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Abstract

Objectives

We aimed to explore the synergistic combination of a topologically invariant Betti number

(BN)-based signature and a biomarker for the accurate prediction of symptomatic (grade

�2) radiation-induced pneumonitis (RP+) before stereotactic ablative radiotherapy (SABR)

for lung cancer.

Methods

A total of 272 SABR cases with early-stage non-small cell lung cancer were chosen for this

study. The occurrence of RP+ was predicted using a support vector machine (SVM) model

trained with the combined features of the BN-based signature extracted from planning com-

puted tomography (pCT) images and a pretreatment biomarker, serum Krebs von den Lun-

gen-6 (BN+KL-6 model). In all, 242 (20 RP+ and 222 RP–(grade 1)) and 30 cases (8 RP+

and 22 RP–) were used for training and testing the model, respectively. The BN-based fea-

tures were extracted from BN maps that characterize topologically invariant heterogeneous

traits of potential RP+ lung regions on pCT images by applying histogram- and texture-

based feature calculations to the maps. The SVM models were built to predict RP+ patients

with a BN signature that was constructed based on the least absolute shrinkage and selec-

tion operator logistic regression model. The evaluation of the prediction models was per-

formed based on the area under the receiver operating characteristic curves (AUCs) and

accuracy in the test. The performance of the BN+KL-6 model was compared to the
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performance based on the BN, conventional original pCT, and wavelet decomposition (WD)

models.

Results

The test AUCs obtained for the BN+KL-6, BN, pCT, and WD models were 0.825, 0.807,

0.642, and 0.545, respectively. The accuracies of the BN+KL-6, BN, pCT, and WD models

were found to be 0.724, 0.708, 0.591, and 0.534, respectively.

Conclusion

This study demonstrated the comprehensive performance of the BN+KL-6 model for the

prediction of potential RP+ patients before SABR for lung cancer.

1. Introduction

Stereotactic ablative radiotherapy (SABR) is a non-invasive treatment for early-stage non-

small cell lung cancer (NSCLC). Previous studies have shown that the overall survival and pro-

gression-free survival of patients treated with SABR are comparable to those of lobectomy,

although it is a much less invasive procedure [1, 2]. However, SABR can cause symptomatic

(grade� 2) radiation-induced pneumonitis (RP+) in 28% of patients [3, 4]. Although most

cases of RP are manageable, a few cases are severe, and there is a risk of mortality [3]. This

raises the demand for predicting the occurrence of RP+ before SABR to support radiation

oncologists in decision-making for radiotherapy.

An antigen Krebs von den Lungen-6 (KL-6), mucin-like glycoprotein, has been recognized

as a biomarker of pulmonary epithelial cell injury [5–8]. Besides it is widely known for its asso-

ciation with the activity of interstitial pneumonia (IP), a number of studies reported the useful-

ness of the KL-6 for the prediction of RP+ prior to SABR [5–7, 9]. They mentioned that

patients with elevated KL-6 levels showed the tendency to have RP+ after SABR. Therefore,

prescreening of KL-6 is suggested to decide the strategy for SABR in lung cancer patients [5–

7]. However, since KL-6 is associated with RP+ as well as the existence of lung cancer itself [10,

11], the predictive performance of pretreatment KL-6 may not be sufficient (S1 Table).

The potential of planning computed tomography (pCT) image signatures in the prediction

of RP status after SABR has been explored in previous radiomics studies [12, 13]. Hirose et al.

utilized histogram and texture features extracted from pCT and wavelet decomposition (WD)

images, which have been widely used in radiomics studies, to construct the image signature

and prediction model using the least absolute shrinkage and selection operator logistic regres-

sion (LASSO-LR) [13]. Moran et al. attempted to develop a LR model for the classification of

the RP status based on the image features extracted from the pCT as well as the post-SABR

diagnostic CT images [12]. Although their model demonstrated the feasibility for RP predic-

tion, their area under the receiver operating characteristics (ROC) curve (AUC) could not

reach a value higher than 0.76 [12, 13]. The prediction performance is not sufficient for clinical

settings. Further, to our knowledge, none of these studies have investigated the impact of the

combination of image signature and KL-6 in RP prediction.

Pre-existing pulmonary diseases (prePDs) have been recognized as predictive factors for

the occurrence of RP after radiation treatments, including SABR [14–18]. The prePDs associ-

ated with RP can be categorized into interstitial pneumonia (IP) and chronic obstructive
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pulmonary disease (COPD) [14]. It has been reported that patients with the IP had a higher

risk of RP+ [15, 16], whereas patients with COPD had a lower risk of RP+ [14, 17, 18]. Impor-

tantly, IP and COPD cause structural changes of lung regions, which have been observed in

pathological images [19–21]. Consequently, those microstructural changes of lung regions also

appear in CT images. IP increases X-ray attenuation as a result of dense fibrotic remodeling of

the lung structure [19, 20, 22]. The remodeling results in ground-glass opacities that derive

spatially heterogeneous pixel value distributions on CT images. In contrast, the COPD molds

lower-attenuation areas, which can be observed as cavitation on the CT images, and are caused

by a lack of alveolar surrounding airways [21, 23]. These prePDs could cause pulmonary struc-

tural alteration and lead to heterogeneous and/or cavitated lung textures caused by low and/or

high attenuation areas on CT images.

We have developed a novel topological image processing technique utilizing Betti numbers

(BNs), which represent the number of connected components (b0) and holes (b1), to preserve

the intrinsic heterogeneous patterns and cavitation of objects. BN-based image features have

demonstrated feasibility in the quantification of tumor heterogeneity and cavitation for prog-

nostic prediction [24] or identification of epidermal growth factor receptor mutations among

patients with NSCLC [25]. Further, it has shown robustness against variability in imaging

parameters and patient populations [24, 25]. Therefore, we hypothesized that RP pulmonary

structural patterns with prePDs on pCT images can be characterized using the versatile topo-

logical image processing technique based on BNs. Consequently, the BN signature could be a

promising predictive factor for RP before SABR.

Thus, we aimed to develop a comprehensive image signature based on BNs to accurately

predict the occurrence of RP+ using pCT images before SABR for lung cancer. Furthermore,

we investigated its synergistic relationship with KL-6 to consider the practical use of the BN-

based signature in combination with this biomarker. This is the first study exploring the feasi-

bility of a combination of the robust image features based on the BN and the biomarker KL-6.

The accurate prediction of the RP+ could potentially guide physicians to determine the opti-

mal dose prescription to avoid severe RP+ in personalized SABR.

2. Materials and methods

2.1. Clinical cases

A total of 272 patients who underwent SABR for NSCLC were retrospectively enrolled in this

study. Patient data for the training dataset were randomly selected during the period between

August 2003 and July 2013. As for the test dataset, we collected all the available cases with the

RP+, and randomly selected the grade 1 RP (RP–) cases in the period between April 2014 and

March 2018, so that the number of cases in both groups was not too different from each other.

By doing so, we assumed that the bias to the majority class can be avoided in the evaluation of

the performance of the proposed models. [26–29]. When the number of cases in either major

or minor class is too small (or high), the model would have a high pseudo accuracy by predict-

ing all the cases as belonging to the major class; but when it comes to the minor class, the per-

formance deteriorates [26–29]. Therefore, the number of RP–was reduced to avoid

inappropriate evaluation, which lead to the significant differences in the ratio of RP+ and RP–

between the training and test datasets.

The KL-6 testing is a part of the standard protocols in our hospital. Therefore, the KL-6 lev-

els are tested for as many patients as possible. The pCT images for the training dataset were

acquired between August 2003 and July 2013 using a CT scanner (Mx 8000, Philips Health-

care, Amsterdam, The Netherlands) with the following scanning parameters: tube voltage, 120

kV; in-plane pixel size, 0.98 mm; and slice thickness, 2.0 mm. Conversely, the pCT images for
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the test dataset were scanned between April 2014 and March 2018 using a different scanner

(Aquilion Prime, Canon Medical Systems, Otawara, Japan) with the same scanning parame-

ters. The patient setups for the image acquisition were performed in the standardized protocol

in the Kyushu University Hospital. RP grades were scored using the Common Terminology

Criteria for Adverse Events version 4.0 (CTCAE v.4.0), based on clinical assessment and imag-

ing. Anisotropic pCT images and RT structures including lung regions and gross tumor vol-

umes (GTV) were transformed into isotropic images with an isovoxel size of 0.98 mm, using

linear and shape-based interpolations, respectively.

This retrospective study was performed with the ethical approval of the institutional review

board of our hospital and written informed consent was waived because of the retrospective

design. All of the methods were carried out in accordance with the Declaration of Helsinki.

2.2 Development of the BN-based signature

2.2.1 Topological image processing and feature extraction. Fig 1 illustrates the overall

workflow of this study. First, the most feasible set of image features (signature) was determined

by evaluating their performance in the prediction of RP+. Then, the combination of the image

signature and well-known predictive factors including KL-6 and dose volume indices (DVI)

was explored for further improvement of the predictive performance of the model. BN-based

image features were extracted from the lung regions on the axial, coronal, and sagittal planes

Fig 1. The overall workflow of the present study designed to achieve two major objectives: Construction of the BN-based signature and

exploration of synergistic combination with known predictive factors. This study consisted of two main sections. First, the most feasible set of

image features (signature) was determined by evaluating their performance in the prediction of RP+. Then, the combination of the image signature

and well-known predictive factors including KL-6 and DVI was explored for further improvement of the predictive performance of the model.

pCT: planning computed tomography, BN: Betti number, WD: wavelet decomposition, GLSZM: gray-level size zone matrix, GLCM: gray-level co-

occurrence matrix, GLDM, gray-level dependence matrix, GLRLM: gray-level run-length matrix, NGTDM: neighborhood gray-tone difference

matrix, RP: radiation-induced pneumonitis. LASSO: least absolute shrinkage and selection operator, SVM: support vector machine, KL-6: Krebs

von den Lungen-6, DVI: dose volume indices.

https://doi.org/10.1371/journal.pone.0263292.g001
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of the pCT images, which included the centroid of the GTV. In all, 47,616 BN-based features

were obtained from 512 BN maps (256 b0 maps and 256 b1 maps) that characterize topologi-

cally invariant heterogeneous characteristics of lung regions on the pCT images by applying 93

feature calculations (18 histogram-based features and 75 texture-based features, S2 Table). The

integrated histogram and texture matrices were obtained from the BN maps for the three-

plane pCT images to compute the image features. The computation of the BN maps was per-

formed by counting b0 and b1 in local regions of 256 binary images through a convolutional

computation procedure using four kernel sizes (5, 7, 9, and 11 pixels) and five shifting pixels

(1, 2, 3, 4, and 5 pixels) [24, 25]. To obtain the 8-bit pCT images, the original CT value range of

-1350 to 150 Hounsfield units was converted to 8 bits (0 to 255). The binary images were

derived from these 8-bit pCT images by thresholding, with values ranging from 0 to 255.

To compare the feasibility of the BN features with the conventional ones, 93 pCT-based fea-

tures and 744 WD-based features were extracted from the original and wavelet-decomposed

pCT images, respectively, using three-dimensional calculation algorithms for the same 93 fea-

tures. Wavelet decomposition was performed using the high (H)-pass filter and low (L)-pass

filter based on the coiflet 1 mother wavelet. Eight WD images were obtained by applying either

H or L filters in the x, y, and z directions [LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH

(each of characters either L or H represents a low- or high-pass filter applied to the x, y, or z

direction)].

The extraction of image features was performed using PyRadiomics package version 3.0.1

in Python 3.8.

2.2.2 Signature construction. The signatures were constructed using frequency-based

voting with the LASSO-LR model. Fig 2 shows the procedure for frequency-based voting

based on an imbalance adjustment strategy proposed by Schiller et al. [30]. The most frequent

features were included in the signature. When features showed the same frequency (ties),

those with a higher sum of absolute coefficients in the LASSO-LR models were selected. These

frequencies were obtained from the non-zero coefficients of several LASSO-LR models con-

structed with subsets of the training dataset. The LASSO-LR model for each subset was opti-

mized by maximizing the partial log likelihood while minimizing the L1 norm of the

coefficients for the RP prediction in a leave-one-out cross-validation [31]. The subsets were

constructed so that the numbers of RP+ and RP− cases were the same or similar. The RP

+ cases were copied, and the RP− cases were randomly sampled to each subset. The number of

subsets, p was determined using the following equation:

p ¼
N�
Nþ

� �

; ð1Þ

where N− and N+ indicate the number of RP–and RP+ cases, respectively. b�c represents floor

function. We used 11 subsets, as N− and N+ were found to be 222 and 20, respectively (41 cases

for two subsets and 40 cases for nine subsets). This strategy not only balances the impact of

both groups in the construction of the LASSO-LR model but also constructs a consensus signa-

ture as a result of voting.

We also constructed a signature with a combination of the BN, pCT, and WD features (BN

+pCT+WD model) to investigate the impact of the conventional image features in the RP+ pre-

diction model. The feasibility of the conventional combination consisting of pCT and WD fea-

tures (pCT+WD model) was also investigated because they were reported to perform better in

combination rather than a single implementation of either pCT or WD features [13].

2.2.3 Model construction and evaluation. The occurrence of RP+ was predicted using

support vector machine (SVM) models based on the signature. To balance the difference
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between the number of RP+ and RP− cases, an imbalance adjustment algorithm was also

applied to train the SVM models with the same subsets used in the signature construction (Fig

2). Optimal hyperparameters of the SVM were explored with respect to kernels (linear, Gauss-

ian, and sigmoid), soft margin parameters C (ranging from 0.1 to 10), and gamma values

(ranging from 0.1 to 10). Parameter optimization was performed based on the robustness

index (RI), which defined higher total and lower differences in the AUCs between the training

and validation. The RI between the training and validation is defined as follows:

RItr;va ¼
AUCtr þ AUCva

1þ jAUCtr � AUCvaj
; ð2Þ

where AUCtr and AUCva are the AUCs for the training and validation, respectively. In this

study, the training and validation AUCs were obtained by averaging the AUCs from the sub-

sets (indicated by blue rhombi in Fig 2). The SVM model in each subset was validated using

the leave-one-out cross-validation.

The feasibility of the models was compared with respect to the AUCs, RI, accuracy, sensitiv-

ity, and specificity based on the prediction made by ensemble averaging the outputs from

reconstructed SVMs in the subsets. The reconstructed SVMs were obtained by training the

Fig 2. Scheme of the imbalance data adjustment of patients with symptomatic (grade�2) radiation pneumonitis positive (RP+) and

negative (RP−) for a voting-based feature selection and an ensemble support vector machine (SVM) model construction. LASSO-LR:

least absolute shrinkage and selection operator logistic regression; SVM: support vector machine; AUC: area under the receiver operating

characteristics curve; RI: robustness index.

https://doi.org/10.1371/journal.pone.0263292.g002
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SVM model for all cases in each subset using the optimal hyperparameters. The averaged SVM

output was used to calculate the AUC for the test. The number of features in the signature was

explored from 1 to 10 to maximize the RI for validation and testing. RI was calculated from the

AUCs for validation and testing. The accuracy, sensitivity, and specificity of the models in the

test were calculated based on the ROC curves with the optimal threshold value determined by

the minimization of the Euclidean distance between the ROC curve and the point representing

a true positive rate of one and a false positive rate of zero.

2.3 Exploration of synergistic combination with KL-6

To assess the impact of KL-6 in combination with the BN signature, the SVM model was con-

structed using the combined features of the BN signature and KL-6 (BN+KL-6) based on the

KL-6 dataset using the same SVM construction algorithm described in Section 2.2.3.

Since the feasibility of the DVI of lung volume receiving doses greater than 5, 10, and 20 Gy

(V5, V10, and V20) and mean lung dose (MLD) has been reported in previous studies [32, 33],

we also constructed an SVM model with BN and DVI (BN+DVI).

2.4 Statistical analyses

In the demographic distributions of the patients (Tables 1 and 2), the Mann–Whitney U tests

were used to assess significant differences in terms of continuous quantities. In contrast, chi-

squared tests were applied for the other categorical variables. Statistically significant differ-

ences and 95% confidence intervals (CIs) among the AUCs in the validation and test were

assessed using the bootstrap method with 2000 iterations (significance threshold; p<0.05). To

compute the statistics regarding the AUCs, we used ensemble outputs from the reconstructed

SVMs by feeding the signatures for the training and test datasets. All analyses were performed

using R-4.0.3 (http://www.r-project.org/).

3. Results

Table 1 shows the demographic distribution of the patients and the significant differences

between the training and test datasets. In all, the data obtained from 242 cases (20 RP+ and

222 RP–) and 30 cases (8 RP+ and 22 RP–) were included for the training and testing of the RP

prediction model, respectively. Since KL-6 information was available for 218 cases out of the

272 cases, the data (KL-6 datasets) were used to explore the synergistic combination of the BN

with known predictive factors. Table 2 shows the demographic distributions of the KL-6 data-

base and the significant differences between the training and test datasets.

Fig 3 depicts circular heatmaps representing the signatures constructed by voting using the

LASSO-LR models for the BN, pCT, WD, BN+pCT+WD, and pCT+WD features. Descrip-

tions of the features are shown in S2 Table. Three, nine, and three features were selected for

the signatures of BN, pCT, and WD, respectively. The signature of BN+pCT+WD consisted of

only BN features. For the conventional combination of pCT+WD, the signature was composed

of two features, one from the pCT and the other from the WD.

The optimal parameter for the BN maps was a kernel size of 11 and a shifting pixel of 4. The

optimal SVM parameters were a sigmoid kernel, gamma value of 0.4, and C margin of 0.1

(Table 3). For the BN+pCT+WD model, the optimal parameters were a sigmoid kernel,

gamma value of 0.4, and C margin of 0.1. For the pCT+WD model, the optimal parameters

were a linear kernel and a C margin of 0.1. For the pCT model, the optimal parameters were a

sigmoid kernel, gamma value of 2.8, and C margin of 0.1. For the WD model, the optimal

parameters were a sigmoid kernel, gamma value of 1.9, and C margin of 0.1.
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Table 3 summarizes the AUCs, RIs, accuracy, sensitivity, and specificity of the RP+ predic-

tion models based on the image signatures. The AUCs and the CIs that were obtained for the

validation of the BN, BN+pCT+WD, pCT+WD, pCT and WD models were 0.873 (0.777–

0.968), 0.880 (0.810–0.950), 0.775 (0.681–0.867), 0.758 (0.656–0.860) and 0.785 (0.700–0.870),

respectively. In the validation, BN showed a significantly higher AUC than conventional mod-

els including pCT, WD, and pCT+WD (Fig 4). The AUCs and the CIs that were obtained for

the test of the BN, BN+pCT+WD, pCT+WD, pCT and WD models were 0.852 (0.697–1.000),

0.824 (0.651–0.997), 0.790 (0.620–0.959), 0.642 (0.417–0.867) and 0.545 (0.296–0.795), respec-

tively. In the test, the BN outperformed the conventional pCT and WD models, with statisti-

cally significant differences (Fig 4). The RIs obtained for the BN, BN+pCT+WD, pCT+WD,

pCT, and WD models were 1.691, 1.613, 1.541 1.255, and 1.073, respectively. The accuracies

(sensitivity and specificity) of the BN, BN+pCT+WD, pCT+WD, pCT, and WD models were

found to be 0.757 (0.756, 0.757), 0.724 (0.704, 0.779), 0.681 (0.664, 0.728), 0.591 (0.582, 0.616),

and 0.534 (0.524, 0.562), respectively.

Table 4 summarizes the results of the exploration of synergistic combination with KL-6.

The AUCs and CIs that were obtained for the validation of the BN+KL-6, BN, and BN+DVI

Table 1. Demographic distributions of the patients and significant differences between the training and test datasets.

Training dataset Test dataset p-value (testing method)

Total number of cases 242 30

RP grade

Grade = 1 222 22 4.952×10−3 (Chi-squared test)

Grade� 2 20 8

Pre-treatment KL-6 availability

Available 193 25 0.823 (Chi-squared test)

Unavailable 49 5

Pre-treatment KL-6 quantity (U/mL, min-max (median)) 115–1853 (262) 134–678 (283) 0.745 (Mann-Whitney U-test)

Age (y, min-max (median)) 51–92 (77) 54–90 (74) 0.722 (Mann-Whitney U-test)

Sex 0.511 (Chi-squared test)

Male 150 21

Female 92 9

Stage 0.146 (Chi-squared test)

185 27

T2N0M0 (stage IB) 57 3

Dose and fraction

12 Gy × 4 Fr. (48 Gy) 236 25 4.00 × 10−3 (Chi-squared test)

13 Gy × 4 Fr. (52 Gy) 2 3

6 Gy × 10 Fr. (60 Gy) 4 2

Dose prescription method

Isocenter 142 10 1.200 × 10−2 (Chi-squared test)

D95 for PTV 100 20

Pre-existing pulmonary diseases

IP 7 1 0.196 (Chi-squared test)

COPD 35 8

IP and COPD 3 1

Neither 197 20

RP: radiation pneumonitis, KL-6: Serum Krebs von den Lungen-6, PTV: planning target volume, IP: interstitial pneumonia, COPD: chronic obstructive pulmonary

disease.

https://doi.org/10.1371/journal.pone.0263292.t001
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models were 0.901 (0.818–0.985), 0.873 (0.777–0.968), and 0.905 (0.819–0.992), respectively.

The AUCs and CIs that were obtained for the test of the BN+KL-6, BN, and BN+DVI models

were 0.825 (0.647–1.000), 0.807 (0.633–0.999), and 0.684 (0.434–0.587), respectively. BN+KL-

6 showed higher AUCs than the BN model for both the validation and test. In contrast,

although the BN+DVI model showed a higher AUC for the validation, it showed a significantly

lower AUC than the BN model for the test (Fig 4). The RIs obtained for the BN+KL-6, BN,

and BN+DVI models were 1.603, 1.576, and 1.302, respectively. The accuracies (sensitivity and

specificity) of the BN+KL-6, BN, and BN+DVI models were found to be 0.724 (0.711, 0.765),

0.708 (0.699, 0.738), and 0.621 (0.618, 0.634), respectively.

4. Discussion

The results of the feature selection suggested the robustness and superiority of the BN features

for RP+ prediction. The conventional pCT and WD features were not selected in the signature,

although they were also included as candidates for the signature. The existence of conventional

features affected the course of the feature selection based on voting, because the signature

based on the BN+pCT+WD included nine features composed of six additional features apart

from the three features selected in the BN-based signature. Nevertheless, the AUCs of the BN

and BN+pCT+WD models did not show statistically significant differences in either the

Table 2. Demographic distributions of the patients, whose pretreatment data of serum Krebs von den Lungen-6 (KL-6 database) was available, and significant dif-

ferences between the training and test datasets.

Training dataset Test dataset p-value (testing method)

Total number of cases 193 25

RP grade

Grade = 1 177 19 0.0275 (Chi-squared test)

Grade� 2 16 6

Pre-treatment KL-6 quantity (U/mL, min-max (median)) 115–1853 (262) 134–678 (283) 0.745 (Mann-Whitney U-test)

Age (y, min-max (median)) 51–91 (77) 54–90 (75) 0.902 (Mann-Whitney U-test)

Sex 0.268 (Chi-squared test)

Male 121 17

Female 72 8

Stage 0.220 (Chi-squared test)

T1N0M0 (stage IA) 144 22

T2N0M0 (stage IB) 49 3

Dose and fraction

12 Gy × 4 Fr. (48 Gy) 188 21 9.50 × 10−3 (Chi-squared test)

13 Gy × 4 Fr. (52 Gy) 2 3

6 Gy × 10 Fr. (60 Gy) 3 1

Dose prescription method

Isocenter 121 9 1.45 × 10−2 (Chi-squared test)

D95 for PTV 72 16

Pre-existing pulmonary diseases

IP 7 1 0.198 (Chi-squared test)

COPD 31 8

IP and COPD 3 1

Neither 152 15

RP: radiation pneumonitis, KL-6: Serum Krebs von den Lungen-6, PTV: planning target volume, IP: interstitial pneumonia, COPD: chronic obstructive pulmonary

disease.

https://doi.org/10.1371/journal.pone.0263292.t002
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validation or test (Fig 4). Even though the constituents for the signature changed, the represen-

tative BN features were selected under consensus by voting with multiple LASSO-LR models,

which consistently produced higher AUCs than the conventional models.

Table 5 compares the AUCs that were obtained in the present study to the AUCs obtained

in previous studies. Our BN-based model outperformed the models reported in previous stud-

ies for RP prediction in SABR for lung cancer with respect to the test AUCs and RI [12, 13].

Although Hirose et al. reported a higher AUC for the validation than the BN model using the

pCT+WD features, their model showed a lower AUC for the test [13]. In our study, we

attempted to balance the AUCs for the pCT+WD model for the validation and test using RI.

However, it showed a similar performance to the one reported by them. These results imply

that the feasibility of conventional pCT and WD features is quite limited in RP prediction

before SABR for lung cancer.

The BN+KL-6 model improved the prediction, although it did not show a significant differ-

ence in comparison with the BN model. Although the use of KL-6 only cannot provide suffi-

cient predictive performance, it could support RP+ prediction using the BN signature. All

evaluation criteria including the RI, AUCs, accuracy, sensitivity, and specificity were improved

in the BN+KL-6 model (Table 4). Although further investigations using larger datasets are

needed, they may offer a reliable system for evaluating RP risk in lung cancer patients.

We also constructed the SVM model with BN-based signature, KL-6, and the status of

prePDs. However, the model showed a similar predictive performance with the BN+KL-6

model. The AUC values for the validation and the test were 0.872 and 0.816, respectively. This

might be because the model included the important phenotypes of the IP or COPD which is

associated with the occurrence of the RP. The distributions of the outputs from the SVM

model based on the BN+KL-6 showed a correlation with the status of pre-existing lung dis-

eases (Table 6). Most of the IP-positive cases were predicted as RP+ by the model. On the

other hand, two-third of all the COPD-positive cases were predicted as RP–. Those distribu-

tions of prePDs are similar to the observation reported in the previous studies; higher RP+ risk

for the IP and lower RP+ risk for the COPD [14–18].

Fig 3. Selected features obtained from voting with LASSO logistic regression models based on (a) Betti number (BN), (b)

planning computed tomography (pCT), (c) wavelet decomposition (WD) features, (d) a combination of all feature types (BN

+pCT+WD) and a combination of two conventional feature types (pCT+WD).

https://doi.org/10.1371/journal.pone.0263292.g003

Table 3. Summary of the areas under the receiver operating characteristics curves (AUCs) and robustness indices (RIs) obtained between the validation and test for

the image signatures.

Optimal SVM parameters AUC (95% CI) RI Accuracy Sensitivity Specificity

Number of features in the

signature

Kernel Gamma C margin Validation Test

BN 3 Sigmoid 0.4 0.1 0.873 (0.777–

0.968)

0.852 (0.697–

1.000)

1.691 0.757 0.756 0.757

BN+pCT

+WD

8 (all BN) Sigmoid 0.4 0.1 0.880 (0.810–

0.950)

0.824 (0.651–

0.997)

1.613 0.724 0.704 0.779

pCT+WD 2 (1 pCT, 1 WD) Linear - 0.1 0.775 (0.681–

0.867)

0.790 (0.620–

0.959)

1.541 0.681 0.664 0.728

pCT 9 Sigmoid 2.8 0.1 0.758 (0.656–

0.860)

0.642 (0.417–

0.867)

1.255 0.591 0.582 0.616

WD 3 Sigmoid 1.9 0.1 0.785 (0.700–

0.870)

0.545 (0.296–

0.795)

1.073 0.534 0.524 0.562

BN: Betti number, pCT: Planning computed tomography, WD: Wavelet-decomposition.

https://doi.org/10.1371/journal.pone.0263292.t003
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We investigated Spearman’s correlation coefficients between KL-6 and the three features in

the BN-based signature and found no correlations among them (correlation coefficient

<0.17). Therefore, the BN-based signature and KL-6 provide independent and useful mea-

surements for RP+ prediction based on lung tissue conditions.

Fig 4. Comparison of the areas under the receiver operating characteristics curves (AUCs) among support vector

machine models for (a) the validation and (b) the test with 95% confidence interval indicated by error bars. Bar graphs

on the left side represent the results for the exploration of the best imaging biomarker, and those on the right side

represent the results for the investigation of complementarity with known predictive factors.

https://doi.org/10.1371/journal.pone.0263292.g004

Table 4. Summary of the areas under receiver operating characteristics curves (AUCs) and robustness indices (RIs) obtained between the validation and test for the

Betti number (BN)-based signatures with serum Krebs von den Lungen-6 (KL-6) or dose volume indices (DVI).

Optimal SVM parameters AUC (95% CI) RI Accuracy Sensitivity Specificity

Number of features in the

signature

Kernel Gamma C margin Validation Test

BN+KL6 4 (3BN, 1KL-6) Sigmoid 0.1 0.4 0.901 (0.818–

0.985)

0.825 (0.647–

1.000)

1.603 0.724 0.711 0.765

BN 3 Sigmoid 0.4 0.1 0.873 (0.777–

0.968)

0.807 (0.633–

0.999)

1.576 0.708 0.699 0.738

BN

+DVI

7 (3BN, 4DVI) Sigmoid 0.1 0.4 0.905 (0.819–

0.992)

0.684 (0.434–

0.587)

1.302 0.621 0.618 0.634

https://doi.org/10.1371/journal.pone.0263292.t004
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The association between KL-6 levels and the severity of IP has been reported in previous

studies [4, 34]. In this study, we found that KL-6 could detect patients with and without pre-

existing IP in the training, as shown in the top right and bottom left examples in Fig 5, respec-

tively. However, an increase in KL-6 does not always indicate the presence of IP. Yoshimatsu

et al. reported that KL-6 levels could increase by the existence of lung cancer itself, with a sig-

nificant association with tumor size [10]. Several cases showed high pre-treatment KL-6 levels,

although they did not have pre-existing IP (the bottom right example in Fig 5). The sensitivity

and specificity for the prediction of RP with KL-6 were found to be 0.582 and 0.625, respec-

tively, using the optimal threshold value of 282.5 U/mL (vertical blue line in Fig 5), which is

quite similar to that reported by Iwata et al. [9]. Contrastingly, the BN+KL-6 model could suc-

cessfully predict the RP status in these patients. Furthermore, the model could predict the

occurrence of RP in cases without IP or COPD (top left example in Fig 5). The sensitivity and

specificity for the RP+ prediction with the BN+KL-6 model were found to be 0.746 and 0.938,

respectively, using the optimal threshold value of 0.383 (horizontal blue line in Fig 5).

Variability of dose prescription methods and dose fractions may cause the lower perfor-

mance of the BN+DVI model. In our database, which we have summarized in Tables 1 and 2,

SABR plans were constructed using two dose prescription methods (isocenter or D95 for plan-

ning target volume) and three dose fractions [12 Gy×4 Fr. (48 Gy), 13 Gy×4 Fr. (52 Gy) or 6

Gy×10 Fr. Gy (60 Gy)]. Furthermore, there were statistically significant differences in these

parameters between the training and test datasets. These differences affect the DVIs and can

be attributed to poor prediction results with the BN+DVI model in the test.

The present study had four limitations. First, the BN model could not entirely evaluate the

three-dimensional textures of the lung regions. Although we extended the range of the compu-

tation to the z-direction using the three cross-sections, it still utilizes two-dimensional compu-

tation algorithms for b0 and b1. Two-dimensional BNs cannot distinguish holes as

intersections of the trachea from cavitation due to IP or COPD. Second, our model did not

consider the impact of X-ray irradiation in SABR. As mentioned above, the DVIs did not

improve the performance of RP+ prediction in our datasets. However, with respect to the RP

Table 5. Comparison of areas under the receiver operating characteristics curves (AUCs) obtained in the present study to the AUCs obtained in previous studies.

Number of cases Dataset Feature type AUC RI

Validation Test

The present study 218 Training 193 BN+KL-6 0.901 0.825 1.603

Testing 25 BN 0.873 0.807 1.576

Hirose et al 275 Training 245 pCT+WD 0.871 0.756 1.459

Testing 30

Morgan et al 14 Not validated pCT 0.750 (not validated) –

BN: Betti number, KL-6: Serum Krebs von den Lungen-6, pCT: planning computed tomography, WD: wavelet decomposition.

https://doi.org/10.1371/journal.pone.0263292.t005

Table 6. Relationships between the predictions using the BN+KL-6 model and the pre-existing pulmonary diseases in the training dataset.

SVM prediction (BN+KL-6) Status of pre-existing pulmonary diseases Total

IP COPD IP and COPD Neither

RP+ 6 11 1 42 60

RP– 1 20 2 110 133

BN: Betti number, KL-6: Serum Krebs von den Lungen-6, IP: interstitial pneumonia, COPD: chronic obstructive pulmonary disease.

https://doi.org/10.1371/journal.pone.0263292.t006

PLOS ONE Topological imaging signature and biomarker synergy for radiation pneumonitis prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0263292 January 31, 2022 13 / 18

https://doi.org/10.1371/journal.pone.0263292.t005
https://doi.org/10.1371/journal.pone.0263292.t006
https://doi.org/10.1371/journal.pone.0263292


+ prediction based on dosimetric information, Adachi et al. developed a model that imple-

mented dosiomic features [35]. They showed a remarkable RP+ prediction performance that

was much better than the DVI-based prediction. The dosiomic features could provide a critical

dosimetric factor for RP+ prediction. Third, the present study could not clarify the feasibility

of the model against other types of irradiation. Previous studies reported that RP could occur

in several types of radiation treatments, such as conventional fractionated radiotherapy for

lung cancer [36, 37] or head and neck regions [38]. Our model may reflect the vulnerability of

lung regions to SABR for lung cancer. However, the generalizability of the findings obtained

in the present study should be investigated in a wide variety of radiation treatments to provide

comprehensive support for the risk assessment of RP in clinical practice. Last, we have not per-

formed standardizations to normalize the impacts derived from the variations in the CT scan-

ners. Since the BN features showed their robustness against the variations in the CT scanners

in our previous study [25], we assumed that the BN features could mitigate the differences of

the scanners in the training and testing datasets. However, it could show better prediction per-

formance when the standardization was performed before the analysis. Haga et al reported

that the classification performance of the histological subtypes of the early-stage lung cancer

based on the imaging features extracted from CT images could be improved when standardiza-

tion methods such as min-max normalization, z-score, or whitening from the principal com-

ponent analysis were applied to the different (training and test) databases with different

Fig 5. Distributions of the pretreatment serum Krebs von den Lungen-6 (KL-6) and support vector machine (SVM) outputs based on BN

+KL-6. Representative features and Betti number (BN, b0) maps were shown for the cases where the SVM model could successfully predict the

radiation pneumonitis (RP) status [positive (+) or negative (–)]. Labels of the BN maps (b0) are followed by the threshold value for obtaining

the BN maps. Hist: histogram, NGTDM: neighborhood gray-tone difference matrix, GLSZM: gray-level size zone matrix.

https://doi.org/10.1371/journal.pone.0263292.g005

PLOS ONE Topological imaging signature and biomarker synergy for radiation pneumonitis prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0263292 January 31, 2022 14 / 18

https://doi.org/10.1371/journal.pone.0263292.g005
https://doi.org/10.1371/journal.pone.0263292


scanning conditions [39]. We intend to investigate the impact of standardization on the classi-

fication performance of the BN features in future work.

5. Conclusions

This study demonstrated the comprehensive performance of BNs for the prediction of poten-

tial RP+ patients before SABR for lung cancer. This prediction could be enhanced in combina-

tion with pretreatment with KL-6. We considered that the BN+KL-6 model was more feasible

for the RP+ prediction because it showed the highest AUC value in the test of the exploration

of synergistic combinations. These predictions could help radiation oncologists in decision

making for dose reduction to avoid severe RP+ in personalized SABR or selection of alterna-

tive treatments to provide a better quality of life for each patient. Further studies with larger

datasets and different radiation treatments to support the risk assessment of RP in clinical

practice are needed.
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