not
stem from spectra averaging nor from Padé-based extrapolation. Comparisons of the
two groups of these 6 sets of reconstructed spectral parameters (complex frequencies
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and amplitudes) will allow an assessment of the overall synergistic effect of spec-
tra averaging and Padé-based extrapolation, which is a primary goal of the present
investigation.

3 Results

3.1 Averaging of envelopes through the FPT(+)

Using the FID encoded at TE = 30 ms, the top panel (a) of Fig. 1 shows (within
the spectral region of interest, SRI, between 0.75 and 3.75 ppm) the real parts of 11

usual envelopes Re
(

P+
K /Q+

K

)U
generated from the non-parametric FPT(+) for K =

575, 580, . . ., 625, with an increment of 5. Here, NP = 2K = 1150, 1160, . . ., 1250,
meaning that each of the partial lengths is longer than the length (1024) of the encoded
FID. Recall that this is done by complementing the missing data by adding only 2K -
1024 time signal points with zero amplitudes, and not by zero-filling to 2048 as done
in the FFT. Note that the green color is used in panel (a). The largest structure is a spike
at about 3.4 ppm, and there are numerous other tall spikes interspersed throughout the

entire SRI. Panel (b) displays the real part Re
{

FPT(+)
}U

Av of the complex arithmetic
average for 11 envelopes. This average envelope is marked in blue. Recall that the
term “chemical shift” refers to dimensionless real frequency, which is interchangeably
denoted by Reν+

k,Q in the illustrations.
The abbreviations for the metabolites are written above the corresponding peaks

in Fig. 1b. Therein, the largest structure is in the region 2.0–2.1 ppm, with two peaks
that have a deep splitting between them, delineating the taller narrower acNeu (2.06
ppm) resonance from the shorter and wider NAA (2.03 ppm). Many other structures
are identified and marked on panel (b). These assignments are based upon Refs. [54,
64,66,67]. Proceeding from the right, i.e. from the lowest chemical shift, at about
0.94 ppm, a doublet and triplet of leucine (Leu) can be seen, followed by Iso, Val and
glycine (Gly) at ∼1.02, 1.04 and 1.20 ppm, respectively. A Lip resonance, and then
a threonine (Thr) peak, a second resonance of Lip and a Lac doublet are seen on a
prominence centered at about 1.3 ppm. In the valley subsequently, a multiplet of Iso
at 1.48 ppm appears and then a Lys multiplet with a prominent peak around 1.52 ppm.
An Ala doublet is noted thereafter, with one of the peaks being rather tall. Within the
next valley, two small Leu peaks appear, centered at about 1.73 ppm, and then a Lys
peak. Within the next protuberance are a small acetic acid (Ace) doublet and then a
Lys doublet, adjacent to the right side of the large NAA peak. Several peaks: glutamine
(Gln), methionine (Met), Gly and pyruvate (Pyr) are seen to the left of AcNeu. Next,
the large Glu and Gln peaks are seen, centered at about 2.45 ppm. Abutting on the
left side is a small citrate (Cit) peak, followed by an m-Ins triplet centered at ∼ 2.6
ppm, which is then followed by betaine (Bet), Gln, NAA and then Cit. At 3.0 ppm, a
small Cr peak is noticed and to its left is phosphocreatine (PCr), followed by a small
tyrosine (Tyr) multiplet and a creatinine (Crn) peak. At 3.2 ppm, a Cho peak can
be seen, adjacent to which is a smaller PC peak at ∼3.22 ppm, followed by a small
glycerophosphocholine (GPC) resonance. Next, another Bet peak is observed at about
3.27 ppm, followed by histidine (His), mannose (Mann) and a multiplet of m-Ins. A
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Use of Encoded Time Signal Data in 11 Envelopes to Generate Their Arithmetic Average

Fig. 1 The real parts of 11 usual complex envelopes, Re
(

P+
K

/Q+
K

)U
, marked in green, for K =

575, 580, . . ., 625, with increment 	K = 5, in the frequency band [0.75, 3.75] ppm, computed using
the in vivo MRS time signal encoded from a borderline serous cystic ovarian lesion [54], with a 3 T MR
scanner (a). Many large noise-like spikes are seen. The 11 complex envelopes are averaged and the real

part of the result is denoted by Re
{

FPT(+)
}U

Av
(b), where a “clean” spectrum is generated, shown in blue.

Metabolite assignments are presented in b, with full names given in the list of abbreviations. Plots from a

and b are superimposed in c. (Color online)
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very small glucose (Glc) peak appears at ∼3.54 ppm, after which is another m-Ins
multiplet and Gly thereafter.

Panel (c) of Fig. 1 presents a superimposition of the results of panels (a) and (b),
wherein there is a sharp contrast between the spurious structures that, in many cases,
are much larger than the genuine peaks. Most prominently, the spike at about 3.4
ppm entirely overwhelms the miniscule physical peaks in that chemical shift region.
Also, a large spike completely overrides the Glu peak at about 2.45 ppm. Similarly,
but on a smaller scale, the Lac doublet centered at about 1.33 ppm is more difficult
to identify in the presence of the spike in that region. The value of spectra averaging
is patently observed to reduce the spurious content, such that mainly the genuine
structures remain, many of which are very small, as seen on the total shape spectrum,
i.e. envelope.

Overall, at several frequency bands, the most evident fluctuations in Fig. 1a occur
at the level of peak heights when the values of the model order K are changed. This
happens since increased values of K produce more spuriousness, whose randomness
most noticeably alters the reconstructed amplitudes because of their global charac-
ter. Such stochasticity is significantly damped by spectra averaging, as evidenced in
Fig. 1b. The reason for this improvement is in the noise-like nature of the spurious
part of reconstructions. The same argument is also behind improvements in SNR by
time signal averaging, where signal and noise scale differently with the number M of
the encoded FIDs, thus yielding a factor of

√
M improved SNR.

3.2 Convergence of spectral parameters reconstructed by the FPT(+) from

spectra averaging and time signal extrapolation

We now examine convergence on the level of the parameters reconstructed by the
FPT(+). For reference, panel (a) of Fig. 2 displays the average Re

{

FPT+}U
Av of the

real parts of 11 usual envelopes Re
(

P+
K /Q+

K

)U
generated by the non-parametric

FPT(+) for K = 575, 580, . . ., 625, with an increment of 5, as was shown in
panel (b) of Fig. 1. Next, a reconstructed FID is produced by the IDFT inver-
sion of the complex average envelope with its real part from panel (a). This new
FID (Padé-interpolated/extrapolated relative to the encoded time signal) is then pro-
cessed by the parametric FPT(+). Panel (b) of Fig. 2 presents the Argand plot as
the imaginary, Im(ν+

k,Q), versus real, Re(ν+
k,Q), frequencies for six sets of com-

plex frequencies. These are for the interval of K ∈[575, 625] with an increment
of 10, color coded as black, green, cyan, red, magenta, and blue, associated with
K = 575, 585, 595, 605, 615 and 625, corresponding to the truncated, or partial sig-
nal lengths NP = 1150, 1170, 1190, 1210, 1230 and 1250, respectively. It can be seen
that except for extremely few instances, at the chemical shift region at about 3.6 to
3.65 ppm, there is full agreement to the level of stochasticity among the six sets of
reconstructed complex frequencies. Concordantly, in panel (c) of Fig. 2, for plot of
magnitude

∣

∣d+
k

∣

∣ versus chemical shift, except for minimal variation in the chemical
shift regions at about 3.6 to 3.65 ppm, there is full agreement among the six sets of
reconstructed magnitudes. Further, the plot of phase ϕ+

k versus chemical shift is shown
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in panel (d). Therein, there is also full agreement among the six sets of reconstructed
phases, except for a few slight discrepancies between 3.35 and 3.65 ppm.

3.3 The joint impact of averaging and extrapolation on convergence of spectral

parameters

Further, we proceed to reconstruct the spectral parameters by directly using the
encoded FID to which the FPT(+) is applied for K ∈ [575, 625] with an increment
of 5. No averaging is performed. Moreover, no interpolation nor extrapolation by the
Padé rational function is carried out, since the encoded 1024 FID data points are used
with additional 2K -1024 zeros.

Figure 3a shows the real parts of 11 usual envelopes, Re
(

P+
K /Q+

K

)U
, generated

from the non-parametric FPT(+) for K = 575, 580, . . ., 625, with an increment of 5,
as in Fig. 1a. Panel (b) of Fig. 3 presents the Argand plot as the imaginary, Im(ν+

k,Q),

versus real, Re(ν+
k,Q), frequencies for six sets of complex frequencies reconstructed by

the parametric FPT(+) from the same 6 FIDs used for every second envelope in panel
(a). These 6 FIDs differ from each other only in the number (2K -1024) of added zeros,
whereas the first 1024 time signal points were encoded. The frequencies from panel
(b) are for the interval of K ∈ [575, 625] with an increment of 10 and, as previously,
color coded via black, green, cyan, red, magenta, and blue. Substantial discrepancy is
observed throughout the chemical shift region. As such, each reconstructed imaginary
frequency, Im(ν+

k,Q), at a given chemical shift, Re(ν+
k,Q), can very often be distin-

guished. This is most notable at about 3.6 ppm, where the black, green, cyan, red,
magenta and blue circles are totally distinct. Although not quite as pronounced as for
the Argand plot, in panel (c) of Fig. 3, for the plot of magnitude

∣

∣d+
k

∣

∣ versus chemical
shift, there is also notable spread of the different colors of symbols for a given chemical
shift at a number of sites along the displayed SRI. In the chemical shift region around
3.6 ppm, as was observed for the Argand plot, each of the individually reconstructed
magnitudes is distinct. The plot of phase ϕ+

k versus chemical shift in panel (d) also
shows marked discrepancies among the six sets of reconstructed phases throughout
the entire SRI.

Figures 4, 5 and 6 provide a more direct assessment of the coupling effect of aver-
aging and extrapolation on the convergence of spectral parameters reconstructed by
the FPT(+). As in Fig. 1a, the top panel (a) of Figs. 4, 5 and 6 show the real parts

of 11 usual envelopes Re
(

P+
K /Q+

K

)U
generated from the non-parametric FPT(+) for

K = 575, 580, . . ., 625, with an increment of 5. Panel (c) of Figs. 4, 5 and 6 display the

average envelope Re
{

FPT+}U
Av of the real parts of 11 usual envelopes Re

(

P+
K /Q+

K

)U

generated from the non-parametric FPT(+) for K = 575, 580, . . . , 625, with an incre-
ment of 5, just as was shown in Fig. 1b. Panel (b) of Figs. 4, 5 and 6 present the
respective 6 sets of spectral parameters reconstructed by the parametric FPT(+) from
the same 6 FIDs used for every second envelope in panel (a). Panel (d) of Figs. 4, 5
and 6 show the six sets of spectral parameters reconstructed by the FPT(+) from the

IDFT-generated FID given by inverting the complex average envelopes
{

FPT(+)
}U

Av,

whose real parts Re
{

FPT(+)
}U

Av are from panels (c). In panels (b) and (d), as previ-
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Fig. 2 The real part of the usual complex average envelope
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FPT(+)
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Av
(a). The envelope

{
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Av
is

inverted via the IDFT producing an FID, which is quantified by the FPT(+) for the interval K ∈ [575, 625]
with increment 	K = 10. The six sets of the results of quantification are color-coded, as black, green, cyan,
red, magenta and blue, to give the Argand plot of imaginary, Imν+

k,Q
, versus real, Reν+

k,Q
, frequencies (b),

magnitude
∣

∣

∣
d+

k

∣

∣

∣
versus chemical shift (c), and phase ϕ+

k
versus chemical shift (d). (Color online)
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Fig. 6 The real parts of 11 usual complex envelopes, Re
(

P+
K

/Q+
K

)U
, for K = 575, 580, . . . , 625,

with increment 	K = 5 (a). Six of the FIDs used in (a) are quantified by the FPT(+) for the interval
K ∈ [575, 625], with increment 	K = 10, to yield the phase ϕ+

k
versus chemical shift (b). The real part

of the complex usual average envelope
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Av
(c) as in Fig. 1a. The complex average envelope
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FPT(+)
}U
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with Re

{

FPT(+)
}U

Av
from (c) is inverted via the IDFT producing an FID, which is quantified

by the FPT(+) for the interval K ∈ [575, 625] with increment 	K = 10 to yield phase ϕ+
k

versus chemical
shift (d). (Color online)
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ously, the six sets are for the interval of K [575, 625] with an increment of 10, and
color coded as black, green, cyan, red, magenta and blue.

It should be re-emphasized that the difference between the two types of recon-
structions within the FPT(+) is in the following. Panel (b) on Figs. 4, 5 and 6 use the
encoded 1024 FID data points supplemented by 2K -1024 (K ≥ 575) zeros with no
Padé extrapolation and no spectra averaging. By contrast, panel (d) on Figs. 4, 5 and
6 include the Padé extrapolation and spectra averaging. This is achieved in two steps.
First, the 11 complex envelopes for K ∈ [575, 625] with increment of 5 are averaged.
Prior to that, each of these 11 envelopes use the encoded 1024 FID data points aug-
mented by 2K -1024 zeros (K ≥ 575). Second, the obtained complex average envelope
{

FPT+}U
Av computed at N ′ = 5N = 5x1024 (5120) equidistant sweep frequencies

νm(νm ≡ m/T ′, 0 ≤ m ≤ N ′ − 1, T ′ = N ′τ) is inverted by the IDFT to generate the
reconstructed FID of length 5N , subsequently truncated to 2N (2048) , to which the
parametric FPT(+) is applied for producing the spectral parameters shown in Fig. 2,
as well as in panel (d) of Figs. 4, 5 and 6. Note that adding 2K -1024 time signal points
as pertinent to both panels (b) and (d) of Figs. 4, 5 and 6 is, of course, not a physical
extrapolation based on the encoded 1024 FID data points. However, the Padé-based
extrapolation, which is associated with panel (d) of Figs. 4, 5 and 6, is a physically
motivated extension of the originally encoded FID length 1024 to 2048. This is the
case because the average envelope computed at any N ′ > N sweep frequencies ν

is itself a Padé extrapolation in the frequency domain, compared to the FFT spec-
trum which can be computed only at 1024 Fourier grid frequencies from the encoded
N = 1024 FID data points. Further, when the said Padé complex average envelope
at 5N sweep frequencies is inverted by the IDFT, the ensuing reconstructed FID is
also of length 5N , which is subsequently truncated to 2N = 2048, for convenience
in quantification. Here, the extra 1024 time signal points stem from the Padé rational
polynomials, instead of just zero-padding in the FFT. This Padé procedure is a physical
extrapolation. The reconstructed FID of length 2048 contains the full informational
content from the encoded 1024 FID points. The additional 1024 time signal points are
the Padé-predicted data that would have been available had the encoding continued
beyond the last originally encoded point, c1023. The extrapolated 1024 FID data points
beyond c1023 are genuine, i.e. physical because they are based upon the encoded 1024
time domain data. Once the reconstructed FID of length N = 2048 becomes available,
its further truncation is performed to the 6 partial signal lengths NP ∈ [1150, 1250]
with the 6 model orders K ∈ [575, 625]. In panels (b) and (d) of Fig. 4 the Argand
plots as the imaginary, Im(ν+

k,Q), versus real, Re(ν+
k,Q), frequencies, are compared. In

panel (b) the substantial spread among the six sets of complex frequencies generated
from individual envelopes and without extrapolation is seen to be almost completely
eliminated in panel (d). In the latter, there is nearly full agreement among the six sets
of reconstructed complex frequencies, with very minimal deviations at the chemical
shift region of 3.6 to 3.65 ppm. These minimal deviations in the latter chemical shift
regions of panel (d) are practically inconspicuous when viewed alongside those same
regions in panel (b).

The spread along the magnitude plot in panel (b) of Fig. 5 is also apparent, albeit
not quite as marked as was the case for the Argand plot. The improvement provided
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by averaging plus extrapolation for the magnitudes is noteworthy in panel (d), where
the six sets of magnitudes are practically converged except for very minor deviations
at about 3.6 to 3.65 ppm.

The synergistic effect of averaging and extrapolation is most prominent for the
phase plots seen in Fig. 6. Here, in panel (b) there are, in fact, relatively few chemical
shift regions where concordance is observed. In sharp contrast, with the exception of
a few slight discrepancies between 3.35 and 3.65 ppm, reconstruction by the FPT(+)

together with averaging and extrapolation produced a converged phase plot.

3.4 Convergence of component spectra as reconstructed via the FPT(+) with

averaging and extrapolation

We now proceed in Figs. 7 and 8 to examine the convergence of the component spectra
built from the Padé-reconstructed parameters that were generated through spectra
averaging and extrapolation. To aid in visualization, by correlating the reconstructed
chemical shifts and the other parameters with the component spectral lineshapes,
panels (b), (c) and (d) of Figs. 7 and 8 reiterate panels (b), (c) and (d) of Fig. 2.
Namely, these are the Argand plots as imaginary, Im(ν+

k,Q), versus real, Re(ν+
k,Q),

frequencies, on panels (b), magnitude plots as
∣

∣d+
k

∣

∣ versus chemical shift on panels
(c) and phase plots as ϕ+

k versus chemical shift on panels (d). As previously, these, as
well as panel (a) on Figs. 7 and 8, are for the six sets of reconstructed parameters in
the interval of K ∈ [575, 625] with an increment of 10, color coded as black, green,
cyan, red, magenta and blue.

The six sets of usual component spectra, as per (10), are displayed in panel (a) of
Fig. 7. It is noteworthy that there is nearly complete concordance among these six
sets. Namely, other than very small deviations of red and green in the dense chemical
shift region around 3.4 ppm, the usual component spectra drawn in the other colors
appear to be completely merged with the spectrum plotted in the blue color. In other
words, these six sets of usual component spectra seem to be as if they were almost a
single set. The usual component spectra on panel (a) of Fig. 7 displays a very dense
admixture of absorption and dispersion spectra; recall that this mixing is due to the
amplitudes {d+

k } being complex-valued with non-zero phases ϕ+
k (1 ≤ k ≤ K ). In the

usual component spectra the NAA peak appears to be larger than that of acNeu. Such
a pattern is opposed to the total shape spectra and the average spectrum from Fig. 1.
This can be explained by the argument which runs as follows.

In the usual component spectra, the lineshape of acNeu is in the dispersive mode with
a narrow positive and a sizable negative lobe. It is the negative lobe which is responsible
for the peak height reduction relative to the case if acNeu were a pure absorptive
Lorentzian. Further, in the usual total shape spectrum, constructive interference of the
two lobes in the dispersive Lorentzian for acNeu increases the peak height of this
metabolite as per Fig. 1. On the other hand, in the same usual component spectra from
panel (a) of Fig. 7, the lineshape of NAA is a slightly skewed absorptive Lorentzian.
This circumstance is behind the occurrence that the peak heights of NAA are very
similar in the usual mode for both the total and component shape spectra in Figs. 1
and 7, respectively. The outlined synthesis/analysis of the peak heights of acNeu and
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NAA in the usual component spectra explains not only their ratio, but also provides
the separate interference mechanisms within each of these two metabolites, in the
resulting usual total shape spectrum.

In the chemical shift region around 1.3 ppm, two resonances in the dispersion mode
are the most prominent. These correspond to lipids, responsible for the protuberance
on the total shape spectrum in the region around 1.3 ppm. Large, wide resonances
are observed, as well, in the chemical shift region from about 3.45 to 3.75 ppm. They
are also in the dispersion mode, with the negative lobes substantially larger than the
positive lobes. These resonances correspond to macromolecules and they contribute
to the marked oscillations in the baseline in this chemical shift region. It is seen in
panel (c) of Fig. 7 that these macromolecules have the largest magnitudes compared
to all the other metabolites in the SRI: ν ∈ [0.75, 3.75] ppm. Yet, their peak heights
in the envelopes from Fig. 1 are quite small relative to e.g. those of acNeu or NAA.
This occurs because these macromolecules, as seen in panel (b) of Fig. 7, also have
the widest linewidths in the same SRI. Wide linewidths yield considerable attenuation
of peak heights that are proportional to the ratios of the magnitudes and the linewidths
[61]. This explanation gives the rationale for the contribution of the discussed macro-
molecules to the envelopes in Fig. 1 by reference to panels (b) and (c) of Fig. 7.

Similarly, in panel (a) of Fig. 8, the six sets of ersatz component spectra, as per (9),
show practically full concordance among themselves. As noted, interference effects
are eliminated in the ersatz components through the replacement of {d+

k } by
{
∣

∣d+
k

∣

∣

}

which amounts to setting all the phases {ϕ+
k } of {d+

k } to zero for 1 ≤ k ≤ K . This yields
purely absorptive Lorentzians throughout. The extremely small discrepancies among
the lineshapes from the set of 6 ersatz spectra are localized to a few peaks at around
3.3 to 3.4 ppm. These very minimal discrepancies are mainly magenta and green-
coded. With the removal of phases via {ϕ+

k } = 0 (1 ≤ k ≤ K ), the right negative lobe
of acNeu, has merged with the left positive lobe, such that acNeu peak now appears
taller than NAA. Similarly, the Lip resonances centered at 1.3 ppm now appear as
larger, symmetrical Lorentzians. Overall, the large number of resonances, well over
90 within this SRI, can clearly be distinguished in these ersatz spectra, although many
peak heights are very small.

4 Discussion and conclusions

Several striking results emerge in the present paper using in vivo MRS time signals
encoded from the ovary. First is the precision with which the reconstructed six sets of
spectral parameters from the FID generated through inversion of the complex average
envelope plus extrapolation. The exceedingly small variance among these six sets is a
finding which is consistent with our previous studies applying the iterative averaging
procedure to in vivo MRS time signals encoded from the brain of a pediatric patient
with cerebral asphyxia [41], as well as to our earlier investigation on the standard GE
phantom head [85]. In both of these papers, we exhaustively examined the convergence
of the Padé-reconstructed spectral parameters, finding a very high level of precision,
as seen in minimal variance obtained from the analysis of the reconstructed spectral
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parameters for the genuine resonances from several consecutive values of the model
order (or rank) K , after convergence had been reached.

In the current study, the contribution of the averaging procedure together with
extrapolation is clearly demonstrated by our detailed comparison of the results for
Padé reconstruction using six FIDs with the same model orders K generated without
averaging and without extrapolation. For the latter, convergence of the reconstructed
spectral parameters was definitely not achieved. On the other hand, it is herein indi-
cated that a single averaging combined with extrapolation appears to be sufficient to
attain convergence of spectral parameters coherent with multiple averaging through
iterations. This has important implications for practical implementation, expediting
the entire Padé-based methodology.

The present results also show that both component spectra and total shape spectra
generated from the Padé-reconstructed spectral parameters are trustworthy. Notwith-
standing the fact that the spectral parameters are the most vital for quantitative
evaluation in MRS, the usual and ersatz component spectra, as well as the total shape
spectra are also helpful by way of visual inspection for clinical interpretation.

The current findings further corroborate our previous contention that this Padé-
based strategy would render the use of short echo times, TE, to be reliably exploitable
for quantification and, in fact, advantageous, in light of the rich spectral information
which can be garnered from short-lived resonances. The vital prerequisite, especially
when using short TEs, is the unequivocal disentangling of overlapping resonances,
a task for which the parametric FPT is fully capable, as seen particularly herein and
in our previous study [61] on FIDs encoded in vivo from the ovary at a TE of 30
ms. In contradistinction, it should be noted that the common practice with Fourier
plus fitting estimation of MRS time signals from the ovary (as well as other organs),
has been to encode at longer TEs in order to avoid “spectral crowding”, i.e. to have
simpler spectra with fewer peaks to fit. Notably, only 3 of the 13 studies included in
our meta-analysis [61] used a short TE of 30 ms. Obviously this practice has been due
to the problems inherent in Fourier-based processing, alongside subsequent fitting of
tightly overlapping peaks. Diagnostic dilemmas arise as a consequence. A notable
example is the uncertainty due to the overlap of Lip and Lac at short TEs. The general
practice has been to encode at a TE of 136 ms, so that an inverted Lac doublet appears
due to J-modulation, whereas Lip has already decayed. Even if Lip did not decay,
the Lip-Lac overlap would still be split apart at TE = 136 ms, since at that echo
time, Lac and Lip are peaked downward and upward, respectively. However, with the
high-resolution capability of the FPT, both Lac and Lip doublets, if present, can be
clearly distinguished at any TE. This encourages encoding of MRS time signals at
short TEs that provide richer clinical information. Of course, given that the main goal
of MRS is quantification, the FPT does not stop at reconstruction of the envelopes
alone, as the FFT does. Quite the contrary, the FPT completes its signal processing
by reconstructing the spectral parameters from which the components are generated.
It is the set of component spectra that are critical to disentangling any overlap of
resonances, including Lac and Lip. Thus, indeed, it is only after the components
become available via quantification that distinct spectral structures in the total shape
spectra can be assigned with certainty to actual metabolites, especially for the average
envelopes, as seen in Figs. 1b, 2a and 4c, 5c, 6c of the present study.
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A number of other clinically important insights can be gleaned from a review of the
total shape spectra together with the components and the spectral parameters. Contin-
uing our consideration of the region around 1.3 ppm, the usual and ersatz component
spectra clarify the overlap among Lip, Lac as well as Thr and other resonances. The lift-
ing of the baseline in that chemical shift region is due to wide Lip resonances. Through
such insights, it may well be possible to resolve the uncertainty as to whether or not
the presence of Lip distinguishes benign from cancerous ovarian lesions. It should be
noted that in our meta-analysis [61], Lip at 1.3 ppm was more often identified in malig-
nant lesions. However, this difference was not statistically significant. As mentioned,
we did find in our meta-analysis [61], that the presence of Lac at 1.3 ppm was a signifi-
cant predictor of cancerous lesions, but the data from the existing MRS literature were
very scant regarding this metabolite. It can be anticipated that Padé-based parametric
analysis using a short TE could identify and quantify both Lip and Lac in the chem-
ical shift region around 1.3 ppm. This would help in clarifying the actual diagnostic
importance of Lip and Lac for distinguishing benign from malignant ovarian lesions.

The chemical shift region between 3.20 and 3.24 ppm is also of particular diagnos-
tic importance for identifying ovarian cancer. The components of total Cho lie therein
in extremely close proximity. Studies comparing human epithelial ovarian carcinoma
cell lines with normal or immortalized ovarian epithelial cells, have shown that phos-
phocholine, PC, is of three to eight-times higher levels in the cancer cells [69]. Other
investigators have identified PC as marker of malignant transformation [86]. In the
present and in our previous studies [61], for the first time phosphocholine, PC, as well as
GPC were both clearly delineated via in vivo MRS time signals encoded from the ovary.
Examining the 6 sets of spectral parameters in that chemical shift region, as recon-
structed by the FPT from the extrapolated time signal generated by inverting the com-
plex average envelope, it can be seen that there is complete convergence of all the spec-
tral parameters (complex frequencies and amplitudes) for all the genuine resonances in
that chemical shift region. This finding holds promise for non-invasively assessing and
quantifying PC with full reliability. With such an achievement, improvement in iden-
tifying ovarian cancer can be anticipated. Quantification of PC could also help detect
progression of ovarian cancer, based upon studies of ovarian tumor cell lines [69].

Another chemical shift region of interest for ovarian cancer diagnostics is between
2.0 and 2.1 ppm. Complete convergence of all spectral parameters of all the physical
resonances was also achieved in that region, with Padé-based reconstruction using
the extrapolated time signals generated by inverting the complex average envelope.
This advance could help clarify the existing dilemmas regarding the presence of NAA
from Fourier-based analysis of in vivo MRS of the ovary [52–55,59]. Via this Padé-
based strategy, the two resonances between 2.0 and 2.1 ppm corresponding to N -
acetyl aspartate, NAA, and N -acetyl neuraminic acid, acNeu, were not only clearly
distinguished (via a deep splitting between NAA and acNeu even in the total shape
spectra), but also quantified with full accuracy. With these cutting-edge advances,
clarification can be anticipated as to the true significance of NAA versus acNeu in
identifying malignant as opposed to benign ovarian lesions.

Extensive multivariate exploration will be needed to ascertain the metabolite pat-
terns from MRS that best distinguish benign from borderline or clearly cancerous
ovary. Having the rich, quantitative metabolic information that can be garnered with
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full confidence through this multi-faceted Padé-based strategy, we expect improvement
compared to the results thus far achieved with conventional Fourier-based process-
ing of in vivo MRS time signals encoded from the ovary. The overall paucity of
in vivo MRS studies on the ovary has been attributed to the difficulty of acquir-
ing good quality time signals from this small, moving organ, and then of reliably
processing such time signals to glean meaningful diagnostic information [30,61].
The present study, with the practical advances needed for clinical implementation,
strongly motivates further applications of the Padé-designed methodology for in vivo
MRS, with a primary focus upon early ovarian cancer detection. It is also anticipated
that this strategy will aid in better identifying benign ovarian lesions, thus helping to
avoid unnecessary invasive procedures. It should be recalled that due to the harms
related to the latter, ovarian cancer screening is not currently recommended for the
general population. Overall, when considering screening platforms within MR and
more broadly, a key issue is to avoid harm of any kind [87]. Along with ultrasound,
MR-based diagnostic modalities hold promise in this regard, considering that they
entail no exposure to ionizing radiation. Such exposure is particularly relevant for
women at increased risk of ovarian cancer. Notably, exposure to diagnostic radia-
tion may be associated with further elevation in risk for radiation-induced ovarian
cancer [88]. In addition to X-ray-based diagnostic imaging of the pelvic region, radi-
ation exposure may occur with treatment of cervical cancer. Whether due to ionizing
radiation exposure, hereditary and/or other risk factors, Padé-optimized MRS could
be particularly helpful for surveillance of women with an elevated ovarian cancer
risk. It is important to reemphasize the underlying motivation of this work from a
clinical perspective, namely that early detection of ovarian cancer would contribute
substantially to improved survival for women afflicted with this malignancy. Padé-
based signal processing of proven validity with its practical advantages for in vivo
MRS is poised to be a prime candidate which can contribute to this long-sought
goal.
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42. Dž. Belkić, K. Belkić, High-resolution quantum-mechanical signal processing for in vivo NMR spec-
troscopy, Adv. Quantum Chem. 74, 353–386 (2017)
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