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Abstract— In this work we formulate the interaction between
image segmentation and object recognition in the framework
of the Expectation Maximization (EM) algorithm. We consider
segmentation as the assignment of image observations to object
hypotheses and phrase it as the E-step, while the M-step amounts
to fitting the object models to the observations. These two tasks
are performed iteratively, thereby simultaneously segmenting an
image and reconstructing it in terms of objects.

We model objects using Active Appearance Models (AAMs) as
they capture both shape and appearance variation. During the
E-step the fidelity of the AAM predictions to the image is used
to decide about assigning observations to the object. For this we
propose two top-down segmentation algorithms. The first starts
with an oversegmentation of the image and then softly assigns
image segments to objects as in the common setting of EM. The
second uses curve evolution to minimize a criterion derived from
the variational interpretation of EM and introduces AAMs as
shape priors. For the M-step we derive AAM fitting equations
that accommodate segmentation information, thereby allowing
for the automated treatment of occlusions.

Apart from top-down segmentation results we provide system-
atic experiments on object detection that validate the merits of
our joint segmentation and recognition approach.

Index Terms— Image segmentation, object recognition, Expec-
tation Maximization, Active Appearance Models, curve evolution,
top-down segmentation, generative models.

I. INTRODUCTION

THE bottom-up approach to vision [28] has considered

the interaction between image segmentation and object

detection in the scenario where segmentation groups coherent

image areas that are then used to assemble and detect objects.

Due to its simplicity this approach has been widely adopted,

but there is a growing understanding that the cooperation

(synergy) of these two processes can enhance performance.

Models that integrate the bottom-up and top-down streams

of information were proposed during the previous decade

by researchers in cognitive psychology, biological vision and

neural networks [12], [31], [33], [41], [48] where the primary

concerns have been at the architectural and functional level.

In this decade the first concrete computer vision approaches

to the problem [7], [54] have inspired a host of more recent
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systems [6], [15], [21], [24], [25], [27], [32], [45], [51], [52],

pursuing the exploitation of this idea.

Several of these works have been inspired from the analysis-

by-synthesis framework of Pattern Theory [17], [34], [45].

In this setting a set of probabilistic, generative models are

used to synthesize the observed image and the analysis task

amounts to estimating the model parameters. This approach

can simultaneously regularize low-level tasks using model-

based information and validate object hypotheses based on

how well they predict the image.

In our work we use Active Appearance Models (AAMs) as

generative models and address the problem of jointly detecting

and segmenting objects in images. Our main contribution,

preliminarily presented in [21], is phrasing this task in the

framework of the Expectation Maximization (EM) algorithm

[13]. Specifically, we view image segmentation as the E-

step, where image observations are assigned to the object

hypotheses. Model fitting is seen as the M-step, where the

parameters related to each object hypothesis are estimated

so as to optimally explain the image observations assigned

to it. Segmentation and fitting proceed iteratively; since we

are working in the framework of EM, this is guaranteed to

converge to a locally optimal solution.

To make the combination of different approaches tractable

we build on the variational interpretation of EM; this phrases

EM as the iterative maximization of a criterion that is a

lower bound on the observation likelihood. Specifically, we

consider two alternative approaches for the implementation

of the E-step; the first uses initially an off-the-shelf overseg-

mentation algorithm and then assigns the formed segments to

objects. The second uses a curve evolution-based E-step that

combines AAMs with variational image segmentation. Both

approaches can be seen as optimizing the criterion used in the

variational interpretation of EM. Further, we combine AAM

fitting and image segmentation based on this criterion. We

derive modified fitting equations that incorporate segmentation

information, thereby automatically dealing with occlusions.

Finally, we provide systematic object detection results for

faces and cars, demonstrating the merit of this joint segmen-

tation and recognition approach.

1) Paper Outline: In Sec. II we introduce the basic notions

of EM and give an overview of our approach. Sec. III presents

the generative models we use and formulates the variational

criterion optimized by EM. We present the two considered

approaches for the E-step Sec. IV, and derive the M-step for

AAMs in Sec. V. Experimental results are provided in Sec.
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M step

Observed Image

Front-End System Expectation Maximization Loop

System Pseudocode

[O1, . . . ,OK] = DETECT OBJECTS(I)
for i = 1 to K do

Ai = INITIALIZE(Oi)
repeat

SEGi = E STEP(AOi
,B, I)

AOi
= M STEP(SEGi, I)

until CONVERGENCE

VERIFY(Oi, SEGi,AOi
)

end for

Fig. 1: Overview and pseudocode for our approach: a front-end object detection system provides a set of candidate object locations. The
location of each object hypothesis Oi is used to initialize the parameters Ai of a generative model, that then enters enters an EM-loop. In
the E-step the object obtains the image areas it explains better than the background and in the M-step the model parameters are updated.
After convergence, the model parameters and the object segmentation are used to verify object hypotheses and prune false positives.

VI, while Sec. VII places our work in the context of existing

approaches; technical issues are addressed in App. I.

II. EM APPROACH TO SYNERGY

Our work builds on the approach of generative models

to simultaneously address the segmentation and recognition

problems. For the purpose of segmentation we use the fidelity

of the generative model predictions to the image in order

to decide of the image a model should occupy. Regarding

recognition, each object hypothesis is validated based on the

image area assigned to the object, as well as the estimated

model parameters, which indicate the familiarity of the object

appearance.

This yields however an intertwined problem: on the one

hand knowing the area occupied by an object is needed for

the estimation of the model parameters and on the other the

model synthesis is used to assign observations to the model.

Since neither is known in advance, we cannot address each

problem separately. We view this problem as an instance of the

broader problem of parameter estimation with missing data: in

our case the missing data are the assignments of observations

to models. A well-known tool for addressing such problems

is the EM algorithm [13], which we now briefly describe for

the problem of parameter estimation for a mixture distribution

[5] before presenting how it applies to our approach.

A. EM algorithm and Variational Interpretation

Consider generating an observation In by first choosing

one out of K parametric distributions, with prior probability

πk and then drawing a sample from that distribution with

probability P (In|θk). EM addresses the task of estimating

the parameter set A = {A1, . . . ,Ak} , Ak = (θk, πk), that

optimally explains a set of observations I = {I1, . . . , IN}
generated this way.

The missing data are the identities of the distributions used

to generate each observation; these are represented with the

binary hidden variable vectors zn = [zn,1, . . . , zn,K ]T . zn

corresponds to the n-th observation, and its unique non-zero

element indicates the component used to generate In. By sum-

ming over the unknown hidden variables Z = {z1, . . . , zn}
we can express the likelihood of the observations given the

parameter set:

log P (I|A) =

N
∑

n=1

log P (In|A) =

N
∑

n=1

log
∑

zn

P (In, zn|A)

(1)

We can write the last summand as:

P (In, zn|A) = P (In|zn,A)P (zn|A) =

K
∏

k=1

[πkP (In|θk)]
zn,k

(2)

Finding the optimal estimate A∗ is intractable, since the sum-

mation over zn appears inside the logarithm in (1). However,

for given Z, one can write the full observation log likelihood:

log P (I,Z|A) =
∑

n

∑

k

zn,k log (πkP (In|θk)) . (3)

The parameters in this expression can be directly estimated

since the summation appears outside the logarithm.

The EM algorithm exploits this by introducing the expec-

tation of (3) with respect to the posterior distribution of zn,k.

Denoting by zn,k the vector zn that assigns observation n to

the k-th mixture, i.e. has zn,k = 1, we write the EM algorithm

as iterating the following steps:

• E-step: derive the posterior of z conditioned on the previous

parameter estimates, A∗ and the observations:

En,k ≡ P (zn,k|In,A∗) =
π∗

kP (In|θ
∗
k)

∑

j π∗
j P (In|θ∗j )

, (4)

and form the expected value of the log-likelihood under this

probability mass function:

〈log P (I,Z|A∗)〉E =
∑

n

∑

k

En,k log (πkP (In|θk)) (5)
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• M-step: maximize the expected log-likelihood with respect

to the distribution parameters:

π∗
k =

∑

n En,k

N
, θ∗k = argmax

∑

n

En,k log P (In|θk) (6)

Intuitively, in the E-step the unobserved binary variables in (3)

are replaced with an estimate of each mixture’s ‘responsibility’

for the observations, which is then used to decouple param-

eter estimation in the M-step. This consistently increases the

likelihood [13] and converges to a local maximum of (1).

EM can also be seen as a variational inference algorithm

[18] along the lines of [35]. There it is shown to iteratively

maximize a lower bound on the observation likelihood:

log P (I|A) ≥ LB(I, Q,A)

LB(I,Q,A) =
∑

Z

Q(Z) log
P (I|Z,A)P (Z|A)

log Q(Z)
. (7)

The bound LB is expressed in terms of Q, an unknown

distribution on the hidden variables Z, and the parameter set A.

The form in (7) is derived from Jensen’s inequality. Typically

Q is chosen from a manageable family of distributions; for ex-

ample by choosing a factorizable distribution Q =
∏

Qn(zn)
computations become tractable since the summations in (7)

break over n.

The individual distribution Qn(zn) determines the prob-

ability of assigning the n-th observation to one of the K
components. To make the relation with (4) clear, we use Qn,k

to denote the probability of zn,k. By breaking the product in

the logarithm we can thus write (7) as:

LB(I, Q,A) =
∑

n,k

Qn,k[log P (In|Ak)

+ log P (zn,k|Ak) − log Qn,k]. (8)

Maximizing the bound in (8) with respect to Q subject to

the constraint that
∑

k Qn,k = 1,∀n leads to Qn,k = En,k.

So, the variational approach to EM interprets the E-step as a

maximization with respect to Q.

Apart from providing a common criterion for the two

segmentation algorithms used subsequently, this formulation

makes several expressions easier. For example, by breaking

the product in (7) and keeping the term
∑

Z
Q(Z) log P (Z|A),

we have a quantity that captures prior information about

assignments. For mixture modeling this simply amounts to

the expression
∑

n

∑

k Qn,k log πk, that favors assignments

to clusters with larger mixing weights. In image segmentation

however there are other forms of priors, such as small length

of the boundaries between regions, or object-specific priors,

capturing the shape properties of the object. We will express

all of these in terms of Q(Z) log P (Z|A).

B. Application to Synergy

In the mixture modeling problem the hidden variable vec-

tors provide an assignment of each observation to a specific

mixture component. The analogy with our problem comes by

seeing the object models as the mixture components and the

hidden variables as providing the image segmentation.

We apply the EM algorithm to our problem by treating

segmentation as the E-step and model fitting as the M-

step as shown in Fig. 1. In the E-step we determine the

responsibility of the object model for image observations and

in the M-step we estimate the model parameters so as to

optimally explain the data that it has occupied. Intuitively we

consider segmentation as determining a window through which

the object is seen, with binary hidden variables determining

whether the object is visible or not. Top-down segmentation

decides where it is best to open this window, while model

fitting focuses on the object parts seen through it.

Input Image

E−step, iteration 1 E−step, iteration 5 E−step iteration 40

M−step, iteration 1 M−step, iteration 5 M−step, iteration 40

Fig. 2: Improvement of the segmentation and parameter estimates at
increasing iterations of EM: The middle row shows the evolution of
the face hypothesis region (E-step) and the bottom row shows object
fitting results, using the above region (M-step).

Illustrating this idea, Fig. 2 shows the result of iterating the

E- and M-steps for a toy example: Starting from a location

in the image proposed by a front-end detection system, the

synthesis and segmentation gradually improve, converging to

a solution that models a region of the image in terms of

an object. The assignment of observations to a model and

the estimation of the model parameters proceed in a gradual,

relaxation-type fashion until convergence.

Apart from providing a top-down segmentation of the

image, this idea can be useful for two more reasons: first,

(a) Input (b) Plain AAM (c) EM-based AAM (d) E-step results

Fig. 3: Dealing with occlusion: the sunglasses in (a) lead to erroneous
AAM fits, as shown in (b). The EM approach leads to the more robust
fit in (c) since the E-step results in (d) do not assign the sunglass
region to the object.
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(a) Detections (b) Syntheses (c) Segmentations

Fig. 4: Top-down information helps prune false positives: Back-
ground clutter leads to a false positive, shown with a red-dashed
box in (a); this is pruned due to both the unlikely AAM parameter
estimates, witnessed as a non-typical face in (b) and the lower values
of the E-step results, shown by a lower gray value in (c).

we use segmentation information to deal with occlusion. The

E-step can decide to assign occluded parts to the background,

thereby freeing the object from explaining these areas. The

fitting can therefore focus on the areas that actually belong

to the object, as shown in Fig. 3: based on our approach the

synthesis captures more accurately the intensity pattern of the

face and gives reasonable predictions in the part that has been

occluded. We address this aspect in further detail in Sec. V.

Second, we can use the E-step results as well as the

AAM parameters to prune false positives, as shown in Fig.

4. The likelihood of the AAM parameters under the model’s

prior distribution indicates how close the observed image is

to the object category, which helps discard false positives.

Further, the E-step results quantify the fidelity of the model to

the image data in terms of the extent of the area assigned

to it. Object hypotheses generated from detections due to

background clutter have a low chance of explaining a large

part of the image and thereby obtain a smaller area. We

systematically evaluate the merit of these ideas in Sec. VI.

Both of these uses could, in principle, be pursued with

different approaches like the stochastic search over models

and segmentations of [45]. However our work makes broadly

accessible the use of a bottom-up/top-down loop by using a

deterministic and well-studied inference algorithm. Both the

EM algorithm and the system components are widely used in

current research, and can be incorporated with little additional

effort in existing systems.

III. GENERATIVE MODELS AND EM CRITERION

A basic ingredient of our approach is the use of generative

models; such models are popular in computer vision as they

can be used to formulate in a principled manner problems like

detection, tracking and in our case top-down segmentation. For

object detection such models are used extensively in the setting

of part-based object models. In our work we are interested in

modeling the whole area occupied by an object instead of a

few interest-points or features. We therefore consider global

generative models for image intensity.

We now introduce the models we use for our object cate-

gories and the alternative, background hypothesis. At the end

of this section we combine them in an EM criterion used in

the rest of the paper. This is then maximized by the E- and

M- steps of our approach.

A. Object Model: AAMs

For Fig. 2 a PCA basis for faces [47] was used as a

generative model, resulting in ‘ghosting artifacts’ e.g. around

the hair. This is due to the absence of a registration step in

typical PCA models that perplexes both the modeling and the

segmentation of deformable objects.

We therefore use Morphable- Active Appearance Models

(AAMs) [9], [20], [30] as models that explicitly account

for shape variability and can drive both the analysis and

segmentation tasks. Since we want our approach to be broadly

applicable to object detection, we use AAMs learned with

the approach of [23]. The only information used there is

the bounding box of the object, which is used also by most

unsupervised learning algorithms for object detection.

AAMs model separately shape and appearance variation

using linear expressions, and combine them in a nonlinear

manner. Specifically, a deformation field S

S(x; s) ≡ (Sx(x; s), Sy(x; s)) =

NS
∑

i=1

siSi(x) (9)

is synthesized to bring the image pixel (Sx(x; s), Sy(x; s)) in

registration with the template pixel x = (x, y). The appearance

T is synthesized on the deformation-free template grid as

T (x; t) = T0(x) +

NT
∑

i=1

tiTi(x). (10)

The model parameters are the shape and texture coefficients

s = (s1, . . . , sNS
), t = (t1, . . . , tNT

), while S, T are

the corresponding basis elements and T0(x) is the mean

appearance.

Given an observed image I , AAM fitting iteratively mini-

mizes w.r.t. s and t a criterion defined on the template grid:

E(s, t) =
∑

x

H(x) (I(S(x; s)) − T (x; t))
2
, (11)

where H(x) is the indicator function of the object’s support.

Observations at locations that do not get warped to the interior

of this support cannot be modeled by the AAM and therefore

do not contribute to the error.

Under a white Gaussian noise error assumption the log-

likelihood of I(x) writes:

log P (I(x)|s, t) = −

(

I(x) − T (S−1(x; s); t)
)2

2σ2
−

log 2πσ2

2
.

(12)

Here S−1 fetches from the template coordinate system the pre-

diction T (S−1(x; s); t) corresponding to the observed value

I(x) and as above, this equation holds only if H(S−1(x; s)) =
1, namely if x can be explained by the AAM.

If the magnification or shrinking of the template point x is

negligible we have P (I|s, t) ∝ exp(−E(s, t)/(2σ2)), which

interprets AAM fitting as providing a Maximum Likelihood

parameter estimate. Further, we can perform Maximum-A-

Posterior estimation by introducing a quadratic penalty on

model parameters in (11), which equals the log-likelihood of

the parameters under a Gaussian prior distribution.
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B. Background Model: Piecewise Constant Image

To determine the assignment of observations to the object

we need a background model as an alternative to compete

with. There are several ways to build a background model,

depending on the accuracy required from it. At the simplicity

extreme, for Fig. 2 we use a nonparametric distribution for

the image intensity that is estimated using the whole image

domain. However, for images with complex background this

distribution becomes loose, and the object model may be better

even around false positives. The more complex, full-blown

generative approach of [45], [46] pursues the interpretation of

the whole image so there is no generic background model.

Practically, for the joint segmentation and detection task this

could be superfluous: as we show in the experimental results

a simple background model can both discard false positives

and exclude occluded areas from model fitting.

The approach we take lies between these two cases. We

consider that the background model is built by a set of regions,

within which the image has constant intensity; this is the

broadly used piecewise-constant image model. We assume

that within each region r the constant value is corrupted by

white Gaussian noise, and estimate the parameters (µr, σr)
from the mean and standard deviation of the region’s image

intensities. These, together with the prior probability πBr
of

assigning an observation to the region form the parameter set

for background region r: ABr
= (µr, σr, πBr

).

We can combine all sub-models in a single background

hypothesis B, under which the likelihood of I(x) writes:

P (I(x)|AB) =

R
∏

r=1

[P (I(x)|ABr
)]Hr(x)

= N(µi − I(x), σi) (13)

where AB = (AB1
, . . . ,ABR

), Hr(x) is the support indicator

for the r-th region and i is the index of the region that contains

x, i.e. Hi(x) = 1. Implicitly, for (13) we assume that πBr

does not depend on r, and condition on I(x) belonging to the

background; otherwise a πBi
term would be necessary. This is

an expression we will use in the following when convenient.

C. EM criterion for Object vs Background Segmentation

We now build a lower bound on the likelihood of the image

observations under the mixture of the object and background

models. For the sake of simplicity we formulate it for the

case of jointly segmenting and analyzing a single object; the

generalization to multiple objects is straightforward.

We split the bound in (8) into object- and background- re-

lated terms. Since our models are formulated in the continuous

domain but EM considers a discrete set of observations, we

denote below with xn the image coordinate corresponding to

observation index n.

We first consider the part of the EM bound in (8) that

involves the object hypothesis, O. This can be expressed in

terms of the column of Qn,k that relates to O, QO and the

object parameters AO = (s, t, πO) that include the AAM

parameters s, t and the prior probability πO of assigning an

observation to the object if it falls within its support. Using

these we write the related part of the bound as:

LB(I, QO,AO) =
∑

n

Qn,O [log P (In|AO) + log P (zn,O|AO)] .

(14)

Here P (In|AO) = P (I(xn)|s, t) is the observation likelihood

under the appearance model of (12) and zn,O is the hidden

variable vector that assigns the observation n to hypothesis O.

The term P (zn,O|AO) equals the prior probability of zn,O

under the AAM model and constrains the AAM to only model

observations in the template interior. Specifically, we have:

P (zn,O|AO) = H(S−1(xn, s))πO. (15)

In words, hypothesis O can take hold of observation n only if

S−1 brings it inside the object’s interior. In that case, the prior

probability of obtaining it is πO. This brings shape information

directly in segmentation without introducing additional terms

to a segmentation criterion as is done e.g. in [11], [43]. We

therefore see AAMs as providing a natural means to introduce

shape-related information in segmentation.

For the background model we adopt the mixture modeling

approach described in the previous subsection and write:

LB(I,QB,AB) =
∑

n,r

Qn,Br
[log P (In|ABr

)

+ log P (zn,Br
|ABr

)]. (16)

As in (14), QB are the columns of Qn,k related to the

background hypotheses and AB are the corresponding param-

eters. The first summand is the likelihood of the observations

under the r-th background sub-model. The second summand

is a prior distribution over the assignments that we use to

balance the complexity of the fore- and background models.

Specifically, the AAM has often larger reconstruction error

than the background model, since it explains an heterogenous

set of observations with a varying set of intensities. Instead,

the background regions are determined using bottom-up cues

and have almost constant intensity, thereby making it easier to

model their interiors. We therefore assign observations to the

object model more easily by setting P (zn,Br
|ABr

) = πBr
to

a low value; this gives rise later to ‘MDL’ or ‘balloon’ terms.

We combine these two terms with a scaled version of the

entropy-related term of (7) and obtain the following lower

bound on the log-likelihood of the data:

LB(I, Q,A) =
∑

n

∑

h∈{O,B1,...,BR}

Qn,h

[

log P (In|Ah)

+ log P (zn,h|Ah) −
1

α
log Qn,h

]

(17)

where Q = {QO, QB} and A = {AO,AB}. The last

summand favors high-entropy distributions and leads to soft

assignments. Since −
∑

n,h Qn,h log Qn,h ≥ 0, for all α ≥ 1
we have a lower bound on the log-likelihood: for α = 1 we

have the original EM bound of (7), while in the winner-take-

all version of EM described in [35] we set α → ∞, so the

entropy term vanishes and all assignments become hard. This

is also the common choice for image segmentation.
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(a) Watershed Segmentation

(b) Background Synthesis

N(µN , σN)

N(µ1, σ1)

I(x; t, s) N(µi, σi)

(c) Fragment-based E-step

Fig. 5: Fragment-based E-step: We break the image into fragments
using the watershed algorithm as shown in (a). The background model
uses a Gaussian distribution within each fragment and its prediction,
shown in (b), is constant within each fragment. During the E-step the
occupation of fragments is determined based on whether the object
synthesis, I(x; s, t) reconstructs the image better than the background
model. The gray value indicates the degree to which a fragment is
assigned to the object.

We can now proceed to the description of the E- and M-

steps; they are both derived so as to minimize (17) with respect

to Q and A respectively.

IV. E-STEP: OBJECT-BASED SEGMENTATION

In what follows we present two alternatives to implementing

the E-step; each constitutes a different approach to finding the

background regions and minimizing the EM criterion of (17).

Our initial approach of [21], described in Sec. IV-A, utilizes

an initial oversegmentation to both determine the background

model and implement the E-step. This is efficient and modular,

since any image segmentation algorithm can be used at the

front-end. Still, it does not fully couple the segmentation

and analysis tasks, since the initial segmentation boundaries

cannot be modified. We therefore subsequently propose an

alternative in Sec. IV-B that utilizes curve evolution for the E-

step, incorporating smoothness priors and edge information.

This yields superior segmentations but comes at the cost of

increased computation demands; these can be overcome using

efficient algorithms such as [38].

A. Fragment-based E-step

As suggested in [2], [32] an initial oversegmentation of

the image can efficiently recover most object boundaries.

Adopting this approach, in our work we use the morphological

watershed algorithm [4]. Specifcially, we use the Brightness-

Gradient boundary strength function of [29] to obtain both

edges and markers; we extract the latter from the local minima

of the boundary strength function. As shown in Fig. 5, this

gives us a small set of image fragments that we use in two

complementary ways.

First, we define a background distribution by modeling the

image intensities within each fragment with a normal distri-

bution. We thereby build our piecewise-constant background

model with a set of fixed regions.

Second, since these regions are highly cohesive, we treat

them as ‘bundled’ observations - or ‘atomic regions’ in [2]

and ‘superpixels’ in [32]. We thus use a fragment-based E-

step that uniformly assigns an image fragment to either the

object or the background hypothesis. This reduces the number

of assignment variables considered from the number of pixels

to the number of fragments.

We now consider the part of the EM criterion involving

observations in region Rr, by limiting the summation in (17)

to n ∈ Rr. We can simplify its expression by noting first

that only the background sub-model Br built within region r
is active, and second by using a common value Qr,k for the

related assignment variables Qn,k, n ∈ Rr. Further, since only

the object and a single background hypothesis are entailed, we

set qr = Qr,O = 1−Qr,Br
for simplicity. We can thus rewrite

the considered part of (17) as:

LB(I, qr,A) =
∑

n∈Rr

qr [log P (In|AO) + log P (zn,O|AO)]

+(1 − qr) [log P (In|ABr
) + log P (zn,Br

|ABr
)]

−
1

α
[qr log qr + (1 − qr) log(1 − qr)]

Substituting from (15) and maximizing with respect to qr

gives:

1

α
log

qr

1 − qr

− β =
1

|Rr|

∑

n∈Rr

log
P (In|AO)H(S−1(xn, s))

P (In|ABr
)

,

(18)

where β = log πO

πBr
and |Rr| is the cardinality of region r.

We treat β as a design parameter that allows us to determine

how easily we assign fragments to the object. Finally, we use

the notation logP (I|O)
P (I|B) for the right hand side of (18) so the

optimal qr is given by a sigmoidal function:

qr =
1

1 + exp(−α
[

logP (I|O)
P (I|B) + β

]

)
(19)

For all experiments we use the values α = 10, β = 1,

estimated by tuning the system’s performance on a few images.

We note that a different front-end segmentation algorithm

might require different values for α and β. For example if the

segments returned were significantly smaller, a lower value for

β would be needed: as argued in Sec. III-C, in that case the

background model would generally be more accurate, so we

would need to make it even easier for the foreground model

to acquire a part. To avoid manual tuning, one can therefore

use the simple learning-based approach we had initially used

in [21] to estimate α and β from ground truth data.

On the left of each column pair in Fig. 7 we demonstrate

top-down segmentation results for faces and cars that validate

our system’s ability to segment objects of varying shape

and appearance. We show the border of the region that is

obtained by thresholding the results of the E-step for the object

corresponding to the strongest bottom-up hypothesis.

The segmentations are generally appealing, correctly cap-

turing the pose of the object categories considered, while

excluding unpredictable locations like beards for faces or

pedestrians for cars. However, jagged boundaries can occur,
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N (µ3, σ3)N (µ2, σ2)
I(x; t, s)

N (µ1, σ1)

Fig. 6: Curve evolution-based E-step: we represent the object region
as the interior of an evolving contour. To occupy image observations
the object region changes its boundary by competing with a set of
deformable background hypotheses.

due to the E-values of some fragment falling below threshold.

Further, inaccuracies of front-end segmentation propagate to

the top-down segmentation as is more prominent for the car

images where the low-level cues are unreliable; these problems

led us to consider the segmentation scheme presented next.

B. Curve Evolution-based E-step

In this second approach to implementing the E-step a small

set of deformable regions constitute our background model, as

shown in Fig. 6. Their boundaries evolve so that each region

occupies a homogeneous portion of the image while at the

same time the boundary of the object region evolves to occupy

the parts explained by it. This is the common curve evolution

approach to image segmentation [8], [53] that is typically

driven by the the minimization of variational criteria. These

criteria can incorporate smoothness and edge-based terms,

thereby addressing the problems of the previous method.

Our contributions consist in using the variational interpre-

tation of EM to justify the use of such methods in our setting,

and introducing AAMs as shape priors for segmentation.

1) Region Competition and EM Interpretation: Region

Competition is a variational algorithm that optimizes a prob-

abilistic criterion of segmentation quality. Using K regions

Rk and assuming the observations within region k follow a

distribution P (·|Ak), the likelihood of the observations for the

current segmentation is considered as a term to be maximized.

Combining the observation likelihood with a prior term that

penalizes the length of the region borders, Γ = {Γ1, . . . ,ΓK}
gives rise to the Region Competition functional [53]:

J(Γ,A) =

K
∑

k=1

µ

2

∫

Γk

ds −

∫∫

Rk

log P (I(x)|Ak)dx, (20)

where µ controls the prior’s weight. Calculus of variations

yields the evolution law:

∂Γk

∂t
= −µκN + log

P (I(x)|Ak)

P (I(x)|Am)
N (21)

where P (I(x)|Am) is the log-likelihood of I(x) under the

competing neighboring hypothesis m, κ is the k-th border

curvature and N its outward normal unit vector. A region

boundary moving according to (21) assigns observations to the

region that predicts them better while maintaining the borders

smooth, as it minimizes the functional (20).

There is an intuitive link between Region Competition

and EM: the E-step is similar to curve evolution, where

observations are assigned to region hypotheses and the M-

step to updating the parameters of the region distributions. The

difference is that instead of a generic EM clustering scheme

that treats an image as an unordered set of pixels, Region Com-

petition brings in useful geometric information and considers

only hard assignments of observations to hypotheses.

The formal link we build relies on using the variational

interpretation of EM to restrict the distributions considered

during the minimization of (17) with respect to Qn,k. Specif-

ically, we consider only binary, winner-take-all [35] distribu-

tions over assignments. Denoting the set of observations that

are assigned to hypothesis k as Rk = {n : Qn,k = 1} the first

term of (17) writes:
∑

n

∑

k

Qn,k log P (In|Ak) =
∑

k

∑

n∈Rk

log P (In|Ak) (22)

which is a discretization of the area integral in (20).

Further, we can introduce the arclength penalty of (20) into

our EM criterion by appropriately constructing the prior on

the hidden variables, i.e. the second term in (8). For this we

introduce a boolean function b(zNn
) whose argument is the

window of assignment vectors in the neighborhood Nn of

n. b indicates whether observations around n are assigned to

different hypotheses, i.e. if n is on a boundary; we use b to

write the length-based prior

P (Z) =
1

Z

∏

n

exp(−b(zNn
)), (23)

where Z is a normalizing constant. We could also consider

object specific terms, but we assume P (Z|A) = P (Z) for

simplicity. Since Q is factorizable and
∑

k Qn,k = 1, we have

−
∑

Z

Q(Z) log P (Z|A) =
∑

n

∑

k

Qn,kb(zNn
) + c

=
∑

n

b(zNn
) + c,

which is, apart from the constant c = log Z a discretized

version of the arc-length penalty used in Region Competition.

Finally, the entropy term −
∑

Z
Q(Z) log Q(Z) of (17)

generally favors smooth assignments of observations to the

available hypotheses; since the Region Competition scheme

by design assigns in a hard manner image observations to

regions this term always equals zero and does not affect the

EM bound. We note that we would end up with the same result

if we set α = ∞ in (17) from the start; then the entropy term

would vanish and the optimal distributions would be binary.

Summing up we can see Region Competition as minimizing

a version of (17) that utilizes specific expressions for P (Z|A)
and Q(Z). Even though mostly technical, this link allows us

to use well studied segmentation algorithms in our system

without straying from the original EM-based formulation.
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Fig. 7: Top-down segmentations of car and face images using fragment-based (left) and curve evolution-based (right) segmentation. For
display, all background hypotheses are merged in a single region; For the fragment-based segmentation we threshold the E-step results at a
fixed value. We observe that the curve evolution-based results provide smoother segmentations, that accurately localize object borders.

2) AAMs as Shape Priors: Coming to our case, the data

fidelity terms for both the object and background hypotheses

break into sums over the image grid, so they directly fit

the setting of Region Competition. A variation stems from

the P (zn,O|AO) and P (zn,B|AB) terms that enforce prior

information on the assignment probabilities. As mentioned in

the previous section, P (zn,O|AO) prevents the object from

obtaining observations that do not fall within the template

support; P (zn,O|AB) can be a small constant, that acts as

a penalty on the background model and helps the foreground

model obtain observations more easily.

By taking into account the P (zn,O|AO) and P (zn,B|AB)
terms we have the following evolution law for the front Γ that

separates the the object, O and the background B hypotheses:

∂Γ

∂t
= −µκN + log

P (I(x)|AO)P (zn(x),O|AO)

P (I(x)|AB)P (zn(x),B|AB)
N

(15)
=

[

−µκ + log
P (I(x)|AO)H(S−1(x, s))

P (I(x)|AB)
+ β

]

N .

Above β = log πO

πBr
, x is an image location through which the

front passes and n(x) the corresponding observation index.

The term H(S−1(x, s)) gates the motion due to the observa-

tion likelihood ratio term, log P (I(x)|AO)
P (I(x)|AB) . Specifically, it lets

the object compete only for observations that fall within its

support, i.e. if H(S−1(x, s)) = 1. Otherwise the observation

is assigned to the background.

This constrains the object region to respect the shape

properties of the corresponding category and introduces shape

knowledge in the segmentation. Contrary to other works, such

as [11], [43], this does not require additional shape prior terms

but comes naturally from the AAM modelling assumptions.

Further, as in the previous subsection, we use a positive

balloon force β which favors the object region over the

background.

We also use terms that result in improved segmentations,

even if they do not stem from a probabilistic treatment.

Specifically, as in [39], an edge-based term is utilized that

pushes the segment borders towards strong intensity variations:

∂Γ

∂t
=

[

−µκ + log
P (I(x)|s, t)H(S−1(x, s))

P (I(x)|AB)

+β −∇G(|∇I|) · N

]

N , (24)

where G(|∇I|) is a decreasing function of edge strength |∇I|.

Curve evolution is implemented using level-set methods

[37], [44] which are particularly well-suited for our problem;

their topological flexibility allows holes to appear in the

interior of regions, thereby excluding occluded object areas.

Two competing background fronts are introduced, which form

two large clusters for bright and dark regions. Initialization is

random for all but the object fronts that are centered around

the bottom-up detection results. Finally, we smooth H with a

Gaussian kernel of σ = 2 for stability.

In Fig. 7 where we compare the top-down segmentations

offered by the two approaches, we observe that curve evolution

yields superior results. The curvature term results in smooth

boundaries, the edge force accurately localizes object borders,

the shape of the objects is correctly captured, while occluded

areas are discarded. Some partial failures, as e.g. the bottom-

left car image can be attributed to the limited expressive ability

of the AAM, that could not capture the specific illumination

pattern. In that respect the modularity offered by the EM

algorithm is an advantage, since any better generative model

can be incorporated in the system once available.
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V. M-STEP - PARAMETER ESTIMATION

In the M-step the model parameters are updated to account

for the observations assigned to the object during the E-

step. The generative models we use assume a Gaussian noise

process so that parameter estimation amounts to weighted least

squares minimization, where the weights are provided by the

E-step: higher weights are given to observations assigned with

high confidence to the object and vice versa.

This approach faces occlusions by discounting them during

model fitting. The typical AAM approach, e.g. [40] either

considers occluded areas are known or utilizes a robust norm

to reduce their effect on fitting. Instead, viewing AAMs in the

generative model/EM setting tackles this problem by allowing

alternative hypotheses to explain the observations, without

modifying the AAM error norm.

A. EM-based AAM fitting Criterion

In order to derive the update equations for the object

parameters AO = (s, t) we ignore the entropy-related term

of the EM criterion (17) since it does not affect the final

update. Further, the support-related term H(S−1(x, s)) of (11)

is hard to deal with inside the logarithm: it can equal zero and

introduce infinite values in the optimized criterion. To avoid

this we notice that any observation falling outside the support

cannot be assigned to the object, by default. Therefore, we

multiply the object weights delivered by the E-step with the

indicator function which has the desired effect of taking the

object support into account. The quantity maximized is thus:

CEM (s, t) =
∑

x

E(x)H(S−1(x; s)) log P (I(x)|AO)

+
(

1 − E(x)H(S−1(x; s))
)

log P (I(x)|AB) (25)

where E(x) = Qn(x),O are the results of the previous E-step,

obtained according to one of the two schemes in the previous

section. Introducing the constant c =
∑

x
log P (I(x)|AB) and

gathering terms we rewrite (25) as

CEM (s, t) =
∑

x

E(x)H(S−1(x; s)) log
P (I(x)|AO)

P (I(x)|AB)
+ c.

(26)

Ignoring c, which is unaffected by the optimization of the

foreground model and working on the template coordinate

system this criterion writes:

CEM (s, t) =
∑

x

E(xs)H(x)D(x; s) log
P (I(xs)|AO)

P (I(xs)|AB)
, (27)

where we introduce the notation xs = S(x; s). Since the de-

formation x → S(x) locally rescales the template domain, the

determinant of its Jacobian, D(x; s), commeasures (26),(27)

which are viewed as discretizations of area integrals. Finally,

modeling both the fore- and background reconstruction errors

as a white Gaussian noise process we write (27) as:

CEM (s, t) =
∑

x

E(xs)H(x)D(x; s)
[

(I(xs) − T (x, t))
2 −

(I(xs) − B(xs))
2
]

, (28)

where T is the object-based synthesis, and B is the image

reconstruction using the background model. The multiplicative

factor from the standard deviation of the noise process is

omitted, since it does not affect the final parameter estimate.

The standard, least squares, AAM criterion of (11) can be

transcribed using this notation as:

CLS(s, t) =
∑

x

H(x) (I(xs) − T (x, t))
2
. (29)

Comparing (28) to (29) we observe three main deficiencies

of the latter: First, the segmentation information of E(xs) is

discarded, forcing the model to explain potentially occluded

areas. Second, the fidelity of the foreground and background

models to the data are not compared; in the absence of

strong edges this leads to mismatches of the image and model

boundaries. Third, the magnification or shrinking of template

points due to the deformation is ignored, while it is formally

required by the generative model approach.

B. Shape fitting equations

In the following we provide update rules for AAM fitting

going from (29) to (28), by gradually introducing more elab-

orate terms. As in [30] we derive the optimal update based on

a quadratic approximation to the cost; we provide details in

App. I.

Perturbing the shape parameters by ∆s we have:

I(S(x; s + ∆s)) ≃ I(S(x; s)) +

NS
∑

i=1

dI

ds i
(x; s)∆si (30)

dI

ds i
(x; s) =

∂I(S(x; s))

∂x

∂Sx

∂si

+
∂I(S(x; s))

∂y

∂Sy

∂si

, (31)

where NS the number of shape basis elements. To write (30)

concisely we consider raster scanning the image whereby

I becomes a N × 1 vector, where N is the number of

observations, dI
ds

becomes a N × NS matrix, while ∆s is

treated as a NS × 1 vector. We can thus write (30) as:

I(s + ∆s) = I(s) +
dI

ds
∆s, (32)

where I(s) denotes the vector formed by raster scanning

I(S(x; s)); this is a notation we use in the following for all

quantities appearing inside the criteria being optimized. For

simplicity we also omit the s argument from I(s).
To write the quadratic approximation to the perturbed cost

CLS(s + ∆s, t) we introduce E = I−T and denote by ◦ the

Hadamard product, (aij) ◦ (bij) = (aijbij). We thereby write:

CLS(s + ∆s, t) = CLS(s, t) + J∆s +
1

2
∆s

TH∆s,

J = 2 [H ◦ E ]
T dI

ds
, H = 2

(

H ◦
dI

ds

)T
dI

ds
, (33)

where J is the Jacobian of the cost function, and H its

Hessian. For terms like H ◦ dI

ds
where H is N × 1 and dI

ds

is N × NS , H is replicated NS times horizontally. From

(33) we get the update of the forward additive method [30]:

∆s
∗ = −

[

JH−1
]T

.
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(a) Input (b) Plain LS Fit (c) EM-based Fit (d) E-step (a) Input (b) Plain LS Fit (c) EM-based Fit (d) E-step

Fig. 8: Differences in AAM fitting using the EM algorithm: (a) Input image, (b) plain least squares (LS) fit, (c) EM-based fit and (d) E-step
results. The EM-based fit outperforms the typical LS fit as the E-results robustify the AAM parameter estimation. This is accomplished by
discounting occlusions or areas with unprecedented appearance variations, such as the third window and the hair fringe in the bottom row.

Further, introducing the E-step results yields the criterion:

∑

x

E(xs)H(x) (I(xs) − T (x, t))
2

= [E ◦ H ◦ E ]
T E (34)

for which the Jacobian and Hessian matrices become:

J = 2 (H′ ◦ E)
T dI

ds
+ ET

(

dE

ds
◦ H ◦ E

)

(35)

H = 2

[

H
′ ◦

dI

ds
+ 2

dE

ds
◦ H ◦ E

]T
dI

ds
(36)

where H
′ = E ◦ H. Multiplication with E forces the fitting

scheme to lock onto the areas assigned to the object and results

in the new terms ET (dE

ds
◦ H ◦ E), 2

(

dE

ds
◦ H ◦ E

)T (

dI

ds

)

.

These account for the change caused by ∆s in the probability

of assigning observations to template points.

A more elaborate expression results from incorporating the

deformation’s Jacobian in the update; as it does not critically

affect performance we only report it in App. I.

Finally, we consider the reconstruction error of the back-

ground model, EB = I − B, where B is the matrix formed

by raster-scanning the background synthesis B(xs). We thus

obtain the cost function and Jacobian and Hessian matrices

for the original EM criterion (28):

CEM (s, t) = [(H ◦ E) ◦ E ]
T

[E ] − [(H ◦ E) ◦ EB ]
T

[EB ]
(37)

J = JE − JEB
,H = HE −HEB

, (38)

where JE ,HE are as in (35),(36) and JEB
,HEB

are their

background model counterparts. Since the minimized term is

no longer convex instabilities may occur. An optimal scaling

of the update vector is therefore chosen with bisection search,

starting from one.

C. Appearance fitting equations

The appearance parameters are estimated by considering the

part of the EM criterion that depends on the model prediction:

CEM (s, t) =
∑

x

W (x)

[

I(xs) − T0(x) −
NT
∑

i=1

tiTi(x)

]2

(39)

where NT is the number of appearance basis ele-

ments and W (x) combines all scaling factors: W (x) =
D(x; s)H(x)E(S(x; s)). This yields the weighted least

squares error solution:

t
∗ =

[

[W ◦ (I − T0)]
T

T

]

[

T
T (W ◦ T)

]−1
(40)

where T is the N ×NT array formed by the appearance basis

elements.

Finally, a prior distribution learned during model construc-

tion is introduced in the updates of both the s and t parameters.

For an independent Gaussian distribution the Jacobian and

Hessian matrices are modified as:

J ′
i = Ji + λ

pi

σ2
i

, H′
i,i = Hi,i + λ

1

σ2
i

, (41)

where i ranges over the number of parameter vector elements,

pi is the i-th element of the parameter estimate at the previous

iteration, σi its standard deviation on the training set and λ
controls the tradeoff between prior knowledge and data fidelity.

The improvements in fitting quality attained with the EM-

based scheme are shown in Fig. 8. These examples either

have actual occlusions, or locally have appearances that cannot

be extrapolated from the training set. The plain least squares

criterion of (29) is forcing the model to explain the whole of

its interior, and therefore results in a suboptimal fit.

Instead, in the EM-based setting, even though the AAM

predicts the appearance for the whole object domain, certain

regions may not get assigned to the model if its prediction

there does not match the image observations. As the lower
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values of the E-step results reveal, the model is thereby freed

from explaining occluded regions.

The price to pay for this increased flexibility is that infor-

mative areas like nostrils, teeth, etc. may be discounted if not

modeled adequately well. Still, as the following section shows,

the robustness of the estimated parameters is in practice more

important for the detection task.

VI. SYNERGETIC OBJECT CATEGORY DETECTION

Our goal in this section is to explore how the synergy

between segmentation and recognition improves detection

performance. This is a less explored side of the bottom-up/top-

down idea compared to top-down segmentation and as we

show with the object categories of faces and cars, it is equally

practical and useful.

A. Detection Strategy

1) Bottom-Up Detection: We use a front-end object de-

tection system to provide us with all object hypotheses by

setting its rejection threshold to a conservative value. As in

[45], we treat these detections as proposals that are pruned

via the bottom-up/top-down loop. We rely on the point-of-

interest based system of [22], which represents objects in

terms of a codebook of primal sketch features. This system

builds object models by clustering blobs, ridges and edges

extracted from the training set and then forming a codebook

representation. During detection the extracted features propose

object locations based on their correspondences with the

codebook entries. Since any other bottom-up system could be

used instead of this one, we refer to [22] for further details as

well as to related literature on this quickly developing field,

e.g. [1], [7], [14], [25], [50].

2) Top-Down & Bottom-Up combination: For object de-

tection we complement the bottom-up detection results with

information obtained by the parameters of the fitted AAM

models and the segmentation obtained during the E-step, as

illustrated in Fig. 4. We thus have three different cues for

detection: first, the bottom-up detection term CBU quantifies

the likelihood of interest point features given the hypothesized

object location [22].

Second, the AAM parameters are used to indicate how close

the observed image is to the object category. We model the

AAM parameter distributions as Gaussian density functions,

estimated separately on foreground and background locations

during training. We thereby obtain a simple classifier:

CAAM = log
P (s, t|O)

P (s, t|B)
, (42)

that decides about the presence of the object based on the

estimated AAM parameters.

Third, we quantify how well the object hypothesis predicts

the image data using the E-step results that give the probability

E(x) of assigning observation x to the object. We build the

segmentation-based classifier by computing the average of

E(x) over the area that can be occupied by the object:

CSEG =

∑

x
H(S−1(x))E(x)

∑

x
H(S−1(x))

. (43)
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Fig. 9: Comparison of the Curve Evolution-based E-step (CE) and
the Fragment-based E-step (FE) based on the detection of faces [14]
and cars [1]. For both categories the classifiers using segmentation
(‘SEG’) and AAM parameter (‘AAM’) information perform better if
the Fragment-based E-step is used.

The summation is over the whole image domain, and

H(S−1(x)) indicates whether x can belong to the object.

Using the E-step results in this way prunes false positives,

around which the AAM cannot explain a large part of the

image, thereby resulting in a low value of CSEG.

We combine the three classifiers using the supra-Bayesian

fusion setting [19]. The output Ck of classifier k is

treated as a random variable, following the distributions

P (Ck|O), P (Ck|B) under the object and background hypothe-

ses, respectively. Considering the set of classifier outputs as

a vector of independent random variables, C = (C1, . . . , Ck)
we use their individual distributions for classifier combination:

P (O|C)

P (B|C)
= c

P (C|O)

P (C|B)
= c

K
∏

k=1

P (Ck|O)

P (Ck|B)
(44)

where c = P (O)/P (B).

B. Experimental Results

1) Performance Evaluation and Experimental Settings: We

use Receiver Operating Characteristic (ROC) and Precision

Recall (PR) curves to evaluate a detector: ROC curves consider

deciding whether an image contains an object, irrespective of

its location. PR curves evaluate object localization, comparing

the ratio R of retrieved objects (recall) to the ratio P of correct

detections (precision); both curves can be summarized using

their Equal Error Rate, namely the point where the probability

of a false hit equals the probability of a missed positive.

In order to compare our results with prior work, we have

used the setup of [14] for faces and that of [1] for cars. Cars

are rescaled by a factor of 2.5, and flipped to have the same

direction during training, while faces are normalized so that

the eye distance is 50 pixels; a 50× 30 box is used to label a

detected face a true hit. Further, nonmaximum suppression is

applied on the car results as in [1], allowing only the strongest

hypothesis to be active in a 100 × 200 box.

Regarding system tuning, we determine the parameters that

influence segmentation and model fitting using a few images

from the training set of each category; during testing we use

the same parameter choices for both categories, on all of the

subsequent detection tasks.
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Fig. 10: Performance of the individual and combined classifiers on the face [14] and car [1] datasets. Please note the ranges of the axes;
preferably see in color. The individual classifiers use bottom-up (‘BU’), AAM parameter (‘AAM’) and segmentation (‘SEG’) cues. The others
combine different cues using (44): the ‘AAM+BU’ classifier uses AAM and bottom-up information while the ‘FUSED’ classifier combines
the AAM, BU and segmentation cues. From both PR and ROC curves we see that the ‘FUSED’ classifier outperforms the rest.

2) Comparison of Alternative E-Step Implementations:

We initially compare the Fragment-based E-step (FE) and

Curve Evolution-based E-step (CE) approaches in terms of

their appropriateness for object detection. Specifically, we have

applied the EM approach to both object categories considered,

using identical settings for the detection front-end, the EM

system components and the classifier combination.

In Fig. 9 we provide the Precision Recall curves of the in-

dividual CSEG and CAAM classifiers for the two approaches.

We observe that the CE approach is outperformed by the

FE approach on the detection task. In our understanding this

is because the CE approach makes a hard assignment using

local information while the FE approach takes soft decisions

and uses the information within a whole image fragment. We

note that the CE approach uses a balloon force in (24) that

largely influences the performance of the segmentation-based

classifier; we therefore experimented with different values and

present the best results we obtained.

Since the FE approach performs systematically better on

the detection task we use it for the subsequent, more detailed

detection experiments. The CE approach could be used after a

decision has been made about the presence of an object as it

provides more appealing top-down segmentations by enforcing

smoothness and drawing boundaries close to image edges.

In this setting, the thresholded FE results could serve for

initialization.

3) Joint Bottom-Up and Top-Down Object Detection: In

Fig. 10 we provide PR and ROC curves for the different

detectors operating in isolation and their combinations accord-

ing to the combination rule (44). Even though the bottom-up

detector is already performing well, the individual detectors

behave in a complementary manner in different areas and their

combinations yield systematically improved results. In specific

we note that the car dataset is harder than the face dataset, at

least for bottom-up detection; still, the final classifier fusing

bottom-up and top-down cues performs equally well for both

categories.

Comparing our results to those reported by others in Table

I we observe that our system is outperformed only by that of

[25] on the car dataset. However, our bottom-up system [22]

uses 80 codebook clusters and is significantly simpler than

that of [25], where more than 500 codebook entries are used.

Equal Error Rates

Method Cars Faces

Ours 5.5 4.7

Fergus [14] 11.6 8.3

Leibe [25] 3.0 -

Opelt [36] 17.0 6.5

TABLE I: EER of our system compared to that of other researchers
on the same datasets; for cars we report the Precision-Recall EER
measurement, as the other references.

Further, our top-down validation stage takes approximately 2

sec. per hypothesis, which is approximately two orders of

magnitude less than that of [25]. We should note here that

flipping the car images during training and fixing the scale

of the faces may have introduced some small positive bias in

favor of our method. We consider it however more important

that systematic improvement in performance is obtained by

combining top-down and bottom-up information via the EM

algorithm.

After validating the usefulness of top-down information we

address the question whether the joint treatment of the two

tasks is really necessary. One particular concern has been

whether this improvement is exclusively due to the AAM

classifier; if this is so, this would render the EM approach

superfluous for detection. The first answer comes from com-

paring the results obtained by combining all cues (‘Fused’)

with the ones using only the AAM and Bottom-Up classifiers.

For both cases considered we observe an improvement both

in the ROC and PR curves, which is due to the additional

information provided by the Segmentation-based classifier.

Still, what we consider more important and now demonstrate

is that EM allows for the use of generative models in hard

images, by discounting image variation that was not observed

in the training set.

4) Occluded Object Detection: We argue here that segmen-

tation helps obtain robust estimates of the model parameters,

and thereby supports the performance of the AAM classifier

in images where the objects are occluded. Since all objects

are fully observed in the dataset of [14], this point cannot be

clearly made for faces; we therefore repeat the previous classi-

fier combination experiment after artificially adding sunglasses
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Fig. 11: Influence of using the EM algorithm on detection performance: Segmentation helps exclude occluded areas from AAM fitting and
results in more robust parameter estimates. This is reflected in improved performance of both the individual AAM and the FUSED classifier
that combines the bottom-up, segmentation and AAM classifiers.

to the faces as in Fig. 8. To deconvolve evaluation, we assume

the bottom-up detection system is insensitive to occlusion, and

use the results it furnishes with the fully observed images. For

cars there are substantial occlusions in the test set, so we use

the original images.

The top-down classifiers are evaluated in two distinct sce-

narios, by (a) ignoring segmentation and setting the seg-

mentation weights E(x) to one everywhere and (b) using

results furnished by EM. The input to the segmentation-based

classifier in the first case is obtained by fitting the AAM

with E(x) = 1, and using after convergence the fitted AAM

parameters to estimate E(x) anew. It is this E(x) that is then

used in (43).

As shown in Fig. 11, the parameter estimates derived in

scenario (a) yield significantly worse performance, since the

occluded region affects AAM fitting, while in scenario (b)

performance degrades gracefully. This behavior is propagated

to the fused classifier performance, where in scenario (b)

consistently better performance is observed.

These results indicate the importance of a joint treatment of

the segmentation and detection tasks in the practical situation

where faces are occluded by glasses, scarfs, beards or cars

are occluded by pedestrians, boxes, etc. The gain is not

only due to the validation information offered by a top-down

segmentation, but also due to the robust model fitting that

sustains the performance of the classifier that uses the AAM

parameters.

VII. SURVEY AND DISCUSSION

Herein we briefly discuss and compare related work on this

relatively new problem, to place our contributions in a broader

context.

A. Previous work on joint detection and segmentation

We can classify most of the existing works on joint seg-

mentation and detection based on whether they use global

or part-based object representations. Global approaches [21],

[45], [51] assume that a monolithic object model can account

for the shape and appearance variation of the object category,

and thereby take hold of all the image observations. Part-based

models such as [7], [24], [25], [27], [52] offer a modular

representation that is used to build the top-down segmentation

in a hybrid fashion, using high-level information wherever

available, and low-level cues to bring the rest of the object

together [24], [52].

At a more detailed level, the approach of [45], [54] performs

a stochastic search in the space of regions and hypotheses, by

extending the Data-Driven MCMC scheme of [46] to include

global generative models for object categories. During search

object and generic region hypotheses are generated, merged,

split or discarded while their borders are localized by curve

evolution using Region Competition [53]. Even though this

approach is elegant, in a practical object detection application

one typically only needs the probability of an object being

present, which as we show here can be efficiently and reliably

estimated using the observation window containing the object

and EM instead of stochastic search.

Following a non-generative approach, codebook representa-

tions are used for joint detection and segmentation in [6], [7]

and [25]. Figure-ground maps associated with the codebook

entries are stored during training and used during detection

to assemble a segmentation of the object. Even though good

performance is demonstrated in [6], [25], the segmentation

depends on the ability to cover a large area of the object

using overlapping patches, necessitating complex models. In

another approach using a part-based representation in [52] an

object-sensitive affinity measure is introduced, and pairwise

clustering methods are used to find a global minimum of the

data partitioning cost. The affinity measure used leads to a

grouping of pixels based on both low-level cues (absence of

edges, similarity) and high-level knowledge. However, the lack

of a probabilistic interpretation impedes the cooperation with

other processes while the detection task is not considered.

Coming to work involving the EM algorithm, we note first

that the use of the EM algorithm for image segmentation

problems is certainly not novel; it has been used previously for

low-level problems such as feature-based image segmentation

[3] or layered motion estimation [49]. Further, in [24] a

part-based object representation is combined with the graph-

cut algorithm to derive a top-down segmentation, yielding

accurate results for articulated object segmentation. The EM

algorithm is used there as well, but in an optimization rather

than a generative model fitting task: the shape parameters

are treated as hidden variables and the E-step constructs a

nonparametric shape distribution. The M-step then amounts

to the maximization via graph cuts of a segmentation quality

cost that entails the distribution constructed in the E-step. This
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Fig. 12: Sample detection results on the datasets of [1], [14]. The locations proposed by a bottom-up detection system are used to initialize
an EM-loop which brings in additional information from segmentation and the AAM parameters. Based on these, the initial hypotheses are
either pruned (red dashed boxes) or validated (green boxes).

deviates from the use of EM in the generative model setting,

where parameter estimation is accomplished in the M-step.

As we show here, the generative model approach allows the

principled combination of different methodologies, like curve

evolution and AAMs, while minimizing the choices that a

generic optimization approach requires.

Further, in the work of [16], [51] the EM algorithm is used

to perform an object-specific segmentation of an image using

the ‘sprites & layers’ model where the E-step assigns obser-

vations to objects (‘sprites’) and the M-step updates the object

parameters. Intuitively this approach is similar to ours, but the

interaction of the two processes is not explored: The back-

ground model is estimated from a fixed set of images, thereby

introducing strong prior knowledge that is not available for

the general segmentation problem, while it is not actually

determined whether an object is present in the image, based on

either bottom-up or top-down cues. Further, the deformations

used do not model the object category shape variation, since

they are either restricted to affine transformations [16] or use

an MRF prior on a piecewise constant deformation field [51].

B. Previous Work on Shape Prior segmentation

Complementary to research on top-down/bottom-up inte-

gration, progress has been made during the last years in

the use of object-specific shape prior knowledge for image

segmentation e.g. in [10], [11], [26], [42], [43]. By focusing

on the object boundaries these approaches efficiently exploit

shape knowledge to overcome noise and partial occlusions.

Most shape prior methods rely on the implicit representation

of level-set methods, where a curve is represented in terms

of an embedding function, such as the distance transform.

This allows for a convenient combination with curve evolution

methods: the variational criterion driving the segmentation is

augmented with a shape-related penalty term that is expressed

in terms of the embedding function of the evolving curve. This

allows for the combination of shape-based and image-based

cues in a common curve evolution framework.

Even though such methods do not model object aspects

like appearance or deformation statistics, they have been

proven particularly effective in tasks such as medical image

segmentation [42] or tracking a detected person [10]. On

the one hand this can be seen as an advantage, since less

demanding object models are used, on the other we believe

that they do not provide a complete solution to the bottom-

up/top-down combination problem.

Specifically, part of the object may be occluded so the

boundaries of the object and the region assigned to it do

not have to be related. For example, if we consider a person

wearing a hat, or sunglasses, a shape prior-driven segmentation

will force the curve corresponding to the object hypothesis

to include the occluded parts of the head, as most heads

are roughly ellipsoidal. Even though one can argue that this

indicates robustness to occlusion, in our understanding, a top-

down segmentation should indicate the image regions occupied

by an object. This can be accomplished with our approach,

where a generative model like an AAM can still fit the shape

of the object, but in the E-step the occluded parts are not

assigned to the object.

We should mention that the shape prior-based technology

has made advances in a broader range of problems, like

articulated object tracking and tracking under severe occlusion

using limited appearance information, cf. e.g. [10], so this

added functionality of our system can be seen as being

complementary. However, the EM/generative model approach

has no fundamental limitation in addressing these problems

as well. Part-based deformation models can be used for artic-

ulated objects, while temporal coherence for tracking can be

enforced by using a dynamical model for the generative model

parameters. Having proved the merit of the EM approach on

a more constrained problem, we would like to explore these

more challenging directions in future research.

VIII. CONCLUSIONS - FUTURE WORK

In this paper we have addressed the problem of the joint

segmentation and analysis of objects, casting it in the frame-

work of the Expectation-Maximization algorithm. Apart from

a concise formulation of bottom-up/top-down interaction, this

has facilitated the principled combination of different com-

puter vision techniques. Based on the EM algorithm we have

built a system that can segment in a top-down manner images

of objects belonging to highly variable categories, while also

significantly improving detection performance. Summing up,
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the EM framework offers a probabilistic formulation for a

recently opened problem and deals with its multifaceted nature

in a principled manner.

An essential direction for rendering this approach applicable

to a broader set of problems is the automated construction

of models for generic objects; recent advances [7], [14],

[50] have initiated a surge of activity on simple part-based

representations, e.g. [1], [22], [25] but little work has been

done for global generative models [23], [51]. Further, a point

that deserves deeper inspection is the combination of low-level

cues with part-based and global generative models for joint

object segmentation, which has only partially been tackled

[22], [24], [52]. In future work we intend to address these

issues in the framework of generative models with the broader

goal of integrating different computer vision problems in a

unified and practical approach.
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APPENDIX I

DERIVATION OF THE EM/AAM UPDATE RULES

Using the notation introduced in Sec. V, the Jacobian and

Hessian in the typical update are obtained by approximating

the perturbed cost function (29) as:

CLS(s + ∆s, t) =
∑

x

H(x)(I(x; s + ∆s) − T (x, t))2

≃

[

H ◦

(

I +
dI

ds
∆s − T

)]T [

I +
dI

ds
∆s − T

]

= [H ◦ E ]
T E + 2 [H ◦ E ]

T dI

ds
∆s + ∆s

T

[

H ◦
dI

ds

]T
dI

ds
∆s,

where in the third line we use E = I − T. We thereby get

the expressions in (33). The criterion [H ◦ E ◦ E ]
T

[E ] in (34)

incorporates segmentation information and its perturbation is

written as:
[

H ◦

(

E +
dE

ds
∆s

)

◦

(

E +
dE

ds
∆s

)]T (

E +
dE

ds
∆s

)

.

Keeping the first and second order product terms we have:

J = 2 [H ◦ E ◦ E ]
T dE

ds
+ ET

[

H ◦
dE

ds
◦ E

]

H = 2

[

H ◦ E ◦
dE

ds
+ 2H ◦

dE

ds
◦ E

]T
dE

ds
.

These are identical to the expressions in (35,36), as dE
ds

= dI

ds
.

To incorporate the determinant of the deformation’s Jaco-

bian we express it using the shape synthesis relation of (9):

D(x; s) =
∑

k

sk

∂Sk,x

∂x

∑

j

sj

∂Sj,y

∂y
−

∑

k

sk

∂Sk,y

∂x

∑

k

sy

∂Sk,x

∂y
.

(45)

In matrix notation, D(s) = [sSx
x ] ◦ [sSy

y ] − [sSx
y ] ◦ [sSy

x ]. We

can write the following linear approximation to D(s + ∆s):

D(s + ∆s) = D(s) +
dD

ds
∆s + O(∆s

2), (46)

where dD

ds
= Sx

x ◦ sSy
y + Sy

y ◦ sSx
x + Sx

y ◦ sSy
x + Sy

x ◦ sSx
y .

The perturbed cost and the Jacobian and Hessian obtained
by retaining first- and second- order terms then become:�
H◦

�
D+

dD

ds
∆s

�
◦

�
E+

dE

ds
∆s

�
◦

�
E+

dE

ds
∆s

��
T
�
E+

dE

ds
∆s

�
(47)

J = 2
�
H

′

◦D◦E
�
T dE

ds
+ E

T

�
H◦D◦

dE

ds
◦E

�
+ E

T

�
H

′

◦
dD

ds
◦E

�
H = 2

�
H

′

◦D◦
dE

ds
+ 2H◦D◦

dE

ds
◦E + 2H′

◦
dD

ds
◦E

�
T
dE
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