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Abstract. Social foraging behavior of Escherichia coli bacteria has recently been explored to 
develop a novel algorithm for distributed optimization and control. The Bacterial Foraging 
Optimization Algorithm (BFOA), as it is called now, is currently gaining popularity in the 
community of researchers, for its effectiveness in solving certain difficult real-world 
optimization problems. Until now, very little research work has been undertaken to improve the 
convergence speed and accuracy of the basic BFOA over multi-modal fitness landscapes. This 
article comes up with a hybrid approach involving Particle Swarm Optimization (PSO) and 
BFOA algorithm for optimizing multi-modal and high dimensional functions. The proposed 
hybrid algorithm has been extensively compared with the original BFOA algorithm, the 
classical g_best PSO algorithm and a state of the art version of the PSO.  The new method is 
shown to be statistically significantly better on a five-function test-bed and one difficult 
engineering optimization problem of spread spectrum radar poly-phase code design. 

Keywords: Bacterial Foraging, hybrid optimization, particle swarm optimization, Radar  
poly-phase code design. 

1   Introduction 

In 2001, Prof. K. M. Passino proposed an optimization technique known as Bacterial 
Foraging Optimization Algorithm (BFOA) based on the foraging strategies of the  
E. Coli bacterium cells [1]. Until date there have been a few successful applications  
of the said algorithm in optimal control engineering, harmonic estimation [2], 
transmission loss reduction [3], machine learning [4] and so on. Experimentation with 
several benchmark functions reveal that BFOA possesses a poor convergence 
behavior over multi-modal and rough fitness landscapes as compared to other 
naturally inspired optimization techniques like the Genetic Algorithm (GA) [5] 
Particle Swarm Optimization (PSO) [6] and Differential Evolution (DE)[7]. Its 
performance is also heavily affected with the growth of search space dimensionality. 
In 2007, Kim et al. proposed a hybrid approach involving GA and BFOA for function 
optimization [8]. The proposed algorithm outperformed both GA and BFOA over a 
few numerical benchmarks and a practical PID tuner design problem. 
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In this article we come up with a hybrid optimization technique, which 
synergistically couples the BFOA with the PSO. The later is a very popular 
optimization algorithm these days and it draws inspiration from the group behavior of 
a bird flock or school of fish etc. The proposed algorithm performs local search 
through the chemotactic movement operation of BFOA whereas the global search 
over the entire search space is accomplished by a PSO operator. In this way it 
balances between exploration and exploitation enjoying best of both the worlds. 

The proposed algorithm, referred to as Bacterial Swarm Optimization (BSO) has 
been extensively compared with the classical PSO, a state-of- the-art variant of PSO 
and the original BFOA over a test suit of five well-known benchmark functions and 
also on a practical optimization problem of spread spectrum radar poly-phase code 
design [9]. The following performance metrics were used in the comparative study (i) 
quality of the final solution, (ii) convergence speed, (iii) robustness and (iv) 
scalability. Such comparison reflects the superiority of the proposed approach. 

2   The Bacterial Swarm Optimization Algorithm 

Particle swarm optimization (PSO) [6] is a stochastic optimization technique that 
draws inspiration from the behavior of a flock of birds or the collective intelligence  
of a group of social insects with limited individual capabilities. In PSO a population 

of particles is initialized with random positions iX
r

 and velocities iV
r

, and a fitness 

function, f, is evaluated, using the particle’s positional coordinates as input values. In 

an n-dimensional search space, iX
r

= (xi1, xi2, xi3,...,xin) and iV
r

= (vi1, vi2, vi3,...,vin).   
Positions and velocities are adjusted, and the function is evaluated with the new 
coordinates at each time-step.  The velocity and position update equations for the d-th 
dimension of the i-th particle in the swarm may be given as follows:  
  
Vid (t+1) = ω.Vid (t) + C1. φ1. (Plid -Xid (t)) + C2. φ2. (Pgd-X id(t))                   
Xid (t+1) = Xid (t) + Vid (t+1)                                                                                       (1) 

 
The BFOA is on the other hand is based upon search and optimal foraging decision 

making capabilities of the E.Coli bacteria [10]. The coordinates of a bacterium here 
represent an individual solution of the optimization problem. Such a set of trial 
solutions converges towards the optimal solution following the foraging group 
dynamics of the bacteria population. Chemo-tactic movement is continued until a 
bacterium goes in the direction of positive nutrient gradient (i. e. increasing fitness). 
After a certain number of complete swims the best half of the population undergoes 
reproduction, eliminating the rest of the population. In order to escape local optima, 
an elimination-dispersion event is carried out where, some bacteria are liquidated at 
random with a very small probability and the new replacements are initialized at 
random locations of the search space. A detailed description of the complete 
algorithm can be traced in [1]. 

In the proposed approach, after undergoing a chemo-tactic step, each bacterium 
also gets mutated by a PSO operator. In this phase, the bacterium is stochastically 
attracted towards the globally best position found so far in the entire population at 
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current time and also towards its previous heading direction. The PSO operator uses 
only the ‘social’ component and eliminates the ‘cognitive’ component as the local 
search in different regions of the search space is already taken care of by the chemo-
tactic steps of the BFOA algorithm.  In what follows we briefly outline the new BSO 
algorithm step by step. 

[Step 1] Initialize parameters n, N, NC, NS, Nre, Ned, Ped, C(i)( i=1,2,…,N), iφ .  
               Where,   
                n:     Dimension of the search space, 

                    N:     The number of bacteria in the population, 
                    NC :   No. of Chemo-tactic steps, 
                    Nre :  The number of reproduction steps, 
                    Ned :  The number of elimination-dispersal events, 

               Ped :   Elimination-dispersal with probability,  
              C(i):   The size of the step taken in the random direction specified by the 

tumble.  
                    ω:      The inertia weight. 
                   C1:      Swarm Confidence. 

                  ),,( kjiθ
r

: Position vector of the i-th bacterium, in j-th chemotactic step, 

and k-th reproduction. 

                   iV
r

:     Velocity vector of the i-th bacterium. 

 
   [Step 2] Update the following: 

          J (i, j, k): Cost or fitness value of the i-th bacterium in the jth chemo-taxis, 
and k-th reproduction loop. 

        bestg _θ
r

: Position vector of the best position found by all bacteria. 

         Jbest (i, j, k): Fitness of the best position found so far. 
 
   [Step 3] Reproduction loop: k=k+1 
 
   [Step 4] Chemotaxis loop: j=j+1 

   [substep a] For i =1,2,…,N, take a chemotactic step for bacterium i as follows.  
   [substep b] Compute fitness function,J (i ,j, k). 

[substep c] Let Jlast=J (i,j,k) to save this value since we may find a better cost via 
a run. 

   [substep d] Tumble: generate a random vector nRi ∈Δ )( with each element                    

,,...,2,1),( pmim =Δ  a random number on [-1, 1]. 

   [substep e] Move: Let 
)()(

)(
)(),,(),1,(

ii

i
iCkjikji

T ΔΔ

Δ+=+ θθ  

   [substep f] Compute ),1,( kjiJ + . 

   [substep g] Swim: we consider only the i-th bacterium is swimming while the 
others are not moving then. 
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                        i) Let m=0 (counter for swim length). 

                       ii) While m< sN (if have not climbed down too long). 

                            • Let m=m+1. 
                            • If <+ ),1,( kjiJ Jlast (if doing better),  

                                let Jlast = ),1,( kjiJ + and let 

                             
)()(

)(
)(),,(),1,(

ii

i
iCkjikji

T ΔΔ

Δ+=+ θθ  

                              and use this ),1,( kji +θ  to compute the new ),1,( kjiJ +  

as we did in [sub step f] 

                           • Else, let m= sN . This is the end of the while statement. 
 
            [Substep 5] Mutation with PSO Operator 
  
                               For i = 1,2, …, S 

 Update the bestg _θ
r

and  Jbest (i, j, k) 

 Update position and velocity of the d-th coordinate of the 
i-th bacterium according to the following rule: 

                                       )),1,(.(.. _11 kjiCVV old
dbestg

new
id

new
id d

+−+= θθϕω  

                                       new
id

old
d

new
d Vkjikji ++=+ ),1,(),1,( θθ  

 
     [Step 6] Let S_r=S/2. 
     
              The S_r bacteria with highest cost function (J) values die and the other 

half of bacteria population with the best values split (and the copies that 
are made are placed at the same location as their parent). 

 

         [Step 7] If k<Nre, go to step 1. We have not reached the specified number of 
reproduction steps. So we start the next generation in the chemo-taxis loop. 

3   Experimental Setup 

3.1    Benchmark Functions Used  

The performance of the BSO algorithm has been evaluated on a test bed of 5 well-
known benchmark functions [10] as shown in table 1. In table 1 n represents the 
number of dimensions and we used n=15, 30, 45 and 60. All the benchmark functions 
except f5 have their global minima at the origin or very near to the origin. For Shekel’s 
Foxholes the global minimum is at (-31.95,-31.95) and its value is 0.998. An 
asymmetrical initialization procedure has been used here following the work reported 
in [12]. A famous NP-hard problem of optimal design arises in the field of spread 
spectrum radar poly-phase codes [9]. The four competitor algorithms have been 
applied on this problem. We omit the detailed description of the associated fitness 
function in order to save space.   
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Table 1. Benchmark Functions Used 
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3.2   Simulation Strategy 

The proposed BSO algorithm has been compared with the classical PSO, original 
BFOA and a recently developed variant of PSO known as MPSO-TVAC [13]. In the 
later version velocity of a randomly selected particle is perturbed by a random 
mutation step size if the global best-sofar solution does not improve for a 
predetermined number of generations. Following [13] we keep the mutation step size 
proportional to the maximum allowable velocity. For all the competitive algorithms 
we use same population size which amounts to 40 particles or bacteria in 
corresponding algorithm .To make the comparison fair population all the competitor 
algorithms (all problems tested) were initialized using the same random seed. 

We choose the number of fitness function evaluations (FEs) as a measure of the 
computational time instead of ‘iterations’ or ‘generations’. Twenty-five independent 
runs of the four competitor algorithms were carried out on each problem and the 
average of the best -of- run solutions and standard deviations were noted. Each run 
was continued for different maximum number of FEs depending on the complexity of 
the problem. The spread spectrum radar poly-phase code design problem was tested 
varying n from 2 to 20. We, however, report result of just two of the most difficult 
problem instances (for dimensions 19 and 20) owing to the space limitations. 
Standard set of parameters was used for the PSO algorithm and the original BFOA. In 
case of the BSO algorithm we have chosen the best-suited set of parameters after a 
series of hand tuning experiments. We take Nre=4, Nc=50, ω=0.8, C1=C2=1.494. The 
same set of parameters was used for all algorithms. For BFOA and MPSO-TVAC, we 
have employed the standard set of parameter values as recommended in [1] and [13] 
respectively. 

4   Results 

Table 2 compares the algorithms on quality of the optimum solution over five 
benchmarks. The mean and the standard deviation (within parenthesis) of the  
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Table 2. Mean and Standard Deviation over five benchmarks 

Mean Best Value 
(Standard Deviation) 

 
 

Fun 

 
 

Dim 
 

 
Maxm 
FE 

BFOA 
Classical 

PSO 
MPSO-
TVAC 

BSO 

15 50,000 26.705 
(2.162) 

14.225 
(3.573) 

4.217 
(1.332) 

0.483 
(0.074) 

30 1×105 58.216 
(14.32) 

46.139 
(9.649) 

22.432 
(7.178) 

15.471 
(2.655) 

45 5×105 96.873 
(26.136) 

83.630 
(14.536) 

43.258 
(16.944) 

27.986 
(4.338) 

 
 

f1 
 
 
 

60 1×106 154.705 
(40.162) 

122.239 
(67.728) 

97.537 
(24.379) 

52.263 
(8.341) 

15 50,000 6.9285 
(2.092) 

3.3484 
(0.297) 

1.1545 
(0.321) 

0.082 
(0.00928) 

30 1×105 17.0388 
(4.821) 

12.7374 
(0.781) 

9.8824 
(0.931) 

10.2266 
(0.238) 

45 5×105 30.9925 
(7.829) 

24.8286 
(1.818) 

17.0656 
(1.352) 

13.5034 
(3.923) 

 
 

f2 
 

60 1×106 45.8234 
(9.621) 

36.3343 
(6.291) 

22.253 
(4.889) 

18.3621 
(5.773) 

15 50,000 0.2812 
(0.0216) 

0.0361 
(0.00524) 

0.1613 
(0.097) 

0.0541 
(0.0287) 

30 1×105 0.3729 
(0.046) 

0.1348 
(0.107) 

0.2583 
(0.1232) 

0.0792 
(0.0113) 

45 5×105 0.6351 
(0.052) 

0.1969 
(0.116) 

0.5678 
(0.236) 

0.1352 
(0.0135) 

 
 
 

f3 

60 1×106 0.8324 
(0.076) 

0.7584 
(0.342) 

0.6113 
(0.097) 

0.2547 
(0.0287) 

15 50,000 0.9332 
(0.0287) 

0.5821 
(0.0542) 

0.1696 
(0.0026) 

0.0825 
(0.0007) 

30 1×105 4.3243 
(1.883) 

0.8578 
(0.042) 

0.7372 
(0.0415) 

0.5921 
(0.036) 

45 5×105 12.4564 
(3.434) 

1.8981 
(0.195) 

0.8922 
(0.1453) 

0.9383 
(0.1327) 

 
 

f4 
 
 
 

60 1×106 8.3247 
(1.613) 

2.4062 
(0.451) 

2.1692 
(0.418) 

1. 8766 
(0.536) 

f6 2 50,000 0.999868 
(0.00217) 

0.999832 
(0.00167) 

0.999805 
(0.00485) 

0.999800 
(0.0000) 

best-of-run values of 25 independent runs for each of the four algorithms were 
presented. Each algorithm is predetermined maximum number of FEs. The best 
solution in each case has been marked in bold. Table 3 presents results of the unpaired 
t-tests between BSO and best of the three competitive algorithms in each case 
(standard error of difference of the two means, 95% confidence interval of this 
difference, the t and the two tailed P value). In table 3 for all cases the sample size 
=25 and degrees of freedom = 48. It is interesting to note from table 2 and 3 that for 
most of the cases the BSO algorithm meets or beats its nearest competitor in a 
statistically meaningful way. Table 2 shows that in three cases (f2 (30), f3 (15), f4 (45)) 
the mean of the BSO algorithm is greater than that of the classical PSO or MPSO-
TVAC. But table 3 reveals that in two cases i.e. f2 (30) and f4 (45) this difference is 
not statistically significant. Also one may perceive that incorporating the g_best PSO 



 Synergy of PSO and Bacterial Foraging Optimization 261 

operator besides the computational chemotaxis has significantly improved the 
performance of BSO as compared to the original BFOA algorithm. Tables 4 and 5 
present the corresponding results for the radar poly-phase code design problem for 
n=19 and n=20. In figure 1 we have graphically presented the rate of convergence of 
the competitor algorithms for all the functions in 30 dimensions. The graphs have 
been drawn for the median of the run for all cases. Figure 2 shows the scalability of 
the four methods on two tests functions-how the average time of convergence varies 
with the dimensionality of the search space. We omit rest of test functions for the sake 
of space economy. The graphs suggest that the effects of the curse of dimensionality 
are comparable on BSO and MPSO-TVAC and at least far better than classical PSO 
and BFOA.  

Table 3. Results of unpaired t-tests on the data of Table 3 

Fn, Dim Std. Err t 95% Conf. Intvl Two-tailed P Significance 
f1, 15 0.267 13.9949 -4.27046 to  -3.19754 < 0.0001 Extremely significant 

f1, 30 1.531 4.5477 -10.03859 to -3.88341 < 0.0001 Extremely significant 

f1, 45 3.498 4.3658 -22.30540 to -8.23860 < 0.0001 Extremely significant 

f1, 60 5.153 8.7855 -55.63537 to -34.91263 < 0.0001 Extremely significant 

f2, 15 0.064 16.6908 -1.2011367 to -0.9428633 <0.0001 Extremely Significant 

f2, 30 0.192 1.7899 -0.04242 to 0.73042 0.0798 Not quite Significant 

f2, 45 1.513 14.4685 -24.9330 to -18.8487 < 0.0001 Extremely significant 
f2, 60 1.513 2.5724 -6.932087 to -0.849713 0.0132 Significant 

f3, 15 0.006 3.0849 0.0062682 to 0.0297318 0.0034 Very Significant 

f3, 30 0.022 2.5838 0.012333 to 0.098867 0.0129 Significant 

f3, 45 0.023 2.6417 -0.108662 to -0.014738 0.0111 Significant 

f3, 60 0.020 17.6261 -0.3972779 to -0.3159221 <0.0001 Extremely Significant 

f4, 15 0.001 161.740 -0.0881827 to -0.086017 <0.0001 Extremely Significant 

f4, 30 0.011 13.2057 -0.1671923 to -0.1230077 <0.0001 Extremely Significant 

f4, 45 0.030 0.8735 -0.033979 to 0.086179 0.3867 Not Significant 

f4, 60 0.136 2.1524 -0.565934 to -0.019266 0.0364 Significant 

f5,2 0.001 0.0052 -0.0019553 to 0.0019453 0.9959 Not Significant 

   
                        (a) Rastrigin (f2)                                                         (b) Ackley (f4) 

Fig. 1. Progress towards the optima for two benchmark functions 
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                           (a) Rastrigin (f2)                                                      (b) Ackley (f4) 

Fig. 2. Variation of computational cost with search space dimensionality 

Table 4. Average and the standard deviation of the best-of-run solution for 25 runs for spread 
spectrum radar poly-phase code design problem (number of dimensions n = 19 and n = 20). For 
all cases each algorithm was run for 50,000 FEs. 

Mean best-of-run solution 
( Std Dev) 

N 

 BFOA   Classical PSO MPSO-TVAC BSO 

19 0.7974 
(0.0323) 

0.7524 
(0.00493) 

0.7832 
(0.00038) 

0.7519 
(0.0392) 

20 0.8577 
(0.0283) 
 

0.8693 
(0.0048) 

0.8398 
(0.0482) 

0.8134 
(0.0482) 

Table 5. Results of unpaired t-tests on the data of Table 4 

n Std. 
Err 

t 95% Conf. Intvl Two-
tailed P 

Significance 

19 0.002 2.5024 -0.00734 to -0.00081 0.0152 Significant 

20 0.010 3.5880 -0.05792 to -0.01644 0.0007 Extremely significant 

5   Conclusions 

The paper has presented an improved variant of the BFOA algorithm by combining 
the PSO based mutation operator with bacterial chemotaxis. The present scheme 
attempts to make a judicious use of exploration and exploitation abilities of the search 
space and therefore likely to avoid false and premature convergence in many cases. 
The overall performance of the proposed algorithm is definitely better than a 
standalone BFOA at least on the numerical benchmarks tested. The performance also 
appears to be at least comparable with PSO and its variants. The future research effort 
should focus on reducing the number of user-defined parameters for BFOA and its 
variants. Also an empirical study on the effects of these parameters on the 
convergence behavior of the hybrid algorithms may be worthy to undertake.     
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