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Abstract

We describe a novel method for simultaneously detecting faces and estimating their pose in real

time. The method employs a convolutional network to map images of faces to points on a low-

dimensional manifold parametrized by pose, and images of non-faces to points far away from that

manifold. Given an image, detecting a face and estimating its pose is viewed as minimizing an en-

ergy function with respect to the face/non-face binary variable and the continuous pose parameters.

The system is trained to minimize a loss function that drives correct combinations of labels and

pose to be associated with lower energy values than incorrect ones.

The system is designed to handle very large range of poses without retraining. The performance

of the system was tested on three standard data sets—for frontal views, rotated faces, and profiles—

is comparable to previous systems that are designed to handle a single one of these data sets.

We show that a system trained simuiltaneously for detection and pose estimation is more accu-

rate on both tasks than similar systems trained for each task separately.1

Keywords: face detection, pose estimation, convolutional networks, energy based models, object

recognition

1. Introduction

The detection of human faces in natural images and videos is a key component in a wide variety of

applications of human-computer interaction, search and indexing, security, and surveillance. Many

real-world applications would profit from view-independent detectors that can detect faces under a

wide range of poses: looking left or right (yaw axis), up or down (pitch axis), or tilting left or right

(roll axis).

In this paper we describe a novel method that can not only detect faces independently of their

poses, but also simultaneously estimate those poses. The system is highly reliable, runs in real time

1. A more preliminary version of this work appears as: Osadchy et al. (2005).
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on standard hardware, and is robust to variations in yaw (±90◦), roll (±45◦), pitch (±60◦), as well

as partial occlusions.

The method is motivated by the idea that multi-view face detection and pose estimation are

so closely related that they should not be performed separately. The tasks are related in the sense

that they could use similar features and internal representations, and must be robust against the

same sorts of variation: skin color, glasses, facial hair, lighting, scale, expressions, etc. We suspect

that, when trained together, each task can serve as an inductive bias for the other, yielding better

generalization or requiring fewer training examples (Caruana, 1997).

To exploit the synergy between these two tasks, we train a learning machine to map input images

to points in a low-dimensional space. In the low-dimensional output space we embed a face mani-

fold which is parameterized by facial pose parameters (e.g., pitch, yaw, and roll). A convolutional

network is trained to map face images to points on the face manifold that correspond to the pose of

the faces and non-face images to points far away from that manifold. After training, a detection is

performed by measuring whether the distance of the output point from the manifold is lower than a

threshold. If the point is close to the manifold, indicating that a face is present in the image, its pose

parameters can be inferred from the position of the projection of the point onto the manifold.

To map input images to points in the low-dimensional space, we employ a convolutional network

architecture (LeCun et al., 1998). Convolutional networks are specifically designed to learn invariant

representation of images. They can easily learn the type of shift-invariant local features that are

relevant to face detection and pose estimation. More importantly, they can be replicated over large

images (applied to every sub-windows in a large image) at a small fraction of the cost of applying

more traditional classifiers to every sub-windows in an image. This is a considerable advantage for

building real-time systems.

As a learning machine we use the recently proposed Energy-Based Models (EBM) that provide a

description and the inference process and the learning process in a single, well-principled framework

(LeCun and Huang, 2005; LeCun et al., 2006).

Given an input (an image), an Energy-Based Model associates an energy to each configuration

of the variables to be modeled (the face/non-face label and the pose parameters in our case). Making

an inference with an EBM consists in searching for a configuration of the variables to be predicted

that minimizes the energy, or comparing the energies of a small number of configurations of those

variables. EBMs have a number of advantages over probabilistic models: (1) There is no need to

compute partition functions (normalization constants) that may be intractable; (2) because there is

no requirement for normalization, the repertoire of possible model architectures that can be used

is considerably richer. In our application we define an Energy-Based Model as a scalar-valued

energy function of three variables: image, label, and pose, and we treat pose as a deterministic

latent variable. Thus both label of an image and pose are inferred through the energy-minimization

process.

Training an EBM consists in finding values of the trainable parameters (which parameterize

the energy function) that associate low energies to “desired” configurations of variables, and high

energies to “undesired” configurations. With probabilistic models, making the probability of some

values large automatically makes the probabilities of other values small because of the normaliza-

tion. With EBM’s making the energy of desired configurations low may not necessarily make the

energies of other configurations high. Therefore, one must be very careful when designing loss

functions for EBMs. In our application to face detection we derive a new type of contrastive loss

function that is tailored to such detection tasks.
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The paper is organized as follows. First, some of the relevant prior works on multi-view face

detection are briefly discussed. Section 2 discusses the synergy between pose estimation and face

detection, and describes the basic methods for integrating them. Section 3 discusses the learning

machine, and Section 4 gives the results of experiments conducted with our system. Section 5 draws

some conclusions.

1.1 Previous Work

Learning-based approaches to face detection abound, including real-time methods (Viola and Jones,

2001), and approaches based on convolutional networks (Vaillant et al., 1994; Garcia and Delakis,

2002). Most multi-view systems take a view-based approach, which involves building separate

detectors for different views and either applying them in parallel (Pentland et al., 1994; Sung and

Poggio, 1998; Schneiderman and Kanade, 2000; Li et al., 2002) or using a pose estimator to select

the most appropriate detector (Jones and Viola, 2003; Huang et al., 2004). Another approach is

to estimate and correct in-plane rotations before applying a single pose-specific detector (Rowley

et al., 1998b). Some attempts have been done in integrating pose search and detection, but in much

smaller space of pose parameters (Fleuret and Geman, 2001).

Closer to our approach is that of Li et al. (2000), in which a number of Support Vector Regressors

are trained to approximate smooth functions, each of which has a maximum for a face at a particular

pose. Another machine is trained to convert the resulting values to estimates of poses, and a third

machine is trained to convert the values into a face/non-face score. The resulting system is rather

slow. See Yang et al. (2002) for survey of face detection methods.

2. Integrating Face Detection and Pose Estimation

To exploit the posited synergy between face detection and pose estimation, we must design a system

that integrates the solutions to the two problems. Merely cascading two systems where the answer

to one problem is used to assist in solving the other will not optimally take advantage of the synergy.

Therefore, both answers must be derived from one underlying analysis of the input, and both tasks

must be trained together.

Our approach is to build a trainable system that can map raw images X to points in a low-

dimensional space (Figure 1). In that space, we pre-define a face manifold F(Z) that we parameter-

ize by the pose Z. We train the system to map face images with known poses to the corresponding

points on the manifold. We also train it to map images of non-faces to points far away from the

manifold. During recognition, the system maps the input image X to a point in the low dimensional

space G(X). The proximity of G(X) to the manifold then tells us whether or not an image X is a

face. By finding the pose parameters Z that correspond to the point on the manifold that is closest

to the point G(X) (projection), we obtain an estimate of the pose (Figure 2).

2.1 Parameterizing the Face Manifold

We will now describe the details of the parameterizations of the face manifold. Three criteria di-

rected the design of the face manifold: (1) preserving the topology and geometry of the problem;

(2) providing enough space for mapping the background images far from the manifold (since the

proximity to the manifold indicates whether the input image contains a face); and (3) minimizing
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Figure 1: Manifold Mapping—Training
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Figure 2: Manifold Mapping— Recognition and Pose Estimation.

1200



SYNERGISTIC FACE DETECTION AND POSE ESTIMATION WITH ENERGY-BASED MODELS

the computational cost of finding the parameters of the closest point on the manifold to any point in

the space.

Let’s start with the simplest case of one pose parameter Z = θ, representing, say, yaw. If we want

to preserve the natural topology and geometry of the problem (the first criterion), the face manifold

under yaw variations in the interval [−90◦,90◦] should be a half circle (with constant curvature).

The natural way of representing a circle is with sine and cosine functions. In this case we embed

the angle parameter in two dimensional space. Now images of faces will be mapped to points on

the half circle manifold corresponding to θ, and non-face images will be mapped to points in the

rest of the two dimensional space. Having lots of free space to represent non-face images may

be necessary, due to the considerable amount of variability in non-face images. So increasing the

dimension of embedding might help us in better separation of face and non-face images (the second

criterion). In the case of single pose parameter we suggest 3D embedding.

To make the projection and parameter estimation simple (the third criterion), we embed this

half-circle in a three-dimensional space using three equally-spaced shifted cosine functions (Figure

3):

Fi(θ) = cos(θ−αi); i = 1,2,3; θ = [−π
2
,
π
2
]; α = {−π

3
,0,

π
3
}.

A point on the face manifold parameterized by the yaw angle θ is F(θ) = [F1(θ),F2(θ),F3(θ)].
When we run the network on an image X , it outputs a vector G(X). The yaw angle θ corresponding

to the point on the manifold that is closest to G(X) can be expressed analytically as:

θ = arctan
∑3

i=1 Gi(X)cos(αi)

∑3
i=1 Gi(X)sin(αi)

.

The point on the manifold closest to G(X) is just F(θ).
The function choice is not limited to cosine. However cosines are preferable since they allow

computing the pose analytically from the output of the network. Without this property, finding

the pose could be an expensive optimization process, or even require the use of a second learning

machine.

The same idea can be generalized to any number of pose parameters. Let us consider the set of

all faces with yaw in [−90,90] and roll in [−45,45]. In an abstract way, this set is isomorphic to a

portion of a sphere. Consequently, we can represent a point on the face manifold as a function of

the two pose parameters by 9 basis functions that are the cross-products of three shifted cosines for

one of the angles, and three shifted cosines for the other angle:

Fi j(θ,φ) = cos(θ−αi)cos(φ−β j); i, j = 1,2,3.

For convenience, we rescale the roll angles to the range [−90,90] which allows us to set βi = αi.

With this parameterization, the manifold has constant curvature, which ensures that the effect of er-

rors will be the same regardless of pose. Given a 9-dimensional output vector from the convolutional

network Gi j(X), we compute the corresponding yaw and roll angles θ,φ as follows:

cc = ∑i j Gi j(X)cos(αi)cos(β j); cs = ∑i j Gi j(X)cos(αi)sin(β j);
sc = ∑i j Gi j(X)sin(αi)cos(β j); ss = ∑i j Gi j(X)sin(αi)sin(β j);

θ = 0.5(atan2(cs+ sc,cc− ss)+atan2(sc− cs,cc+ ss)) ;

φ = 0.5(atan2(cs+ sc,cc− ss)−atan2(sc− cs,cc+ ss)) .

The process can easily be extended to include pitch in addition to yaw and roll, as well as other

parameters if necessary.
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Figure 3: Left: face manifold embedding; right: manifold parametrization by single pose parame-

ter. The value of each cosine function for one pose angle constitute the three components

of a point on the face manifold corresponding to that pose.

3. Learning Machine

To map input images to points in the low-dimensional space, we employ a convolutional network

architecture trained using Energy Minimization Framework. Next we present the details of the

learning machine.

3.1 Energy Minimization Framework

We propose the following configuration of the Energy Based Model (LeCun and Huang, 2005;

LeCun et al., 2006). Consider a scalar-valued function EW (Y,Z,X), where X is a raw image, Z is

a facial pose (e.g., yaw and roll as defined above), Y is a binary label: Y = 1 for face, Y = 0 for

non-face. W is a parameter vector subject to learning. EW (Y,Z,X) can be interpreted as an energy

function that measures the degree of compatibility between the values of X ,Z,Y . The inference

process consists in clamping X to the observed value (the image), and searching for configurations

of Z and Y that minimize the energy EW (Y,Z,X):

(Y ,Z) = argminY∈{Y}, Z∈{Z}EW (Y,Z,X)

where {Y} = {0,1} and {Z} = [−90,90]× [−45,45] for yaw and roll variables.

Ideally, if the input X is the image of a face with pose Z, then a properly trained system

should give a lower energy to the face label Y = 1 than to the non-face label Y = 0 for any pose:

EW (1,Z,X) < EW (0,Z′,X), ∀Z′. For accurate pose estimation, the system should give a lower en-

ergy to the correct pose than to any other pose: EW (1,Z′,X) > EW (1,Z,X), ∀Z′ 6= Z. Training a

machine to satisfy those two conditions for any image will guarantee that the energy-minimizing

inference process will produce the correct answer.

Transforming energies to probabilities can easily be done via Gibbs distribution:

P(Y,Z|X) = exp(−βEW (Y,Z,X))/
Z

y∈{Y},z∈{Z}
exp(−βEW (y,z,X))

where β is an arbitrary positive constant, and {Y} and {Z} are the sets of possible values of y and

z. With this formulation, we can easily interpret the energy minimization with respect to Y and Z as
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Figure 4: Architecture of the Minimum Energy Machine.

a maximum conditional likelihood estimation of Y and Z. This probabilistic interpretation assumes

that the integral in the denominator (the partition function) converges. It is easy to design such

an energy function for our case. However, a proper probabilistic formulation would require us to

use the negative log-likelihood of the training samples as our loss function for training. This will

require us to compute the derivative of the denominator with respect to the trainable parameters W .

This is unnecessary complication which can be alleviated by adopting the energy-based formulation.

Removing the necessity for normalization gives us complete freedom in the choice of the internal

architecture and parameterization of EW (Y,Z,X), as well as considerable flexibility in the choice of

the loss function for training.

Our energy function for a face EW (1,Z,X) is defined as the distance between the point produced

by the network GW (X) and the point with pose Z on the manifold F(Z):

EW (1,Z,X) = ‖GW (X)−F(Z)‖.

The energy function for a non-face EW (0,Z,X) is equal to a constant T that we can interpret as a

threshold (it is independent of Z and X). The complete energy function is:

EW (Y,Z,X) = Y‖GW (X)−F(Z)‖+(1−Y )T.

The architecture of the machine is depicted in Figure 4. Operating this machine (finding the output

label and pose with the smallest energy) comes down to first finding: Z = argminZ∈{Z}||GW (X)−F(Z)||,
and then comparing this minimum distance, ‖GW (X)−F(Z)‖, to the threshold T . If it’s smaller

than T , then X is classified as a face, otherwise X is classified as a non-face. This decision is

implemented in the architecture as a switch, that depends upon the binary variable Y .

For simplicity we fix T to be a constant. Although it is also possible to make T a function of

pose Z.
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3.2 Convolutional Network

We employ a Convolutional Network as the basic architecture for the GW (X) function that maps

image points in the face-space. The architecture of convolutional nets is somewhat inspired by the

structure of biological visual systems. Convolutional nets have been used successfully in a number

of vision applications such as handwriting recognition (LeCun et al., 1989, 1998), and generic object

recognition (LeCun et al., 2004). Several authors have advocated the use of Convolutional Networks

for object detection (Vaillant et al., 1994; Nowlan and Platt, 1995; LeCun et al., 1998; Garcia and

Delakis, 2002).

Convolutional networks are “end-to-end” trainable system that can operate on raw pixel images

and learn low-level features and high-level representation in an integrated fashion. Each layer in

a convolutional net is composed units organized in planes called feature maps. Each unit in a

feature map takes inputs from a small neighborhood within the feature maps of the previous layer.

Neighboring units in a feature map are connected to neighboring (possibly overlapping) windows.

Each unit computes a weighted sum of its inputs and passes the result through a sigmoid saturation

function. All units within a feature map share the same weights. Therefore, each feature map can be

seen as convolving the feature maps of the previous layers with small-size kernels, and passing the

sum of those convolutions through sigmoid functions. Units in a feature map detect local features

at all locations on the previous layer.

Convolutional nets are advantageous because they can operate on raw images and can easily

learn the type of shift-invariant local features that are relevant to image recognition. Furthermore,

they are very efficient computationally for detection and recognition tasks involving a sliding win-

dow over large images (Vaillant et al., 1994; LeCun et al., 1998).

The network architecture used for training is shown in Figure 5. It is similar to LeNet5 (LeCun

et al., 1998), but contains more feature maps. The network input is a 32× 32 pixel gray-scale

image. The first layer C1 is a convolutional layer with 8 feature maps of size 28× 28. Each unit

in each feature map is connected to a 5× 5 neighborhood in the input. Contiguous units in C1

take input from neighborhood on the input that overlap by 4 pixels. The next layer, S2, is a so-

called subsampling layer with 8 feature maps of size 14×14. Each unit in each map is connected

to a 2 × 2 neighborhood in the corresponding feature map in C1. Contiguous units in S2 take

input from contiguous, non-overlapping 2x2 neighborhoods in the corresponding map in C1. C3 is

convolutional with 20 feature maps of size 10×10. Each unit in each feature map is connected to

several 5× 5 neighborhoods at identical locations in a subset of S2’s feature maps. Different C3

maps take input from different subsets of S2 to break the symmetry and to force the maps to extract

different features. S4 is a subsampling layer with 2× 2 subsampling ratios containing 20 feature

maps of size 5×5. Layer C5 is a convolutional layer with 120 feature maps of size 1×1 with 5×5

kernels. Each C5 map takes input from all 20 of S4’s feature maps. The output layer has 9 outputs

(since the face manifold is nine-dimensional) and is fully connected to C5 (such a full connection

can be seen as a convolution with 1×1 kernels).

3.3 Training with a Contrastive Loss Function

The vector W contains all 63,493 weights and kernel coefficients in the convolutional network.

They are all subject to training by minimizing a single loss function. A key element, and a novel

contribution, of this paper is the design of the loss function.
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Figure 5: Architecture of convolutional network used for training. This represents one slice of the

network with with a 32× 32 input window. The slice includes all the elements that are

necessary to compute a single output vector. The trained network is replicated over the

full input image, producing one output vector for each 32× 32 window stepped every 4

pixels horizontally and vertically. The process is repeated at multiple scales.

The training set S is composed of two subsets: the set S1 of training samples (1,X i,Zi) contain-

ing a face annotated with the pose; and the set S0 of training sample (0,X i) containing a non-face

image (background). The loss function L(W,S) is defined as the average over S1 of a per-sample

loss function L1(W,Zi,X i), plus the average over S0 of a per-sample loss function L0(W,X i):

L(W,S) =
1

|S1| ∑
i∈S1

L1(W,Zi,X i)+
1

|S0| ∑
i∈S0

L0(W,X i). (1)

Face samples whose pose is unknown can easily be accommodated by viewing Z as a “deterministic

latent variable” over which the energy must be minimized. However, experiments reported in this

paper only use training samples manually labeled with the pose.

For a particular positive training sample (X i,Zi,1), the per-sample loss L1 should be designed in

such a way that its minimization with respect to W will make the energy of the correct answer lower

than the energies of all possible incorrect answers. Minimizing such a loss function will make the

machine produce the right answer when running the energy-minimizing inference procedure. We

can write this condition as:

Condition 1

EW (Y i = 1,Zi,X i) < EW (Y,Z,X i) for Y 6= Y i or Z 6= Zi.

Satisfying this condition can be done by satisfying the two following conditions

Condition 2

EW (1,Zi,X i) < T and EW (1,Zi,X i) < min
Z 6=Zi

EW (1,Z,X i).
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Following LeCun and Huang (2005), we assume that the loss is a functional that depends on X only

through the set of energies associated with X and all the possible values of Z and Y . This assumption

allows us to decouple the design of the loss function from the internal structure (architecture) of the

energy function. We also assume that there exist a W for which condition 2 is satisfied. This is a

reasonable assumption, we merely ensure that the learning machine can produce the correct output

for any single sample. We now show that, with our architecture, if we choose L1 to be a strictly

monotonically increasing function of EW (1,Zi,X i) (over the domain of E), then minimizing L1 with

respect to W will cause the machine to satisfy condition 2. The first inequality in 2 will obviously

be satisfied by minimizing such a loss. The second inequality will be satisfied if EW (1,Z,X i) has a

single (non-degenerate) global minimum as a function of Z. The minimization of L1 with respect to

W will place this minimum at Z i, and therefore will ensure that all other values of Z will have higher

energy. Our energy function EW (1,Z,X) = ||GW (X)−F(Z)|| indeed has a single global minimum

as a function of Z, because F(Z) is injective and the norm is convex. The single global minimum is

attained for GW (X) = F(Z). For our experiments, we simply chose:

L1(W,1,Z,X) = EW (1,Z,X)2.

For a particular negative (non-face) training sample (X i,0), the per-sample loss L0 should be

designed in such a way that its minimization with respect to W will make the energy for Y = 1

and any value of Z higher than the energy for Y = 0 (which is equal to T ). Minimizing such a

loss function will make the machine produce the right answer when running the energy-minimizing

inference procedure. We can write the condition for correct output as:

Condition 3

EW (1,Z,X i) > T ∀Z

which can be re-written as:

Condition 4

EW (1,Z,X i) > T Z = argminzEW (1,z,X i).

Again, we assume that there exists a W for which condition 4 is satisfied. It is easy to see that, with

our architecture, if we choose L0 to be a strictly monotonically decreasing function of EW (1,Z,X i)
(over the domain of E), then minimizing L0 with respect to W will cause the machine to satisfy

condition 4. For our experiments, we simply chose:

L0(W,0,X i) = K exp[−E(1,Z,X i)]

where K is a positive constant. A nice property of this function is that it is bounded below by 0, and

that its gradient vanishes we approach the minimum.

The entire system was trained by minimizing average value of the loss function in Eq. (1) with

respect to the parameter W . We used a stochastic version of the Levenberg-Marquardt algorithm

with diagonal approximation of the Hessian (LeCun et al., 1998).
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Figure 6: Screenshot from annotation tool.

3.4 Running the Machine

The detection system operates on raw grayscale images. The convolutional network is applied to

all 32×32 sub-windows of the image, stepped every 4 pixels horizontally and vertically. Because

the layers are convolutional, applying two replicas of the network in Figure 5 to two overlapping

input windows leads to a considerable amount of redundant computation. Eliminating the redundant

computation yields a dramatic speed up: each layer of the convolutional network is extended so as

to cover the entire input image. The output is also replicated the same way. Due to the two 2× 2

subsampling layers, we obtain one output vector every 4×4 pixels.

To detect faces in a size-invariant fashion, the network is applied to multiple down-scaled ver-

sions of the image over a range of scales stepped by a factor of
√

2. At each scale and location, the

network’s 9-dimensional output vector is compared to the closest point on the face manifold (whose

position indicates the pose of the candidate face). The system collects a list of all locations and

scales of output vectors closer to the face manifold than the detection threshold. After examining

all scales, the system identifies groups of overlapping detections in the list and discards all but the

strongest (closest to the manifold) from each group within an exclusion area of a preset size. No

attempt is made to combine detections or apply any voting scheme.

4. Experiments and Results

Using the architecture described in Section 3, we built a detector to locate faces and estimate two

pose parameters: yaw from left to right profile, and in-plane rotation from −45 to 45 degrees. The

machine was trained to be robust against pitch variation.

In this section, we first describe the training protocol for this network, and then give the results

of two sets of experiments. The first set of experiments tests whether training for the two tasks

together improves performance on both. The second set allows comparisons between our system

and other published multi-view detectors.
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4.1 Training

The images we used for training were collected at NEC Labs. All face images were manually

annotated with appropriate poses. The annotation process was greatly simplified by using a simple

tool for specifying a location and approximate pose of a face. The user interface for this tool is

shown in Figure 6. Annotation process is done by first clicking on the midpoint between the eyes

and on the center of the mouth. The tool then draws a perspective grid in front of the face and

the user adjusts it to be parallel to the face plane. This process yields estimates for all six pose

parameters: location (x,y), three angles (yaw, pitch, and roll) and scale. The images were annotated

in such a way that the midpoint between the eyes and on the center of the mouth are positioned in

the center of the image. This allows these two points to stay fixed when the pose changes from left

to right profile. The downside is that profiles occupy only half of the image.

In this manner we annotated about 30,000 faces in images from various sources. Each face

was then cropped and scaled so that the eye midpoint and the mouth midpoint appeared in canonical

positions, 10 pixels apart, in 32×32-pixel image with some moderate variation of location and scale.

The resulting images where mirrored horizontally, to yield roughly 60,000 faces. We removed some

portion of faces from this set to yield a roughly uniform distribution of poses from left profile to

right profile. Unfortunately, the amount of variation in pitch (up/down) was not sufficient to do the

same. This was the reason for training our system to be robust against pitch variation instead of

estimating the pitch angle. The roll variation was added by randomly rotating the images in the

range of [−45,45] degrees. The resulting training set consisted of 52,850, 32x32 grey-level images

of faces with uniform distribution of poses.

The initial set of negative training samples consisted of 52,850 image patches chosen randomly

from non-face areas in a variety of images. For the second set of tests, half of these images were

replaced with image patches obtained by running the initial version of the detector on the training

images and collecting false detections.

Each training image was used 5 times during training, with random variations in scale (from

x
√

2 to x(1+
√

2)), in-plane rotation (±45◦), brightness (±20), and contrast (from 0.8 to 1.3).

To train the network, we made 9 passes through this data, though it mostly converged after about

the first 6 passes. The training system was implemented in the Lush language (Bottou and LeCun,

2002). The total training time was about 26 hours on a 2Ghz Pentium 4. At the end of training, the

network had converged to an equal error rate of 5% on the training data and 6% on a separate test

set of 90,000 images.

A standalone version of the detection system was implemented in the C language. It can detect,

locate, and estimate the pose of faces that are between 40 and 250 pixels high in a 640×480 image

at roughly 5 frames per second on a 2.4GHz Pentium 4.

4.2 Synergy Tests

The goal of the synergy test was to verify that both face detection and pose estimation benefit from

learning and running in parallel. To test this claim we built three networks with almost identical

architectures, but trained to perform different tasks. The first one was trained for simultaneous face

detection and pose estimation (combined), the second was trained for detection only and the third

for pose estimation only. The “detection only” network had only one output for indicating whether

or not its input was a face. The “pose only” network was identical to the combined network, but

trained on faces only (no negative examples). Figure 7 shows the results of running these networks
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Figure 7: Synergy test. Left: ROC curves for the pose-plus-detection and detection-only networks.

(The x axis is the false positive rate per image). Right: frequency with which the pose-

plus-detection and pose-only networks correctly estimated the yaws within various error

tolerances.
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Figure 8: Results on standard data sets. Left: ROC curves for our detector on the three data sets.

The x axis is the average number of false positives per image over all three sets, so each

point corresponds to a single detection threshold. Right: frequency with which yaw and

roll are estimated within various error tolerances.

on our 10,000 test images. In both these graphs, we see that the pose-plus-detection network had

better performance, confirming that training for each task benefits the other.

4.3 Standard Data Sets

There is no standard data set that spans the range of poses our system is designed to handle. There

are, however, data sets that have been used to test more restricted face detectors, each set focusing

on a particular variation in pose. By testing a single detector with all of these sets, we can compare

our performance against published systems. As far as we know, we are the first to publish results

for a single detector on all these data sets. The details of these sets are described below:

• MIT+CMU (Sung and Poggio, 1998; Rowley et al., 1998a) – 130 images for testing frontal face
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detectors. We count 517 faces in this set, but the standard tests only use a subset of 507 faces,

because 10 faces are in the wrong pose or otherwise not suitable for the test. (Note: about 2% of the

faces in the standard subset are badly-drawn cartoons, which we do not intend our system to detect.

Nevertheless, we include them in the results we report.)

• TILTED (Rowley et al., 1998b) – 50 images of frontal faces with in-plane rotations. 223 faces out

of 225 are in the standard subset. (Note: about 20% of the faces in the standard subset are outside

of the ±45◦ rotation range for which our system is designed. Again, we still include these in our

results.)

• PROFILE (Schneiderman and Kanade, 2000) – 208 images of faces in profile. There seems to

be some disagreement about the number of faces in the standard set of annotations: Schneiderman

and Kanade (2000) reports using 347 faces of the 462 that we found, Jones and Viola (2003) reports

using 355, and we found 353 annotations. However, these discrepancies should not significantly

effect the reported results.

We counted a face as being detected if 1) at least one detection lay within a circle centered on

the midpoint between the eyes, with a radius equal to 1.25 times the distance from that point to the

midpoint of the mouth, and 2) that detection came at a scale within a factor of two of the correct

scale for the face’s size. We counted a detection as a false positive if it did not lie within this range

for any of the faces in the image, including those faces not in the standard subset.

The left graph in Figure 8 shows ROC curves for our detector on the three data sets. Figures 9, 10

show detection results on various poses. Table 1 shows our detection rates compared against other

multi-view systems for which results were given on these data sets. We want to stress here that all

these systems are tested in a pose specific manner: for example, a detector tested on TILTED set is

trained only on frontal tilted faces. Such a detector will not be able to detect non frontal tilted faces.

Combining all pose variations in one system obviously will increase the number of false positives,

since false positives of view-based detectors are not necessarily correlated. Our system is designed

to handle all pose variations. This makes the comparison in Table 1 somewhat unfair to our system,

but we don’t see any other way of comparison against other systems.

The table shows that our results on the TILTED and PROFILE sets are similar to those of the two

Jones & Viola detectors, and even approach those of the Rowley et al and Schneiderman & Kanade

non-real-time detectors. Those detectors, however, are not designed to handle all variations in pose,

and do not yield pose estimates. More recent system reported in Huang et al. (2004) is also real-

time and can handle all pose variation, but doesn’t yield pose estimates. Unfortunately, they also

report the results of pose specific detectors. These results are not shown in Table 1, because they

report different points on ROC curve in the PROFILE experiment (86.2% for 0.42 f.p per image)

and they didn’t test on the TILTED set. Even though they trained a combined detector for all pose

variations, they did not test it the way we did. Their test consists in running the full detector on

the PROFILE set rotated by [-30, 30] degrees in-plane. Unfortunately, they do not provide enough

details to recreate their test set.

The right side of Figure 8 shows our performance at pose estimation. To make this graph, we

fixed the detection threshold at a value that resulted in about 0.5 false positives per image over all

three data sets. We then compared the pose estimates for all detected faces (including those not in

the standard subsets) against our manual pose annotations. Note that this test is more difficult than

typical tests of pose estimation systems, where faces are first localized by hand. When we hand-

localize these faces, 89% of yaws and 100% of in-plane rotations are correctly estimated to within

15◦.
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Figure 9: Some example face detections. Each white box shows the location of a detected face. The

angle of each box indicates the estimated in-plane rotation. The black crosshairs within

each box indicate the estimated yaw.
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Figure 10: More examples of face detections.
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Data set → TILTED PROFILE MIT+CMU

False positives per image → 4.42 26.90 .44 3.36 .50 1.28

Our detector 90% 97% 67% 83% 83% 88%

Jones and Viola (2003) (tilted) 90% 95% x x

Jones and Viola (2003) (profile) x 70% 83% x

Rowley et al. (1998a) 89% 96% x x

Schneiderman and Kanade (2000) x 86% 93% x

Table 1: Comparisons of our results with other multi-view detectors. Each column shows the detec-

tion rates for a given average number of false positives per image (these rates correspond

to those for which other authors have reported results). Results for real-time detectors are

shown in bold. Note that ours is the only single detector that can be tested on all data sets

simultaneously.

5. Conclusion

The system we have presented here integrates detection and pose estimation by training a convolu-

tional network to map faces to points on a manifold, parameterized by pose, and non-faces to points

far from the manifold. The network is trained by optimizing a loss function of three variables—

image, pose, and face/non-face label. When the three variables match, the energy function is trained

to have a small value, when they do not match, it is trained to have a large value.

This system has several desirable properties:

• The use of a convolutional network makes it fast. At typical webcam resolutions, it can process 5

frames per second on a 2.4Ghz Pentium 4.

• It is robust to a wide range of poses, including variations in yaw up to ±90◦, in-plane rotation up

to ±45◦, and pitch up to ±60◦. This has been verified with tests on three standard data sets, each

designed to test robustness against a single dimension of pose variation.

• At the same time that it detects faces, it produces estimates of their pose. On the standard data

sets, the estimates of yaw and in-plane rotation are within 15◦ of manual estimates over 80% and

95% of the time, respectively.

We have shown experimentally that our system’s accuracy at both pose estimation and face

detection is increased by training for the two tasks together.
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