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Interleukin (IL)-21 is the most recently recognized of the cytokines that share the common 

cytokine receptor 

 

�

 

 chain (

 

�

 

c

 

), which is mutated in humans with X-linked severe combined 

immunodeficiency. We now report that IL-21 synergistically acts with IL-15 to potently 

promote the proliferation of both memory (CD44

 

high

 

) and naive (CD44

 

low

 

) phenotype CD8

 

�

 

 T 

cells and augment interferon-

 

�

 

 production in vitro. IL-21 also cooperated, albeit more 

weakly, with IL-7, but not with IL-2. Correspondingly, the expansion and cytotoxicity of 

CD8

 

�

 

 T cells were impaired in IL-21R

 

���

 

 mice. Moreover, in vivo administration of IL-21 in 

combination with IL-15 boosted antigen-specific CD8

 

�

 

 T cell numbers and resulted in a 

cooperative effect on tumor regression, with apparent cures of large, established B16 

melanomas. Thus, our studies reveal that IL-21 potently regulates CD8

 

�

 

 T cell expansion and 

effector function, primarily in a synergistic context with IL-15.

 

The common cytokine receptor 

 

�

 

-chain (

 

�

 

c

 

) is

mutated in X-linked severe combined immuno-

deficiency (1), a disease with severely impaired T

cell and NK cell development and diminished

B cell function (2). 

 

�

 

c

 

 is a critical component

of the receptors for IL-2, IL-4, IL-7, IL-9, IL-15,

and IL-21 (2), which together regulate lym-

phocyte development and control a broad spec-

trum of activities that shape innate and acquired

immune responses. The IL-21/IL-21 receptor

(IL-21R) system is the most recently identified

of these cytokine systems (3, 4). IL-21 is pro-

duced by activated CD4

 

�

 

 T cells, and its re-

ceptor is expressed on T, B, and NK cells. IL-21

is most closely related to IL-2, IL-4, and IL-15,

and IL-21R is most similar to the IL-2 receptor

 

�

 

 chain (IL-2R

 

�

 

), which is a component of

the IL-2 and IL-15 receptors. Based on in

vitro assays, IL-21 was originally implicated as

a regulator of T and B cell proliferation as well

as of NK cell maturation (4), whereas another

group later reported that IL-21 could inhibit

NK cell expansion (5). IL-21R

 

���

 

 

 

mice have

normal lymphocyte compartments, including

normal NK cell development (5, 6), indicating

that IL-21 is not essential for the development

of lymphoid lineages, but leaving open the

possibility that it contributes to this process

in a potentially redundant fashion. Together

with IL-4, IL-21 plays a critical role in reg-

ulating Ig production (6). IL-21R

 

���

 

 mice

have diminished IgG1, but greatly elevated

IgE levels in response to antigen challenge,

whereas IL-21R

 

���

 

IL-4

 

���

 

 

 

double knockout

mice exhibit a severely impaired IgG response

as well as diminished IgE levels, indicating a

cooperative role of these two cytokines for Ig

production (6).

The size of naive and memory T cell pools

is tightly regulated, at least in part, by growth

and survival signals conferred by 

 

�

 

c

 

-dependent

cytokines (7, 8). IL-7 is crucial for the survival

and homeostatic expansion of naive CD8

 

�

 

 T

cells and also can contribute to memory CD8

 

�

 

T cell homeostasis (9, 10). IL-15 potently pro-

motes proliferation of memory CD8

 

�

 

 T cells

(8, 11, 12); the major subset of memory (IL-

2R

 

�

 

high

 

CD44

 

high

 

) CD8

 

�

 

 T cells depends on

IL-15 for survival and turnover, whereas the

IL-2R

 

�

 

low

 

CD44

 

high

 

 CD8

 

�

 

 T cells are IL-15

independent (13). IL-15 may also contribute

to the homeostatic proliferation of naive CD8

 

�

 

T cells (14, 15). In contrast, IL-2 can decrease

memory CD8

 

�

 

 T cell function by inducing

regulatory T cells (16–18). Late in the prolifer-

ative phase of the T cell response, activated T

 

The online version of this article contains supplemental material.

 

CORRESPONDENCE
Warren J. Leonard: 
wjl@helix.nih.gov

 

Abbreviations used: CFSE, 5,6-

carboxyfluorescein diacetate 

succinimidyl ester; rFPVhgp100, 

recombinant fowlpox virus en-

coding hgp100; vPE16, vaccinia 

virus–expressing HIV gp160.



 

IL-21 AND IL-15 COOPERATIVELY ACT ON CD8

 

�

 

 T CELLS | Zeng et al.

 

140

 

cells differentiate into effector T cells that produce critical ef-

fector molecules. We have now investigated the role of IL-

21 in T cell homeostasis and effector functions.

 

RESULTS
IL-21 synergistically acts with IL-15 to expand CD8

 

�

 

 T cells

 

IL-21 was initially reported to costimulate anti-CD3–acti-

vated murine thymocytes and mature murine T cells in vitro

and to enhance the proliferative effects of IL-2, IL-7, and IL-

15 even without the addition of anti-CD3 (4). Interestingly,

however, a second group reported that the addition of IL-21

blocked the IL-15–dependent, TCR-independent expan-

sion of CD44

 

high

 

CD8

 

�

 

 T cells (5). To further explore the

actions of IL-21 and how it integrates its signals with other

 

�

 

c

 

-dependent cytokines, we studied the effect of a range of

concentrations of IL-15 and IL-21 on normal splenocytes

cultured for 7 d. As reported previously (5), IL-21 inhibited

IL-15–mediated expansion of resting NK cells; we observed

a dose-dependent inhibition by IL-21 that was most evident

at 100 ng/ml of IL-15 (Fig. 1 A, lanes 16 and 17 vs. 5 and

15; also, Fig. 1 E, e vs. c). However, in contrast with a pre-

vious paper (5), we observed a marked increase, rather than

decrease, in the number of T cells after culture with both IL-

21 and IL-15 as compared with IL-15 alone (Fig. 1 B, lanes

9–11 vs. 3, 12–14 vs. 4, and 15–17 vs. 5). The majority of

these expanded cells were CD8

 

�

 

 T cells (Fig. 1 F, e vs. c).

IL-21 by itself had little effect on T cell cellularity (Fig. 1 B,

lanes 6–8 vs. 2), but again there was an increase in the per-

centage of CD8

 

�

 

 T cells (Fig. 1, C, lanes 6–8 vs. 2, and F, d

vs. b). Although IL-15 alone induced an increase in the per-

centage of CD8

 

�

 

 T cells (Fig. 1 F, c vs. b), the absolute

number of CD8

 

�

 

 T cells was, if anything, slightly less than

the number on day 0 (Fig. 1 C, lane 5 vs. 1). Strikingly, after

7 d of culture with IL-15 plus IL-21, the total numbers of

CD8

 

�

 

 T cells markedly increased (Fig. 1 C, lanes 9–17). IL-

15 and IL-21 had a synergistic effect on CD8

 

�

 

 T cell prolif-

eration, as a combination of low concentrations of these two

cytokines (10 or 50 ng/ml) was more potent than the effect

of either cytokine alone at a concentration of 50 or 100 ng/

ml (Fig. 1 C, lane 9 vs. 4 and 7, and lane 13 vs. 5 and 8). In

Figure 1. IL-21 acts synergistically with IL-15 to expand CD8� T 

cells. 5 � 106 splenocytes were pooled from two to three wild-type mice 

and cultured for 7 d in medium containing IL-15, IL-21, or combinations 

of these cytokines, as indicated. The number of NK cells (A), T cells (B), 

CD8� T cells (C), and CD4� T cells (D) were determined as NK1.1�TCR��, 

NK1.1�TCR��, CD8�CD4�, and CD8�CD4� cells, respectively. Results 

shown are means � SD from three experiments. (E and F) Cells cultured in 

medium for 0 d (a) or 7 d (b), or in 100 ng/ml of IL-15, IL-21, or both cyto-

kines (c, d, and e, respectively) were analyzed by flow cytometry for 7 d. 

The percentages of NK1.1�TCR�� and NK1.1�TCR�� cells (E) and 

CD8�CD4� and CD8�CD4� cells (F) are indicated in the quadrant corners.
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contrast with the effect on CD8

 

�

 

 T cells, cooperative effects

on CD4

 

�

 

 T cells were not evident (Fig. 1 D).

 

IL-21 also synergistically acts with IL-7, but not IL-2

 

Because IL-21 was reported to act in concert with IL-2 or IL-7

to enhance T cell proliferation (4), next we compared the ef-

fects of IL-2, IL-7, IL-15, and IL-21 on splenocytes cultured

for 3, 5, and 7 d (Fig. 2). Consistent with the results of Fig. 1,

IL-21 increased the total T cell and CD8

 

�

 

 T cell expansion

mediated by IL-15, but it had no effect on CD4

 

�

 

 T cells (Fig.

2, A and B, lanes 25–27 vs. 13–15, and C, h vs. d, and not de-

picted). The synergy of IL-15 and IL-21 on CD8

 

�

 

 T cell ex-

pansion was evident as early as day 3 (Fig. 2 A, lane 25 vs. 13

and 16). Interestingly, IL-21 did not significantly increase ex-

pansion of CD8

 

�

 

 T cells when combined with IL-2 (Fig. 2 A,

lanes 19–21 vs. 7–9), even though it increased the percentage

of these cells (Fig. 2 C, f vs. b); however, it cooperated with

IL-7, although not as potently as it did with IL-15 (Fig. 2, A,

lanes 22–24 vs. 10–12, and C, g vs. c; Fig. S1, available at http:

//www.jem.org/cgi/content/full/jem.20041057/DC1). The

cooperative effects of IL-15 and IL-21 were confirmed in

studies using IL-15

 

���

 

 and IL-21R

 

���

 

 mice (Fig. S2, available

at http://www.jem.org/cgi/content/full/jem.20041057/DC1).

We also evaluated the effect of IL-15, IL-21, and the combi-

nation of both cytokines on cell survival by staining with

annexin V. CD8

 

�

 

 T cells cultured without any cytokine es-

sentially all died within 7 d; however, the addition of IL-15,

IL-21, or combinations of these cytokines resulted in 

 

�

 

94%

viability in all cases (Fig. 2 D, k–m vs. j). Thus, although the

cytokines increased the viability, the synergistic effect on cell

expansion seen in response to IL-15 plus IL-21 as compared

with either cytokine alone primarily results from increased cell

proliferation rather than a synergistic effect on survival.

 

IL-15 and IL-21 cooperatively enhance the effector 
function of memory-phenotype CD8

 

�

 

 T cells

 

Because IL-15 is known to expand memory-phenotype

CD44

 

high

 

CD8

 

�

 

 T cells, we examined if IL-21 could en-

Figure 2. IL-21 acts in concert with IL-15 or IL-7 but not with IL-2 

to expand CD8� T cells. (A and B) 5 � 106 splenocytes pooled from three 

wild-type mice were cultured for 3, 5, and 7 d in medium containing 100 

U/ml IL-2, 100 ng/ml IL-7, 100 ng/ml IL-15, 100 ng/ml IL-21, or combina-

tions of these cytokines, as indicated. CD8� T (A) and CD4� T (B) cell sub-

sets were identified as CD8�CD4� and CD8�CD4�, respectively. Results 

shown are means � SD from three experiments. (C) Representative flow 

cytometric analysis of cells cultured for 7 d as described in A and B. Percent-

ages of selected cell populations are indicated in the quadrant corners. 

(D) Cells from A were also stained with annexin V and propidium iodide 

(PI). Percentages of double negative subpopulations corresponding to 

viable cells are indicated in the quadrant corners. Data representative of 

three separate experiments are shown.
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hance IL-15–mediated expansion and function of these

cells. IL-21 alone had little effect on CD44

 

high

 

CD8

 

�

 

 T

cells, but the number and percentage of CD44

 

low

 

CD8

 

�

 

T cells was higher than was found in cultures without cy-

tokines (Fig. 3 A, d vs. a and b). As expected, IL-15 ex-

panded CD44

 

high

 

 cells (Fig. 3 A, c vs. a and b), but the

combination of IL-15 and IL-21 resulted in a striking fur-

ther increase in CD44

 

high

 

 cells (note percent and total cel-

lularity; Fig. 3 A, e vs. c). To distinguish effector and cen-

tral memory-phenotype CD8

 

� T cells (11), we stained cells

with anti-CD62L mAb. Cells stimulated with IL-15 were

primarily central memory-phenotype (CD62LhighCD44high;

Fig. 3 B, c vs. a and b), whereas those stimulated with IL-

21 lacked high expression of CD44 (Fig. 3 B, d). When

both IL-15 and IL-21 were added, CD62LhighCD44high

cells were expanded, analogous to what was seen with

IL-15 (Fig. 3 B, e vs. c); in addition, a prominent

CD62LlowCD44high population of cells was evident, which

may represent effector memory-phenotype cells (Fig. 3 B,

panel e). These data suggest that IL-21 contributes to the

expansion of both subsets of memory-phenotype CD8� T

cells.

To characterize the effector function of cytokine-

expanded CD8� T cells, we examined intracellular IFN-�

levels after stimulation with anti-CD3 and anti-CD28. The

combination of IL-15 and IL-21 resulted in a marked in-

crease in the number of CD8� T cells, with a modest in-

crease in the percent of IFN-�–producing cells at 1, 2, and

4 h, as compared with that seen in cells expanded with IL-

15 alone (Fig. 3 C, r–t vs. j–l), whereas IL-21 by itself had

little effect (Fig. 3 C, n–p). As shown in Fig. 3 D, the com-

bination of IL-15 and IL-21 greatly increased the total

number of IFN-�–producing CD8� T cells. Thus, IL-21

has a cooperative effect with IL-15 on the expansion of

memory-phenotype CD8� T cells as well as on their effec-

tor function.

Figure 3. IL-15 and IL-21 cooperatively enhance effector function 

of memory-phenotype CD8� T cells. (A and B) 5 � 106 splenocytes 

pooled from two to three wild-type mice were cultured for 7 d in medium 

containing 100 ng/ml of IL-15, IL-21, or combinations of these cytokines, 

as indicated (b–e). The naive cells (A, subpanel a) were splenocytes from a 

littermate that were directly analyzed without culture. Cells were analyzed 

by flow cytometry after staining with (A) CD8-allophycocyanin, CD4-FITC, 

CD44-CyChrome, and IL-2R�-PE or (B) CD8-allophycocyanin, IL-2R�-FITC, 

CD44-CyChrome, and CD62L-PE, respectively. Data representative of three 

separate experiments are shown. The absolute numbers of gated CD8� T 

cells and the percentages of CD44high, CD44intermediate, and CD44low subpop-

ulations are indicated in A. The percentages of CD62Llow and CD62Lhigh 

subpopulations are indicated in B. (C and D) Freshly isolated splenocytes 

or cells cultured for 7 d with the indicated cytokines were stimulated with 

anti-CD3 and anti-CD28 for 0, 1, 2, or 4 h. (C) Representative flow cyto-

metric profiles. (D) The absolute number of IFN-�–producing CD8� T cells. 

Mean values for three similar experiments are shown. The increase in 

IFN-��CD8� T cells with IL-15 and IL-21 was highly significant.
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IL-21 and IL-15 together markedly accelerate cell division 
of both memory-phenotype and naive-phenotype CD8� T cells

In the aforementioned in vitro culture assays, we used total

splenocytes. Thus, it is possible that CD4� T cells or other

cells might contribute to the expansion of CD8� T cells via

paracrine secretion of cytokines, and that IL-15 and IL-21

might act on other cells to indirectly affect the expansion/

survival of CD8� T cells. To investigate whether IL-15 and

IL-21 had a direct synergistic effect on cell cycle progression

in CD8� T cells, we isolated CD8� T cells from splenocytes

and stained them with 5,6-carboxyfluorescein diacetate suc-

cinimidyl ester (CFSE). These cells divided faster when cul-

tured with both IL-15 and IL-21 as compared with either cy-

tokine alone (Fig. 4 A, d vs. b and c, and h vs. f and g). On

day 4, cells treated with both IL-15 and IL-21 exhibited one

to five more divisions than cells in control cultures and the

recovered cell number was significantly higher (Fig. 4 A, d

vs. a–c). On day 7, these effects were even greater (Fig. 4 A,

h vs. e–g). The combination of IL-7 and IL-21 had a similar

albeit less potent effect to that seen with IL-15 � IL-21 (un-

published data). To further examine the effect of IL-15 and

IL-21 on memory-phenotype or naive-phenotype CD8� T

cells, we purified CD44high and CD44low CD8� T cells, re-

spectively, and stained with CFSE. IL-15 more potently pro-

moted the division of CD44highCD8� T cells than did IL-21,

but both cytokines together had the greatest effect (Fig. 4 A, l

vs. i–k, and p vs. m–o). The cell number was four- to fivefold

higher in culture with IL-15 � IL-21 than with IL-15 alone

on day 4 (Fig. 4 A, l vs. j). The relative fold increase on day 7

was reproducibly lower than on day 4; this might result from

a decrease in the survival rate on day 7 (Fig. 4 B, h vs. f). Nei-

ther IL-15 nor IL-21 alone had much of an effect on the di-

vision of CD44lowCD8� T cells (Fig. 4 A, r and s vs. q, and v

and w vs. u), but each improved the cell survival rate (Fig. 4

B, j and k vs. i, and n and o vs. m). Strikingly, stimulation

with both IL-15 and IL-21 potently promoted cell division

(Fig. 4 A, t vs. r and s, and x vs. v and w) and cell survival

(Fig. 4 B, l vs. j and k, and p vs. n and o) of CD44lowCD8� T

cells. Thus, IL-21 and IL-15 synergistically affect cell division

of memory-phenotype CD8� T cells. Moreover, in contrast

with IL-15 alone, IL-21 � IL-15 increased the division of

naive-phenotype CD8� T cells as well.

Defective antigen-specific CD8� T cell responses 
in IL-21R��� mice

To further examine the effect of IL-21 on in vivo expansion

and effector function of antigen-specific CD8� T cells, both

wild type and IL-21R��� mice were immunized with vac-

cinia virus expressing HIV gp160 (vPE16). The cytotoxic

activity of CD8� T cells from IL-21R��� mice was signifi-

cantly lower than CD8� T cells from wild-type mice (Fig. 5,

A and B), suggesting that IL-21R signaling contributes to

the primary CD8� cytotoxic T cell response. Correspond-

ingly, the frequencies of tetramer-positive (Fig. 5 C) and

IFN-�–positive (Fig. 5 D) CD8� T cells, as analyzed imme-

diately ex vivo or after 1 wk of restimulation in vitro, were

lower in IL-21R��� mice than in wild-type mice. The dif-

ference in the frequency of antigen-specific cells (Fig. 5, C

and D) can at least in part account for the difference in CTL

activity. These results demonstrated a role for IL-21 in anti-

gen-specific CD8� T cell expansion and function.

Cooperative effect of IL-21 and IL-15 on tumor regression, 
with cures of established B16 melanomas

Given the effects of IL-15 and IL-21 on CD8� T cell ex-

pansion and cytotoxicity in vitro, next we investigated the

effects of these cytokines in vivo using a tumor model. IL-

Figure 4. IL-15 and IL-21 cooperatively increase cell cycle progression 

of both CD44high and CD44low CD8� T cells. (A) All cell subpopulations 

were isolated and stained with CFSE as described in Materials and Methods. 

The “basal” CFSE profile on day 0 is shown as the dashed line. Cells were 

cultured in complete medium at 2–5 � 105 cells/ml without cytokine or 

with 100 ng/ml of IL-15 and/or IL-21 for 4 or 7 d, as indicated, and analyzed 

by flow cytometry. The indicated cell numbers (�10�6) are an average of 

cell numbers from three independent experiments. In each experiment, 

the starting cell numbers were normalized to 3.75 � 106 (CD8� T cells), 

0.75 � 106 (CD44highCD8� T cells), and 2.5 � 106 (CD44lowCD8� T cells), 

respectively, which allowed comparison of the different experiments. Flow 

cytometric results shown are representative of three experiments. (B) Cells 

in A were also stained with annexin V and PI. The percentages of double 

negative subpopulations corresponding to viable cells are indicated in 

the quadrant corners. Data representative of three separate experiments 

are shown.
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21 has been reported to have antitumor effects (19–22). We

used a tumor immunotherapeutic strategy that allowed us to

evaluate the effects of cytokines on the regression of large,

established solid tumors when cytokines and CD8� T cells

specific for the gp100 self-antigen were administered con-

comitantly (23–25). pmel-1 transgenic mice on a C57BL/6

background express the V	1V�13 TCR from a cloned T

cell, which recognizes an H-2Db–restricted epitope corre-

sponding to amino acids 25–33 of gp100 (23). More than

95% of the CD8� T cells in pmel-1 TCR transgenic mice

were V�13�, amounting to �20% of all splenocytes (23). In

vitro–activated pmel-1 splenocytes were adoptively trans-

ferred into sublethally irradiated mice bearing subcutaneous

B16 melanomas (an H-2Db gp100� spontaneous murine

melanoma) established for 8 or 10 d (Fig. 6, A and B). This

adoptive transfer was followed by vaccination with recombi-

nant fowlpox virus encoding hgp100 (rFPVhgp100), which

encodes the hgp100-altered peptide ligand, in the presence

of exogenous cytokines. IL-15 � IL-21 (without pmel-1

cells) had little if any effect on the tumor (Fig. 6 A), indicating

that reconstituted endogenous lymphocytes have no signifi-

cant effect on tumor regression. Pmel-1 cells with IL-15 �

IL-21 also had relatively little effect on the tumor unless

vaccination with rFPVhgp100 was included (Fig. 6 A). This

confirms that antigen-specific cells, vaccination, and cytok-

ine are all required for maximal tumor regression in this

model (23). As shown in Fig. 6 B, treatment with either IL-

15 or IL-21 induced partial tumor regression, whereas the

combination of IL-15 and IL-21 was much more effective.

In the experiment shown in Fig. 6 B, all of the mice died of

tumor within 32 d of treatment except for those treated

with the combination of both IL-15 and IL-21 (not de-

picted). Moreover, all five mice receiving IL-15 plus IL-21

were alive at day 32; two of these animals had complete re-

gression of their tumors with vitiligo at the former mela-

noma sites, whereas the other three mice had residual tu-

mor. In an independent experiment, treatment with 5 
g/

dose of IL-15 plus 5 
g/dose of IL-21 was more effective

than either cytokine alone at 10 
g/dose (unpublished data).

Consistent with an enhanced effect of IL-15 plus IL-21 on

CD8� T cells, at 3 and 4 wk of treatment, the absolute

number of pmel-1 TCR transgenic CD8� T cells (V�13�

CD8�) in blood was higher in mice treated with both IL-15

and IL-21 than with either cytokine alone (Fig. 6 C, left).

These findings were confirmed in a second experiment at

day 20; day 28 data are not available for this experiment as it

was terminated at day 23, at which point four out of six

mice treated with the combination of IL-15 and IL-21 had

complete regression of their tumors (unpublished data).

Thus, IL-15 and IL-21 synergistically expand CD8� T cells

in vivo and this correlated with marked regression of large,

established solid tumors.

Figure 5. Antigen-specific CD8� T cell responses are impaired in 

IL-21R��� mice. Five mice in each group were immunized i.p. with 

5 � 106 PFU of vPE16. (A and B) On day 5, splenocytes of immunized WT 

and IL-21R��� (KO) mice were restimulated with 1.0 
M (A) or 0.001 
M 

(B) P18-I10 for 1 wk, and lytic activity was measured by a 5-h 51Cr release 

assay. P815 cells pulsed with 1.0 
M (A) or 0.001 
M (B) P18-I10 were 

used as target cells. Means � SEM are shown. (C) The frequency of P18-I10–

specific splenic CD8� T cells was measured by H-2Dd-P18-I10 tetramer 

staining ex vivo without restimulation in vitro (left) or after 1 wk of 

restimulation with 1.0 
M P18-I10 (right). Shown is the mean percent � 

SEM of tetramer-positive CD8� T cells in total CD8� T cells for five mice 

per group. The difference in the two groups was statistically significant 

(P � 0.05). (D) The frequency of IFN-��CD8� T cells in spleens was mea-

sured by intracellular staining ex vivo without restimulation in vitro (left) 

or after 1 wk of restimulation with 1.0 
M P18-I10 (right). Cells were 

stimulated with 1.0 
M P18-I10 for 10 h in the presence of 1 
g/ml 

brefeldin A. Shown is the mean percent � SEM of IFN-�–positive (IFN-��) 

CD8� T cells in total CD8� T cells for five mice per group. The difference in 

the two groups was statistically significant (P � 0.05).
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A subset of genes is synergistically regulated 
by IL-21 and IL-15

To begin to clarify the molecular mechanisms by which IL-21

cooperates with IL-15 on CD8� T cell expansion and func-

tion, next we performed DNA microarray analyses (Affy-

metrix, Inc.) using mRNAs isolated from naive CD8� T cells

treated for 4 h with cytokines, and we found �300 genes that

were regulated by IL-15 and/or IL-21. The overall expression

pattern seen in CD8� T cells stimulated with both IL-15 and

IL-21 is more similar to that stimulated with IL-21 than IL-15

(Fig. 7 A). However, as expected, some genes were regulated

by the combination of IL-15 and IL-21 in similar fashion to

that seen with either cytokine alone (Fig. 7, B and C),

whereas other genes, such as granzyme B and c-Jun, exhibited

induction or repression that was greater with IL-15 plus IL-21

than with either cytokine alone (Fig. 7 D and see Discussion).

DISCUSSION

In this paper, we demonstrate that T cells are markedly ex-

panded by IL-21 in synergy with IL-15 or IL-7, and that this

expansion is most potent for CD8� T cells. IL-15 and/or

high doses of IL-7 are known to be required for memory

(CD44high) CD8� T cell survival and proliferation (8). Our

results indicate that both memory-phenotype and naive-

phenotype CD8� T cells are expanded by IL-21 � IL-15

and that IL-21 is necessary for an optimal CD8� T cell re-

sponse to antigen. Kasaian et al. reported an enhancement

of the antigen-driven CD8� T cell response by IL-21 but

surprisingly found no effect of IL-21 on IL-15–mediated,

TCR-independent T cell expansion (5), which differs from

our results. The concentration of IL-21 in their paper is not

defined in nanograms per milliliter as they used conditioned

medium from transfected COS cells as a source of IL-21 and,

thus, we speculate that the amount of IL-21 used in their

work may not have been sufficient to achieve the synergistic

effect that we observed. At higher levels of IL-15, we ob-

served marked synergy even with 10 ng/ml of IL-21, and

importantly this synergistic effect of IL-15 and IL-21 on ex-

pansion in vitro of purified CD8� T cells is consistent with

the effect that we observe in vivo.

How do IL-15 and IL-21 regulate CD8 T cell expansion

and effector functions? Our results indicate that IL-15 and

Figure 6. In vivo administration of IL-21 in combination with IL-15 

yields tumor regression with cures of large, established B16 melano-

mas. (A) Sublethally irradiated female C57BL/6 mice were implanted sub-

cutaneously with B16 melanomas. 8 d later, mice were treated by adop-

tively transferring cultured pmel-1 splenocytes (0.5 � 106 V�13� CD8� T 

cells) as indicated and, where indicated, vaccinating with rFPVhgp100. In 

some conditions, IL-15 and IL-21 were administered twice daily for six 

doses (5 
g each/dose; five to seven mice in each group). (B) Sublethally 

irradiated female C57BL/6 mice were implanted subcutaneously with B16 

melanomas. 10 d later, mice were treated by adoptively transferring cul-

tured pmel-1 splenocytes (106 V�13� CD8� T cells) and vaccinating with 

rFPVhgp100. IL-15, IL-21, or both cytokines was administered twice daily 

for six doses (10 
g each /dose; five to seven mice in each group). A repeat 

experiment showed similar results. Shown are mean tumor sizes � SEM. 

(C) Shown are V�13�CD8� T cell numbers from mice from two experi-

ments (days 21 and 28 from Experiment 1 in B and day 20 from Experi-

ment 2, which was terminated at day 23). *, Mice not receiving cytokine 

had all died from their tumors, so samples were not available for analysis.
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IL-21 together accelerate cell division of isolated CD8� T

cells. Although more work is needed to clarify which genes

mediate the synergistic actions of IL-15 and IL-21, it is inter-

esting that granzyme B, which plays an important role for

cytotoxicity, and c-Jun, which is important for optimal pro-

liferation, are both preferentially induced by the combina-

tion of IL-15 and IL-21.

Homeostatic control of CD8� T cells is essential for de-

fense against infectious pathogens. IL-15 is known to be a crit-

ical regulator of memory CD8� T cell homeostasis and might

also contribute to naive CD8� T cell survival. IL-7 is required

for naive CD8� T cell survival and homeostatic proliferation

but also contributes to memory CD8� T cell homeostasis. We

have now identified IL-21 as a new regulator of these cells,

suggesting that it is yet another �c-dependent cytokine that

critically regulates T cell homeostasis. Although IL-21 alone

showed little effect on CD8� T cells, it synergistically pro-

moted the proliferation and survival of both memory and na-

ive CD8� T cells. Our data are consistent with a cooperative

effect of IL-15 and IL-21 on the generation and expansion of

cytotoxic T cells, as would occur, for example, after viral in-

fection. Although IL-15 was previously shown to cooperate

with IL-21 in preventing the establishment of a murine lym-

phoma, our data demonstrate that synergistic actions of IL-15

and IL-21 can result in complete regression of large established

B16 melanomas, with an associated expansion of tumor-spe-

cific CD8� T cells. This supports the previously suggested role

of IL-15 as an antitumor agent (26). A recent paper suggested

that IL-21 contributed to the homeostatic expansion of T

cells, but that it could not support their survival (27). Our ex-

periments collectively indicate that IL-21 has both prolifera-

tive and cell survival effects for CD8� T cells and that its ef-

fects on expansion are greatly augmented when IL-15 is also

added. Although CD8� T cells expanded in vitro using IL-2

or IL-15 can be reintroduced in vivo to augment the killing of

tumor cells (28, 29), our results indicate that the combination

of IL-21 with IL-15 may be a more powerful method for ex-

panding CD8� T cells, both in vitro and in vivo, and enhanc-

ing CD8� T cell function.

MATERIALS AND METHODS
Mice. WT mice (C57BL/6 or Balb/c) were obtained from the National

Cancer Institute, IL-15�/� mice were purchased from Taconic Laboratory,

and IL-21R��� mice were described previously (6). Mice were analyzed at

8–16 wk of age. All experiments were performed under protocols approved

by the appropriate Animal Use and Care Committees and followed the Na-

tional Institutes of Health (NIH) guidelines entitled “Using Animals in In-

tramural Research.”

In vitro cell culture and survival assay. Single cell suspensions of

spleen were prepared by gently pressing the tissues through fine nylon

screen. Erythrocytes were depleted with ACK lysis buffer (BioFluids). CD8�

T cells were prepared as described in the next paragraph. Cells were plated at

�5 � 105/ml in RPMI 1640 medium containing 10% FBS, 100 U/ml pen-

icillin, 100 
g/ml streptomycin, 2 mM L-glutamine, and 50 
M �-mercap-

toethanol (RPMI 1640 complete medium) with human IL-2 (Roche), mu-

Figure 7. Several genes are synergistically regulated by IL-21 and 

IL-15 in CD8� T cells. Naive CD8� T cells were isolated, treated without 

cytokine or with 100 ng/ml of IL-15 and/or IL-21 for 4 h, and subjected to 

RNA isolation and Affymetrix Gene Chip analysis as described in Materials 

and Methods. Results shown are from five independent experiments. 

Shown in A are the overall expression patterns of genes that are induced 

or repressed more than twofold by IL-15, IL-21, or both cytokines. Also 

shown are selected genes that are preferentially regulated by IL-15 alone 

(B), IL-21 alone (C), or IL-15 plus IL-21 (D).



JEM VOL. 201, January 3, 2005 147

ARTICLE

rine IL-7 (PeproTech), human IL-15 (PeproTech), or murine IL-21 (R&D

Systems) as indicated. Cells were cultured at 37�C for 3, 4, 5, or 7 d, and a

second dose of cytokines was added on day 4. Cells were counted and ana-

lyzed by flow cytometry on the indicated day. The cell survival assay was

performed using annexin V–FITC or annexin V–Biotin Apoptosis Detection

kit according to the manufacturer’s protocols (R&D Systems).

CD8� T cell isolation and labeling with CFSE. CD8� T cells were

positively selected using paramagnetic Microbeads conjugated to anti–

mouse CD8	 (Ly-2) monoclonal antibody according to the manufacturer’s

instructions (MACS; Miltenyi Biotec). To purify CD44high and CD44low

CD8� T cells, CD8� T cells were negatively selected using paramagnetic

Microbeads conjugated to anti–mouse CD4 (L3T4) and anti–mouse

CD45R (B220) monoclonal antibodies. The resultant cells were labeled

with anti-CD8–allophycocyanin, anti-CD44–CyChrome, and anti–IL-2R�

(CD122)–PE and sorted for CD44high and CD44lowCD8� T cells on a Mo-

Flo Cell Sorter (DakoCytomation). The resulting populations were �95%

pure. Isolated CD8� T cells were labeled with 5 
M CFSE (Molecular

Probes) for 15 min at 37�C.

Immunization of mice with HIV-1IIIB gp160 and measurement of

cytotoxicity and tetramer� and IFN-�� CD8� T cells. The recom-

binant vaccinia virus expressing the full-length HIV-1IIIB gp160 (vPE16)

was described previously (30). Wild-type and IL-21R��� mice were immu-

nized i.p. with 5 � 106 PFU of vPE16. The immunodominant peptide

epitope (RGPGRAFVTI; known as the P18-I10 peptide) within HIV-

1IIIB gp160 in H-2Dd mice (31, 32) was synthesized (Multiple Peptide Sys-

tems). Splenocytes from the immunized mice were cultured at 4 � 106

cells/well in 24-well plates containing 2 ml of RPMI 1640 complete me-

dium supplemented with 10% rat T-stim (Collaborative Biomedical). To

stimulate peptide-specific CD8� T cells in vitro, 1.0 
M or 0.001 
M P18-

I10 peptide was added into the cultures. On day 7, CTL activity was mea-

sured using a 5-h 51Cr release assay. P815 cells, which were maintained in

RPMI 1640 complete medium and pulsed with 1.0 
M or 0.001 
M P18-

I10, were used as target cells. The percent specific lysis was calculated as 100 �

(experimental release-spontaneous release)/(maximum release-spontaneous

release). Maximum release was determined from supernatants of cells that

were lysed by the addition of 2.5% Triton X-100. For P18-I10 H-2Dd tet-

ramer staining, cells were incubated with FITC-labeled anti-CD8 for 30

min, PE-labeled P18-I10-H-2Dd-tetramer (provided by the NIH Tetramer

Core Facility, Atlanta, GA) was added, and the cells were incubated for an

additional 30 min on ice. The tetramer was used at dilutions of 1:200 or

1:300 for fresh spleen cells and 1:50 for in vitro–restimulated cells. Back-

ground staining was assessed by use of an isotype control antibody. For

IFN-� induction, cells were stimulated with 1.0 
M P18-I10 for 10 h in

the presence of 1 
g/ml brefeldin A.

Intracellular IFN-� staining. Splenocytes were cultured in RPMI 1640

complete medium in 96-well plates at 2 � 105 cells/well containing no cy-

tokine, IL-15, IL-21, or both cytokines. After 7 d, cells were stimulated for

1, 2, or 4 h with 2 
g/ml of soluble anti-CD3
 and 2 
g/ml anti-CD28,

and stained for cell surface markers. The cells were fixed and permeabilized

using Cytofix/Cytoperm solution, followed by staining with PE-conju-

gated IFN-� mAb (BD Biosciences) as described previously (33).

Flow cytometric analyses. Cells were stained and analyzed on a FACS-

Caliber or FACSort with CellQuest software (BD Biosciences). The

following mAbs, all from BD Biosciences, were used: anti-CD4–FITC,

anti-CD8–allophycocyanin, anti–mouse CD8-FITC, anti-TCR�–allophy-

cocyanin, anti–IL-2R� (CD122)–FITC, anti–IL-2R� (CD122)–PE, anti-

CD44–CyChrome, anti-B220–FITC, anti-NK1.1–PE, anti-V�13–FITC,

and anti-CD44–PE.

Immunotherapy of B16 melanoma. Sublethally irradiated (500 rad) fe-

male C57BL/6 mice (The Jackson Laboratory) were injected subcutane-

ously with 3 � 105 mycoplasma-free B16-F10 melanoma cells. B16 is an

H-2b gp100� spontaneous murine melanoma and was maintained in RPMI

1640 complete medium. 8–10 d later, animals (n � 5–7 for each group)

were treated by intravenous injection of in vitro–cultured splenocytes

(0.5–1 � 106 V�13�CD8� T cells) from pmel-1 TCR transgenic mice (23).

For culturing, fresh splenocytes from pmel-1 mice were depleted of eryth-

rocytes and cultured in RPMI 1640 complete medium containing 2 ng/ml

of human IL-2 (Chiron Corp.) and 1 
M hgp10025-33. Cells were used for

adoptive cell transfer (ACT) 6–7 d later. Where indicated, mice were also

immunized with 2 � 107 PFU of rFPVhgp100 (Therion Biologics; refer-

ence 23). 5–10 
g IL-15 or IL-21 was freshly reconstituted in PBS and ad-

ministered by i.p. injection twice daily, beginning the day of adoptive trans-

fer, for 3 d. Tumors were measured in a blinded fashion using calipers, and

the products of the perpendicular diameters were calculated. Tumor size

(rank sum test) and survival data (Kaplan-Meier) were recorded for over 4

wk after treatment and analyzed. For quantifying pmel-1 T cells, for each

group, treated mice were bled by tail vein, samples were pooled, and total

lymphocyte numbers and flow cytometric profiles for V�13 and CD8 were

determined by the NIH Clinical Center Clinical Immunology Laboratory.

RNA purification and Affymetrix Gene Chip analysis. Total RNA

was isolated (RNeasy; QIAGEN) from naive CD8� T cells with 4 h of

stimulation of cytokines (100 ng/ml each), processed to cRNA probes for

gene chip analysis, and probes were hybridized to U430A GeneChips (Af-

fymetrix, Inc.; these chips contain oligonucleotides corresponding to 22K

transcripts per microarray), washed, and scanned (Hewlett Packard Gene

Array scanner G2500A) according to procedures outlined by the manufac-

turer (Affymetrix, Inc.). Data were analyzed with open source clustering

software Cluster 3.0 (http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/

cluster/index.html; reference 34).

Online supplemental material. Fig. S1 shows that IL-21 cooperated

with IL-7 but not as potently as it does with IL-15 on CD8� T cell expan-

sion. Fig. S2 shows that synergistic expansion of CD8� T cells is diminished

in both IL-15��� and IL-21R��� mice. Online supplemental material is

available at http://www.jem.org/cgi/content/full/jem.20041057/DC1.
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