
Synergistic Prevention of Biofouling in Seawater Desalination by 
Zwitterionic Surfaces and Low-Level Chlorination

Rong Yang,
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts 
Avenue, Cambridge, Massachusetts 02139 (USA)

Hongchul Jang,
Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, 
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 
02139 (USA)

Roman Stocker*, and
Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, 
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 
02139 (USA)

Karen K. Gleason*

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts 
Avenue, Cambridge, Massachusetts 02139 (USA)

Keywords

Synergistic response; antifouling; zwitterionic coating; microfluidics; chemical vapor deposition

Water scarcity affects one in three people in the world.[1] With nearly 98% of the world's 

available water supply being seawater or brackish water, desalination has become an 

important means to address the scarcity of freshwater resources. Thin film composite (TFC) 

reverse osmosis (RO) membranes enable the removal of salt ions from seawater at room 

temperature by applying pressure to the seawater feed. TFC-RO has quickly become the 

dominating desalination method since its commercialization in the 1980s and is now used in 

nearly all RO desalination plants.[2] TFC-RO is considered to have the greatest water 

permeability with high salt rejection rate.[2] The bottleneck of TFC-RO to produce 

freshwater via seawater desalination at a comparable price to natural freshwater is severe 

membrane fouling, which impairs water permeation and salt rejection and thus reduces 

freshwater yield. Currently, marine biota and in particular bacteria are removed from the 

feed by pretreatment, the most energy-intensive (responsible for >36% of total plant energy 

consumption) and chemical-intensive step in a desalination plant and one that poses 

environmental risks to marine organisms when treated water is discharged back into the 

*kkg@mit.eduromans@mit.edu. 

Supporting Information is available online from Wiley InterScience or from the author.

HHS Public Access
Author manuscript
Adv Mater. Author manuscript; available in PMC 2015 March 19.

Published in final edited form as:
Adv Mater. 2014 March 19; 26(11): 1711–1718. doi:10.1002/adma.201304386.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ocean.[2] Fouling-resistant RO membranes would bring major improvements in energy 

usage, process reliability and lower the environmental impact of seawater desalination.

Zwitterions are a type of molecular structures with ultra-low fouling properties, 

demonstrated in applications ranging from bio-assays to artificial tissues,[3, 4] originating 

from the extreme hydrophilicity induced by electrostatic interaction with water 

molecules,[5, 6] which makes the replacement of surface-bound water molecules by foulants 

enthalpically unfavorable. However, the zwitterionic coatings fabricated so far are not 

sufficient in long-term antifouling applications due to the limited stability in real-world 

environments.[7]

The major challenge in the surface modification of TFC-RO membranes is to implement 

antifouling chemistries without compromising salt rejection and high water flux.[2] The 

limiting step for the transport of water and salt across membranes is the extremely thin 

(~100 to 200 nm) polyamide selective layer (Fig. 1a). Pin-holes or defects in the polyamide 

layer are routes for non-selective salt transport and thus quench the salt rejection 

performance of the membranes. Surface modification methods involving solvents or 

exposure to high temperatures (Table 1) can generate or enlarge the undesirable pin-hole 

defects.[8] Surface modification layers produce an additional resistance to water 

permeability. We have shown previously that the coatings on RO membranes should be 30 

nm or thinner and thicknesses >100 nm are undesirable because they cause >40% reduction 

in the water flux.[9]

Recently, we showed that anti-biofouling coatings of various compositions can be grafted 

and directly deposited on commercial TFC-RO membranes via an all-dry process, called 

initiated chemical vapor deposition (iCVD).[9-11] The low-temperature, solvent-free 

processing leaves the delicate polyamide intact and thus maintains the high salt rejection. 

Water flux is maintained by utilizing ultrathin (30 nm) iCVD layers. However, these 

acrylate-based films do not resist the degradation by chlorine, the most prevalent 

disinfection reagent in water treatment.[12]

We report here a novel pyridine-based zwitterionic surface chemistry that displays 

significantly improved resistance against a variety of molecular foulants and improved 

tolerance to chlorine exposure as compared to acrylate-based analogs. The chlorine-resistant 

surface provides a new perspective for achieving long-term antifouling. The pyridine-based 

zwitterionic surfaces demonstrate a synergy with drinking-water-level chlorination (5 ppm), 

resulting in exceedingly high antifouling performance. Synergistic effects have often been 

observed in the interactions between pairs of molecules such as pairs of drugs or toxins, or 

pairs of surface properties, such as surface energy and roughness. However, to our 

knowledge, synergistic effects have not been specifically identified between a functional 

surface and a solution species. The chlorine-resistant antifouling surfaces are derived from 

ultrathin iCVD poly(4-vinylpyridine) (P4VP) and its copolymers.[13, 14] The vapor 

deposition allows the synthesis of insoluble cross-linked coatings as thin films directly on a 

surface in a single step. Enhanced durability results from cross-linking co-monomers and in 

situ grafting. The in situ reaction with 1,3-propanesultone (PS) vapors produces pyridine-

based sulfobetaine zwitterionic functional groups, having a balanced surface charge. The 
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iCVD synthesis is carried out at low surface temperature (20 °C) to produce robustly 

adhered, smooth, ultrathin layers (30 nm) directly on even delicate substrates, such as TFC-

RO membranes without damaging them. Accelerated testing against marine bacteria in 

multichannel microfluidic devices shows ~100-fold reduction in biofouling on the coated 

surface compared to bare glass. The unique resistance of the pyridine-based films against 

degradation by chlorine allows a new synergistic approach to antifouling, which 

substantially enhances longer-term fouling prevention compared to either surface 

modification or chlorination alone, and has the potential to reduce or eliminate pretreatment 

of seawater, the most energy- and chemical-intensive step in desalination plants, and thus to 

reduce the cost of freshwater production and its collateral toxicity to marine biota. This 

approach can facilitate the rational design of the next generation of RO membranes[15-17] 

and of antifouling strategies in desalination plants, and find additional utility on the hulls of 

ships and for submerged marine structures.[18]

Ultrathin (30 to 300 nm) iCVD coatings are successfully grafted and deposited directly onto 

commercial TFC-RO membranes (Fig. 1b), followed by the vapor phase derivatization 

(Supplementary Fig. S1). The all-dry-processed coating conforms to the geometry of the 

underlying substrate (Fig. 1b,c), because surface tension and de-wetting are avoided. The 

root-mean-square (RMS) roughness of bare and coated RO membranes is 1.3±0.3 nm (Fig. 

1c, inset) and 0.8±0.1 nm (Fig. 1c), respectively. This exceptional smoothness is critical to 

the fouling resistance of the membrane surface,[2] because larger surface areas and more 

binding sites are available for foulants to attach on a rougher surface. In addition, nano- and 

micro-scale roughness can entrap proteins and bacteria, respectively, and provide a “shield” 

to attached foulants from shear forces.[19] The benign reaction conditions allow retention of 

the zwitterionic groups, as evidenced by the N(1s) high-resolution scan by X-ray 

photoelectron spectroscopy (XPS, Fig. 1d). The binding energy of the pyridine nitrogen 

species from the as-deposited iCVD layer is ~399.5 eV[20] with a small tail around 402 eV 

that is attributed to the inevitable post-treatment adsorption of atmospheric CO2.[21] The 

binding energy of quaternized pyridine nitrogen is ~401.5 eV[21] and the symmetric peak 

profile indicates complete quaternization by the PS post-treatment.

The salt rejection of the surface-modified RO membranes is unaltered, confirming the 

benign nature of the solvent-free process (Fig. 1e). This substrate-independent method 

allows simultaneous deposition on multiple substrates. This feature is used to 

simultaneously deposit on RO membranes and on a silicon wafer in order to achieve precise 

control of coating thickness, which is critical because thin coatings are essential to 

maintaining the high water flux across RO membranes.[2] The coating thickness on RO 

membranes is compared to that on a silicon wafer,[9] which is monitored via in situ 

interferometry. With the 30-nm coating thickness achieved with this method, the water flux 

is reduced only by ~14% compared to untreated RO membranes (Fig. 1f). This high water 

flux is achieved with an amount of the cross-linker (4%; copolymer 1; Supplementary Fig. 

S1), divinylbenzene (DVB), sufficiently high to ensure the stability of the coating and 

sufficiently low to effect a minimal reduction in water flux. As expected, water flux is 

reduced (by 72%; Supplementary Fig. S2) for higher DVB content (17%; copolymer 2) and 

also (by 84%) for the homopolymer PDVB, owing to its high cross-linking density. It is 
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worth noting that copolymer 1, despite the higher cross-linking density, has similar water 

flux as homopolymer P4VP (Supplementary Figs. S1 and S2). This is likely a result of 

surface chain reorganization of copolymer 1 upon contacting water. Therefore, copolymer 1 

is chosen as providing the optimal trade-off between coating stability and water flux. Taken 

together, these results show that the proposed approach can overcome the major challenge in 

the field of surface modification for desalination, by implementing antifouling chemistry 

without compromising water flux and salt rejection of the resulting membranes.

To reveal the chemistry of the antifouling coatings, the retention of functional groups and 

compositions of as-deposited and functionalized iCVD polymers are analyzed using Fourier 

transform infrared (FTIR). Excellent agreement is observed between the spectra of iCVD- 

and solution-polymerized PDVB and P4VP,[22, 23] indicating that the non-vinyl organic 

functionalities in the monomers are retained in the iCVD films. Successful polymerization 

of DVB (Fig. 2b) is evidenced by the reduction of the 903 cm−1 peak in the PDVB spectrum 

(Fig. 2a, black), which results from the out-of-plane CH2 deformation in vinyl groups. The 

existence of this peak in the PDVB spectrum is due to the presence of unreacted pendant 

vinyl bonds.[13, 24] For the iCVD polymers PDVB (black), copolymer 2 (wine), copolymer 1 

(magenta) and P4VP (blue), there is a decreasing trend in the area under the 710 cm−1 peak, 

a measure of the number of m-substituted aromatic rings in the DVB repeat units (Fig. 2a). 

This is utilized to calculate compositions of the iCVD copolymers,[13] which are confirmed 

by XPS survey scans. The composition of the copolymers can be tuned simply by varying 

the flow rate ratios of 4VP and DVB monomers (Supplementary Fig. S1). In the spectra of 

P4VP and copolymers, the strong peak at 1600 cm−1 is attributed to the C-C and C-N 

stretching vibrations in the pyridine ring (Fig. 2c),[13, 24] whose intensity increases with 

more P4VP repeat units (Supplementary Fig. S1). FTIR spectra collected after the PS 

derivatization (Figs. 2a and S1) confirms the formation of the pyridine-based sulfobetaine 

(Fig. 2d) via ring-opening of PS, as evident by the appearance of a peak at 1036 cm−1 in the 

spectra of functionalized P4VP (red) and copolymer 1 (orange) (Fig. 2a). This peak is 

attributed to the symmetric stretching of the SO −3 group.[24] Therefore, pyridine-based 

zwitterionic structures designed to resist oxidative damages are successfully synthesized 

using the solvent-free scheme.

To evaluate the chlorine resistance of the iCVD films, we subject the functionalized 

homopolymer P4VP, copolymer 1 and copolymer 2 to treatment with a 1000 ppm solution 

of sodium hypochlorite and we acquire FTIR spectra after different treatment durations. 

From the spectra, we measure the areas under the 1600 cm−1 peak (Fig. 2a,e) to quantify the 

functional retention of the zwitterionic structure; the strong peak intensity renders the 

quantification more accurate. The excellent chlorine resistance of copolymer 1 (4% DVB) is 

evident from the negligible changes in its spectrum after 2 (green) and 24 (grey) hours of 

chlorine treatment (Fig. 2a). In contrast, homopolymer P4VP is rendered soluble by a 10-

hour exposure, as shown by the absence of functional peaks in the FTIR spectrum 

(Supplementary Fig. S3). Importantly, the addition of 4% DVB cross-linker produces a 

major increase in the resistance to chlorine, whereas additions beyond 4% result in minor 

additional resistance (Fig. 2e): after 10000 ppm h exposure to chlorine, ~94% and ~99% 

pyridine functionalities remain in functionalized copolymers 1 (4% DVB) and 2 (17% 
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DVB), respectively. Functionalized copolymer 1 is thus most desirable because it resists 

chlorine very effectively while leaving the water flux nearly intact (Supplementary Fig. S2).

These observations are corroborated by dynamic contact angle measurements on 

functionalized P4VP and copolymer 1 before and after chlorine treatment, which yields a 

comprehensive evaluation of the effects of chlorine on the coatings, because the dynamic 

contact angles of coated surfaces are affected by coating chemistry, surface roughness, 

swelling, and surface chain reorganization.[25] For the functionalized P4VP before chlorine 

treatment we measure advancing and receding contact angles of 31° and 20°, whereas after 

2000 ppm h chlorine exposure these values become 48° and 18°, respectively 

(Supplementary Fig. S4). These considerable changes in dynamic contact angles reflect the 

poor chlorine resistance of the functionalized P4VP films. In contrast, the advancing and 

receding contact angles of the functionalized copolymer 1 are 51° and 24°, respectively. In 

spite of the higher cross-linking density, copolymer 1 has similar receding contact angle as 

P4VP. This is a sign of surface chain reorganization[25] and corroborates the comparable 

water flux obtained with functionalized P4VP and copolymer 1 films. The dynamic contact 

angles remain unchanged after as much as 24000 ppm h chlorine treatment (Fig. 2f), 

confirming the excellent chlorine resistance of the functionalized copolymer 1 films: the 

coating chemistry, surface rou ghness, swelling, and surface chain reorganization all remain 

essentially unaltered even upon prolonged exposure to chlorine.

We demonstrate the anti-biofouling properties of the new surface treatment both with 

dissolved foulants and with marine bacteria. Quantification of the surface adsorption of 1 

mg ml−1 bovine serum albumin (BSA) in phosphate-bu ered saline (PBS) is conducted via 

quartz crystal microbalance with dissipation monitoring (QCM-D). BSA is a widely used 

test protein for antifouling studies.[26, 27] Analogous tests are carried out with a 

representative polysaccharide, 1 mg ml−1 sodium alginate, the major component of 

extracellular materials that lead to membrane biofouling.[28] QCM-D tests reveal no 

adsorption of either foulant over 200 minutes on the functionalized copolymer 1 surface 

(Supplementary Fig. S5). The thickness of the coating does not have an impact on the 

fouling resistance (Supplementary Fig. S6), because the reaction with PS is diffusion-limited 

and the zwitterionic moieties are only present in the top few nanometers.[10] The consistent 

fouling resistance under low (PBS buffer) and high (2 M NaCl added to PBS buffer, 

corresponding to ~117,000 ppm NaCl) salt concentrations implies that the functionalized 

copolymer 1 surface is charge-neutral (Fig. S6).

The successful antifouling against dissolved chemicals leads us to test the surfaces against 

fouling by marine bacteria. We use both natural seawater samples and a culture of Vibrio 

cyclitrophicus, a species broadly representative of bacteria prevalent in coastal waters, from 

where seawater for desalination typically originates. The dynamics of bacterial attachment 

are studied in a microfluidic flow system and imaged with an inverted microscope equipped 

with a CCD camera.[29] Images are extracted from full movies (Supplementary Movies) and 

quantified by image analysis. Microchannels of 600 × 100 μm rectangular cross-section are 

fabricated out of polydimethylsiloxane (PDMS) using standard soft lithography 

techniques[29] and mounted on a microscope glass slide that has been coated with a ~300-

nm-thick film of functionalized copolymer 1. Fresh seawater is harvested and used on the 
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same day as the feed solution for the microfluidic fouling tests, without any pretreatment, 

through continuous injection at a rate of 2 μl min−1 (corresponding to a mean flow velocity 

of ~560 μm s−1). Fabrication of multiple (2-4) microchannels on the same chip allows 

parallel, simultaneous experiments and thus a direct comparison of different treatments and 

the minimization of confounding factors. Because experiments lasting up to 100 hours 

reveal no discernible surface attachment (Supplementary Fig. S7; Supplementary Movies 1 
and 2), irrespective of surface conditions, we run accelerated fouling experiments with 

concentrated cultures of V. cyclitrophicus, grown overnight in artificial seawater and 

concentrated to an optical density (OD600 = 0.2; ~2×108 cells ml−1) corresponding to early 

exponential phase. This bacterial concentration is ~200 times that of typical seawater.

In the accelerated tests, the iCVD zwitterionic coatings show much greater resistance to 

bacterial attachment than bare glass (Fig. 3a,b,e,f; Supplementary Fig. S8; Supplementary 

Movie 3). Fouling is quantified by time-lapse imaging of the surface, followed by image 

analysis to determine the number of attached cells and the percent surface coverage by 

bacteria. As the variables are time-dependent, the behavior at 5 hours and 12 hours will be 

discussed, but general conclusions apply also to the data at other times. Despite the intrinsic 

fouling resistance of glass surfaces,[26] the number of attached cells on bare glass increases 

steadily over time, and exponentially after 50 minutes. After 5 hours, the cell count over a 

0.16-mm2 area of the bare glass surface reaches ~7500, (Fig. 3a), whereas it remains close to 

zero on the coated surface (Fig. 3b). Defining a relative fouling index, F1, as the fraction of 

surface coverage for the coated surface compared to the bare glass control, we find that F1 

decreases drastically over time for functionalized copolymer 1 and drops to ~0.01 after 5 

hours (Supplementary Fig. S8). This result demonstrates the exceptional fouling resistance 

of iCVD zwitterionic coatings, in particular in view of the fact that smooth, bare glass is 

already a rather good antifouling surface.[26]

The surfaces’ antifouling effects are further boosted by low-level chlorination, resulting in a 

new synergistic approach against fouling made possible by functionalized copolymer 1's 

good resistance to chlorine (Fig. 2a,e,f). We run additional, accelerated microfluidic tests 

where the suspension of V. cyclitrophicus is amended with 5 ppm of sodium hypochlorite 

(Fig. 3c,d,g,h; Supplementary Movie 4), a concentration comparable to the residual chlorine 

level in the USA national drinking water standards.[30] To quantify the effect of chlorination 

we define a second fouling index, F2, computed as the fraction of surface coverage in the 

presence of chlorination, compared to that in the absence of chlorination, for the case of a 

bare glass surface. Although chlorination overall reduces surface fouling, signs of fouling on 

bare glass in the presence of 5 ppm chlorine emerge after 5 hours (F2 ~0.45; Fig. 3c) and 

after 12 hours fouling is severe (F2 ~0.58; Fig. 3g). Therefore, chlorination at a level of 5 

ppm is less effective than the zwitterionic coating in preventing bacterial attachment. 

However, the synergistic effect of the zwitterionic coating and chlorination dramatically 

increases fouling resistance over each treatment in isolation (Fig. 3d,h). After 12-hour 

exposure to the V. cyclitrophicus suspension, the surface coverage is 35.3±1.7% on bare 

glass in the presence of 5 ppm chlorine (F2 ~0.58), 14.1±3.4% on the coated surface without 

chlorine (F1 ~0.14), and only 1.5±0.4% on the coated surface in the presence of 5 ppm 

chlorine. The percent surface coverage in the synergistic treatment is 0.02 of that of a bare 
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glass surface without chlorine, four-fold smaller than the prediction (F1 × F2) obtained if the 

effect was simply multiplicative.

To quantify the synergistic effect of the two antifouling strategies, we compute an 

antifouling synergistic index, S (Fig. 4a, inset). Synergistic indices have been used among 

others to describe the effects of multi-strategy anti-tumor treatments, where S < 1 indicates a 

synergistic effect in killing tumor cells by the different strategies in the treatment.[31, 32] 

Here we define S as

(1)

The temporal dynamics of S (Fig. 4a, inset) reveal values of S < 1 after ~400 minutes, and a 

subsequent steady decrease to ~0.1 after 900 minutes. No signs of saturation in the decrease 

are observed, demonstrating the long-term nature of the synergy. Values of S over the first 5 

hours are not reported because the surface chemistry alone reduces fouling to non-detectable 

levels (i.e., F1 ~ 0) during this time and thus the quantification of S is not meaningful.

In the attempt to reveal the mechanism underpinning the synergistic effect, the cell-surface 

interaction is investigated by observing a single bacterium for its proliferation and motility 

on the surface for the different treatments (Fig. 3i-q; Supplementary Movie 5). After 85 

minutes, replication has occurred under all conditions (Fig. 3l-n), at a mildly lower rate in 

the presence of 5 ppm chlorine (Fig. 3m,n), suggesting that the low dose of chlorine has only 

small effects on cell growth. This hypothesis is supported by direct viability tests (Fig. 4b), 

showing that the growth of V. cyclitrophicus (measured as the optical density of cell 

cultures) is negligibly affected by addition of 1 ppm chlorine and exhibits a 42% reduction 

with 5 ppm chlorine addition. Furthermore, tracking of individual cells shows that motility is 

not significantly affected by 1 ppm or 5 ppm chlorination (Fig. 4c). Although growth in 

batch culture might differ from growth on a microchannel surface, taken together these 

results (Figs. 4b and 3l-n) demonstrate that the observed antifouling and synergistic effect of 

chlorine are not based on killing of the bacteria. Instead, the primary difference among the 

three single-cell cases (Fig. 3i-q) resides in the dependence of cell removal from the surface 

on the surface chemistry (Fig.3o-q): whereas bacteria remain largely attached to the bare 

glass surface, they are easily removed from the coated surface by ambient fluid flow, 

independent of the presence of chlorine. In particular, bacterial removal from the iCVD 

zwitterionic coating occurs readily even under the low, laminar flow conditions within the 

microchannel (Reynolds number ~0.1).

We have demonstrated the ability of ultrathin, chlorine-resistant iCVD zwitterionic 

copolymers to act as antifouling coatings and, based on their resistance to chlorine, we have 

proposed a novel, multi-strategy approach to antifouling, which hinges on the synergy 

between surface chemistry and chlorination. The zwitterionic coating prevents the 

attachment of V. cyclitrophicus almost 100 times more effectively than glass after 5 hours 

(Figs. 3a,b and 4a; Supplementary Fig. S8), while chlorination, with concentrations as low 

as the regulated chlorine residue in drinking water, is able to enhance the long-term fouling 
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resistance of the zwitterionic coating by 9.4-fold after 12 hours (Figs. 3d,h and 4a), with no 

signs of saturation.

A key advantage of the zwitterionic coatings reported here is the substrate-independence of 

the vapor application process, which makes these coatings easily applicable to a broad range 

of surfaces. In particular, these coatings may be applied on the latest salt-rejecting 

layers,[15-17] which resist exposure to chlorine, providing a path towards solving the 

desalination industry's bottleneck of the susceptibility of TFC-RO membranes to oxidative 

damage by chlorine. The surface treatment is benign, easily scalable[33] and compatible with 

the infrastructure in membrane industry,[2] which gives rise to a stable, non-toxic and 

inexpensive ultrathin coating. The good fouling resistance and chlorine resistance of this 

coating can help eliminate the most energy- and chemical-intensive step (pretreatment of 

seawater) in a RO desalination plant,[2] and reduce the environmental impacts of brine 

discharge. This approach therefore promises to lower the price of freshwater in water-scarce 

countries, where desalination may serve as the only viable means to provide the water 

supply necessary to sustain agriculture, support personal consumption, and promote 

economic development.

Experimental

Film Deposition and Derivatization

All iCVD films were deposited in a custom built vacuum reactor (Sharon Vacuum), as 

previously described [9, 10]. All the chemicals were used as purchased without further 

purification. Silicon (Si) wafers (Wafer World, test grade) were coated with P4VP or the 

copolymer of 4VP and DVB without pre-treatment. Prior to deposition, commercial RO 

membranes (Koch Membrane System, TFC-HR) were cleaned with filtered nitrogen, and 

then treated with oxygen plasma for 1 minute and then placed in the reactor chamber. The 

glass slides were treated with trichlorovinylsilane (Aldrich, 97%), as described previously 

[34]. During iCVD depositions, 4VP (Aldrich, 95%) and DVB (Aldrich, 80%) monomers 

were heated up to 50 °C and 65 °C in glass jars, respectively and delivered into the reactor 

using mass flow controllers (1150 MFC, MKS Instruments). Argon patch flow was metered 

into the reactor through a mass flow controller (1479 MFC, MKS Instruments) and the flow 

rate was varied to keep the residence time constant. Systematic variation of the flow rate 

ratios of the two monomers was performed to yield high-zwitterionic-percentage, yet 

chlorine-resistant films of poly(4-vinylpyridine-codivinylbenzene) (PVD). Films were 

deposited at a filament temperature of 250 °C and a stage temperature of 20 °C. Total 

pressure in the vacuum chamber was maintained at 0.8 Torr for all depositions.

In situ interferometry with a 633 nm HeNe laser source (JDS Uniphase) was used to monitor 

the film growth and deposit desired thicknesses on Si substrates. A more accurate film 

thickness on the Si wafer substrates was measured post-deposition using a J.A. Woollam 

M-2000 spectroscopic ellipsometry at three different incidence angles (65°, 70°, 75°) using 

190 wavelengths from 315 to 718 nm. The data were fit using a Cauchy-Urbach model. 

After deposition, the PVD-coated substrates were derivatized as reported previously [9, 10]. 

FTIR, XPS and contact angle measurements were performed as described previously [9, 10].
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Permeation and Salt Rejection Tests

Tests of the coated/bare membranes were performed using a commercial dead-end 

membrane filtration unit (Sterlitech Corp., HP4750) with a nitrogen cylinder to supply feed 

pressure, which was kept at 700 psi for all tests. The flow rates of the permeate were 

determined using a 100 ml metered flask. For the salt rejection tests, 35000 ppm sodium 

chloride dissolved in deionized water was used as feed solution. A conductivity meter 

(CDH-152, Omega Engineering Inc.) was used to measure the conductivities of the feed and 

permeate to calculate the salt rejection.

Chlorine Resistance Tests

Samples subject to chlorine resistance tests were soaked in deionized water for 2 hours, to 

remove the surface absorbed PS molecules and loosely attached oligomers of 4VP. Samples 

were dried with nitrogen gas and soaked in aqueous solution of sodium hypochlorite with 

the concentration of 1000 ppm for various treatment durations. FTIR spectra and dynamic 

contact angle measurements were taken before and after treating with chlorine solutions.

Bacterial Adhesion Tests

V. cyclitrophicus was used as the model microorganism. Bacteria cells from freezer stocks 

were inoculated and grown overnight in artificial seawater at 30 °C to an optical density 

(OD600) of 1 while agitated on a shaker (150 rpm). Cells were suspended in fresh artificial 

seawater and incubated at 37 °C on a shaker (180 rpm) until the optical density reached 0.2. 

The bacterial solution was then injected into the microfluidic channels at a constant flow 

rate of 2 μl min−1, which corresponds to an average flow velocity of 560 μm s−1. During the 

combination treatment, chlorine was directly added to the vessel containing the media with 

bacteria to a final concentration of 5 ppm. Note that in this case the images (Fig. 3) acquired 

at a certain time (t hours) captured bacteria that have been exposed to chlorine for t h.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Antifouling zwitterionic coatings applied onto commercial RO membranes via iCVD
a,b, Cross-sectional SEM image of (a) bare and (b) iCVD coated RO membrane. Panel (a) 

shows the porous supportive polysulfone layer (colored in orange) beneath the nonporous, 

200-nm-thick, selective polyamide layer of the RO membrane. In (b), the smooth top layer 

is the iCVD zwitterionic coating, which is grafted to the selective layer. c, AFM scan of 

coated membrane and (inset) bare membrane. Both surfaces are exceptionally smooth, with 

~1 nm RMS roughness. d, N(1s) XPS high resolution scan of the iCVD P4VP as- deposited 

(blue) and post-functionalized by PS (red), demonstrating full conversion of pyridine to 

zwitterion. e, Salt rejection of bare and coated membranes. The comparable values of salt 

rejection indicate that the coating leaves the thin selective layer of the delicate RO 

membranes intact. f, Water flux through bare and coated membranes. Membranes coated 

with 30-nm functionalized copolymer 1 maintain 86% of the original water flux. Error bars 

(e,f) represent the standard deviations obtained with 3 parallel tests.
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Figure 2. Chlorine-resistant zwitterionic chemistry
a, FTIR spectra of homopolymers and copolymers as-deposited, after PS functionalization, 

and after chlorine exposure. Copolymer 1 and 2 contain 4% and 17% DVB repeat units, 

respectively. The spectra of functionalized P4VP and copolymer 1 display a peak 

corresponding to the zwitterionic moiety (1036 cm −1). Copolymer 1 shows unchanged 

spectra after 1000 ppm chlorine treatment for 2 hours and 24 hours, demonstrating excellent 

chlorine resistance. Spectra are offset vertically for clarity. b-d, Molecular structure of the 

cross-linker DVB, 4VP and the zwitterionic moiety obtained after functionalization. e, The 

polymers’ chlorine resistance, quantified as the area under the 1600 cm−1 peak 

(corresponding to the pyridine ring). Functionalized homopolymer P4VP does not resist the 

oxidative damage of chlorine, whereas functionalized copolymer 1, containing merely 4% 

cross-linker repeat units, resists chlorine considerably better. Increasing cross-linker repeat 

units beyond 4% improves chlorine resistance only slightly. f, Advancing (●) and receding 

(▲) contact angles of the functionalized copolymer 1 before and after chlorine treatment. 

The drop volume is the volume of the water droplet used to measure the contact angle. 

Contact angles are unchanged by chlorine treatment, confirming the chlorine resistance 

observed via FTIR (panel a).
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Figure 3. Enhanced fouling resistance by zwitterionic surfaces and low-level chlorination
a-h, Attachment of concentrated suspensions of the marine bacteria V. cyclitrophicus to 

glass surfaces with (a,e) no treatment; (b,f) the zwitterionic coating (functionalized 

copolymer 1); (c,g) chlorination (5 ppm); and (d,h) the zwitterionic coating plus 

chlorination, after 5 hours (a-d) and 12 hours (e-h). The zwitterionic coating shows no signs 

of fouling after 5 hours under accelerated biofouling tests conditions (b), whereas after the 

same amount of time the bare surface has significant surface coverage by bacteria (a). After 

12 hours, neither the coating alone (f) nor chlorination alone (g) is effective at resisting 

biofouling, whereas the combined treatment exhibits dramatically increased fouling 

resistance and maintains a clean surface (h). Relative fouling indices, F1 (b,f) – the fraction 

of surface coverage for the coated surface compared to the bare glass control – and F2 (c,g) 

– the fraction of surface coverage in the presence of chlorination, compared to that in the 

absence of chlorination for a bare glass surface – are used to quantify the effects of coating 

and chlorination, respectively. The synergistic fouling prevention is quantified by the 

synergistic index, S (d,h), where S < 1 indicates synergy between the coating and 

chlorination. See also Supplementary Movies 3 and 4. Images in (a-h) are captured with the 

same magnification and the scale bar represents 50 μm. i-q, Comparison of the attachment 

and proliferation of a V. cyclitrophicus bacterium on (i,l,o) a bare surface, (j,m,p) a bare 

surface with chlorination, and (k,n,q) a coated surface with chlorination. The 5 ppm chlorine 

addition did not prevent bacterial proliferation on the surface (m,n,p). The zwitterionic 

chemistry is critical for the synergistic fouling resistance, as bacteria are readily removed 

from the zwitterion-coated surface by even laminar flow (Reynolds number ~0.1) (q). See 

also Supplementary Movie 5. The scale bar represents 5 μm.
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Figure 4. Synergistic prevention of bacterial fouling by the combination treatment
a , Surface coverage by V. cyclitrophicus bacteria under different conditions. The synergistic 

treatment – integrating iCVD zwitterionic coating with low-level (5 ppm) chlorination – 

shows exceptional long-term antifouling activity even under accelerated biofouling 

conditions (i.e., dense bacterial suspensions), when each method in isolation begins to fail. 

Inset, Time series of the synergistic index (S), quantifying synergistic effect of the two 

antifouling strategies. Values of S < 1 indicate a positive synergy between the two 

treatments. The monotonic decrease of S, with no signs of saturation over 15 hours, 

demonstrates the importance of synergistic effect on long-term fouling resistance. b, 

Viability of V. cyclitrophicus upon addition of chlorine at different concentrations. 1 ppm 

chlorine does not significantly impact bacterial growth, whereas 5 ppm chlorine reduces the 

optical density by 42%, but does not kill bacteria. Killing by chlorine is thus not the 

dominant factor in the success of the synergistic treatment. c, Mean swimming speed of V. 

cyclitrophicus, obtained by tracking of individual cells. Addition of up to 5 ppm chlorine 

does not significantly change the bacteria's swimming speed, suggesting that prevention of 

attachment is not due to a reduction of encounter rates with surfaces.
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Table 1

Comparison of the important characteristics of surface modification techniques for zwitterionic antifouling 

chemistries.

Methods SAMs35 Atom-transfer radical-polymerization36 Bulk solution polymerization4 Layer-by-layer37 iCVD

All-dry processing X X X X V

Substrate-independence X X V X V

Synthesis speed [nm min−1] 10−3 10−2 ~103 ~1 ~10

Small post-treatment roughness V V X X V

Conformal coating V V X V V

Ultra-thin coating V V X V V

High surface concentration of 
zwitterionic groups

V V X V V
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