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Synoptic Monitoring of Gross Primary Productivity
of Maize Using Landsat Data

Anatoly A. Gitelson, Andrés Viña, Jeffrey G. Masek, Shashi B. Verma, and Andrew E. Suyker

Abstract—There is a growing interest in monitoring the gross
primary productivity (GPP) of crops due mostly to their carbon
sequestration potential. Both within- and between-field variabil-
ity are important components of crop GPP monitoring, partic-
ularly for the estimation of carbon budgets. In this letter, we
present a new technique for daytime GPP estimation in maize
based on the close and consistent relationship between GPP
and crop chlorophyll content, and entirely on remotely sensed
data. A recently proposed chlorophyll index (CI), which involves
green and near-infrared spectral bands, was used to retrieve
daytime GPP from Landsat Enhanced Thematic Mapper Plus
(ETM+) data. Because of its high spatial resolution (i.e., 30 ×
30 m/pixel), this satellite system is particularly appropriate for
detecting not only between- but also within-field GPP variability
during the growing season. The CI obtained using atmospherically
corrected Landsat ETM+ data was found to be linearly related
with daytime maize GPP: root mean squared error of less than
1.58 gC · m−2 · d−1 in a GPP range of 1.88 to 23.1 gC · m−2 · d−1;
therefore, it constitutes an accurate surrogate measure for GPP es-
timation. For comparison purposes, other vegetation indices were
also tested. These results open new possibilities for analyzing the
spatiotemporal variation of the GPP of crops using the extensive
archive of Landsat imagery acquired since the early 1980s.

Index Terms—Optical imaging, remote sensing, vegetation
mapping.

I. INTRODUCTION

CROPS are the most pervasive anthropogenic biome world-
wide, playing an important role in the global cycles of

carbon, water, and nutrients. The potential of crops to se-
quester carbon has received substantial scientific attention in
the last few years (e.g., [1]). In particular, the maize/soybean-
based cropping systems, which dominate the north-central
U.S. agricultural region, are considered to have a significant
but still underutilized sequestration potential [2]. Hybrids and
field management practices have changed over the last three
decades, increasing crop yields, decreasing tillage, and in-
creasing residue inputs to the soil, among others [3]. These
changes have impacts on the amount of atmospheric carbon
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fixed through photosynthesis, as well as on the release of carbon
due to organic matter decomposition.

Field studies have used eddy covariance techniques to pro-
vide information on the seasonal and interannual dynamics
of carbon fluxes in crops (e.g., [4] and [5]). These tech-
niques provide an integrated measurement of carbon fluxes
over spatially-variable footprints; therefore, up-scaling beyond
the footprint is crucial for regional carbon budget assessments.
Since vegetation productivity is directly related to the interac-
tion of solar radiation with the plant canopy, remote sensing
techniques have been increasingly used for such up-scaling.
Procedures developed, so far, can be grouped into two broad
categories according to the way they model the absorption of
solar radiation and its conversion into dry matter [6]: canopy
photosynthesis models (CPMs) and production efficiency mod-
els (PEMs). While CPM computes the amount of leaves (i.e.,
leaf area index) used to absorb solar radiation, PEM directly
computes the absorbed solar radiation based on the original
logic of Monteith [7], which suggests that the gross primary
productivity (GPP) of crops is linearly related to the amount of
absorbed photosynthetically active radiation

GPP ∝ ε × Σ(fAPAR × PAR) (1)

where PAR is the incident photosynthetically active radiation,
fAPAR is the fraction of PAR absorbed by the crop canopy,
their product integrated over a time period, and ε is light use
efficiency (LUE).

Most PEM are based on the assumption of a close linear
relationship between the fAPAR and the normalized difference
vegetation index (NDVI), as well as on a constant, though
biome-specific, LUE [6]. Nevertheless, it has been shown that
these assumptions do not hold in many circumstances. On
the one hand, although LUE is a relatively conservative value
among plant formations of the same metabolic type [6], its
variability is species-specific rather than biome-specific [8],
it changes with phenological stage [5], [9], and it depends
on environmental stress factors (e.g., [10]). Many models for
the remote estimation of GPP use lookup tables of maximum
LUE for a given vegetation type and then adjust those values
downward on the basis of environmental stress factors (e.g., [6]
and [10]), but they use coarse spatial resolution meteorological
variables, which also result in significant GPP estimation errors
(e.g., [11] and [12]). On the other hand, a significant decrease
in the sensitivity of NDVI to fAPAR is observed when fAPAR
exceeds 0.7 [13]–[15]. Therefore, the uncertainty of crop GPP
estimation using Monteith’s logic might be considerable, due to
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the nonlinearity of the NDVI/fAPAR relationship, and the lack
of knowledge about factors influencing LUE.

Perhaps, a more direct approach is to devise models for GPP
estimation based entirely on remotely sensed data [e.g., vegeta-
tion indices (VIs)] without depending on an estimation of LUE,
therefore having a continuous output at the spatial resolution
of the satellite data. However, short term (minutes to hours)
variations in GPP due to short-term environmental stresses
(e.g., temperature, humidity, soil moisture) cannot be estimated
from VIs alone, since these short-term stresses do not affect
crop greenness (i.e., canopy chlorophyll content). However, the
GPP variability integrated over longer time periods (e.g., days),
can be characterized by VIs obtained from data acquired by
operational satellites. Strong correlations between CO2 flux and
VIs such as NDVI [16]–[18] and the enhanced VI (EVI) [19],
[20] have been observed for different ecosystems when the
flux data were averaged over one or two weeks. These strong
correlations depend on the close relationship between GPP
and chlorophyll (Chl) content [21]–[23], because the energy
absorbed by the canopy can only be transferred to the dark
reaction of the photosynthesis by the Chl. Therefore, metrics
that estimate the Chl content (e.g., VIs) constitute surrogates of
the amount of energy that can be transferred to the dark reaction
of the photosynthesis. Following this logic, it was shown that
the product of Chl and incoming photosynthetically active radi-
ation (PAR) accounted for more than 98% of GPP variation in
both maize and soybeans in a wide range of PAR variation [9].
This relationship (i.e., GPP versus Chl × PAR) was nonspecies
specific, consistent and repeatable under rainfed and irrigated
conditions [9]. Therefore, for an operational remote estimation
of GPP in crops, an accurate remote estimation of Chl is
required.

A recently developed conceptual model with a solid phys-
ical background has been widely used for the nondestructive
retrieval of various pigments in different media such as leaves,
crop canopies, fruits and turbid productive waters [24]–[26].
Chlorophyll indices (CIs) that employ bands in the near infrared
and either green or red-edge spectral regions are a special
case of this conceptual model, and have been linearly related
with crop Chl content [24], as well as successfully used for
maize and soybean midday GPP estimation [9]. However,
this approach has only been tested using close range sensing
techniques. In this letter, we examined the performance of the
approach for the remote estimation of daily integrated GPP of
irrigated and rainfed maize using data acquired by the Landsat
Enhanced Thematic Mapper Plus (ETM+) satellite system.
Because of its high spatial resolution (i.e., 30 × 30 m/pixel),
this satellite system is particularly appropriate for detecting not
only between but also within field GPP variability during a
growing season. For comparison purposes, other indices that
also respond to canopy Chl content, and that have been also
successfully used for GPP retrieval, were also tested.

II. METHODS

This study used three sites located at the University of
Nebraska Agricultural Research and Development Center near
Mead, Nebraska. These sites are large production fields (49 to

65 ha) and provide sufficient upwind fetch of uniform cover re-
quired for adequately measuring mass and energy fluxes using
tower eddy covariance systems. Two sites (1: 41◦09’54.2”N,
96◦28’35.9”W; 2: 41◦09’53.5”N, 96◦28’12.3”W) are equipped
with center-pivot irrigation systems while the third site
(3: 41◦10’46.8”N, 96◦26’22.7”W) relies on rainfall. Soils of the
three study sites are composed of deep silty clay loam. In 2001,
all three sites were under maize, while in 2002 only one site
(site 1) was under maize.

To have sufficient upwind fetch (in all directions), eddy
covariance sensors were mounted at 3 m above the ground
while the canopy was shorter than 1 m, and later moved to a
height of 6.2 m until harvest (details are given elsewhere: [5]).
Each of these fields represented approximately 90%–95% of
the flux tower footprint during daytime and 70%–90% during
nighttime. Daytime net ecosystem exchange (NEE) values were
computed by integrating the CO2 fluxes collected by the eddy
covariance tower from 8:30 and 18:30, so that the sun elevation
was 5◦ or more in all dates. Daytime ecosystem respiration
was calculated from the nighttime CO2 exchange/temperature
Q10 relationship as used in [5]. GPP (in grams of carbon
per square meter per day, gC · m−2 · d) was then obtained by
subtracting daytime respiration from NEE. This approach has
been widely used in the context of tower flux measurements and
is considered to provide reasonable estimates at the landscape
level [4], [5].

Four Landsat-7 ETM+ images (WRS-2 path 28, row 31)
acquired throughout the 2001 growing season (June 10,
August 13 and 29, and September 30) and one image acquired
in July 15, 2002 were used in this letter. These images were
first coregistered manually by picking ground control points
using the environment for visualizing images (ENVI) pro-
cessing package, and then resampled to a common grid (30 ×
30 m/pixel). The images were atmospherically corrected to
the top-of-canopy reflectance using the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) at the
NASA Goddard Space Flight Center [27]. The atmospheric
correction procedure corrects for gaseous absorption, Rayleigh
scattering, and Mie (aerosol) scattering using the Moderate
Resolution Imaging Spectroradiometer (MODIS)/6S radiative
transfer model [28]. Ozone concentrations were derived from
Total Ozone Mapping Spectrometer (TOMS) data aboard the
Nimbus-7, Meteor-3, and Earth Probe platforms. Column wa-
ter vapor is taken from “National Oceanic and Atmospheric
Administration National Centers for Environmental Predic-
tion’s reanalysis data” available at a resolution of 2.5◦ × 2.5◦.
Aerosol optical thickness was derived for each image using the
dark, dense vegetation approach [29]. Based on the physical
correlation between chlorophyll absorption and bound water
absorption, this method postulates a linear relation between
shortwave-infrared (2.2 µm) surface reflectance (nearly un-
affected by the atmosphere) and surface reflectance in the
visible bands. By using the relation to calculate surface re-
flectance for the visible bands, and comparing the result to
the top-of-atmosphere reflectance, the aerosol optical depth
was estimated. LEDAPS surface reflectance products have been
compared to in situ data from the Aerosol Robotic Network
(AERONET) and to daily, 500-m resolution surface reflectance
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Fig. 1. Relationships between four VIs and daytime GPP.

products from the MODIS sensor onboard the NASA Terra
spacecraft [27]. The uncertainties associated with the calculated
reflectance values are within the uncertainty of the MODIS
surface reflectance product (the greater of 0.5% absolute re-
flectance or 5% of the recorded reflectance value) for normal
aerosol loadings (τ550nm < 0.5).

Green CI (CIgreen) was calculated as

CIgreen = (ρNIR/ρgreen) − 1 (2)

where ρNIR and ρgreen are surface reflectances in the near-
infrared (NIR) and green bands of the Landsat ETM+ system,
respectively. For comparison purposes, three other VIs were
calculated to assess their accuracy for GPP estimation

NDVI = (ρNIR − ρred)/(ρNIR + ρred) (3)
EVI = 2.5(ρNIR−ρred)/(1+ρNIR+6ρred−7ρblue) (4)

WDRVI = (αρNIR − ρred)/(αρNIR + ρred) (5)

where WDRVI is wide dynamic range VI [30] developed to in-
crease the sensitivity to changes in vegetation with moderate-to-
high densities, where NDVI saturates. WDRVI was calculated
with an α = 0.1, found to be optimal for surface reflectance
data [30]. With the exception of the WDRVI, all of these indices
have been reported to be linearly related with time-integrated
GPP in different ecosystems (e.g., [9], [16]–[19]).

Since the study sites represented approximately 90%–95%
of the daytime flux tower footprints [5], site VI values were
obtained by averaging all the per-pixel VI values within the
fields for each date of image acquisition. Although this spatial
averaging was not necessary due to field homogeneity [9], it
was performed to calibrate the models using the footprint of the
tower-based GPP measurements.

GPP values used were the daily integrals of the instantaneous
GPP for the day of image acquisition; however, they do reflect
previous environmental conditions. The same is the case for
the VI values that are governed by crop greenness (i.e., Chl
content which reflects previous environmental and management

conditions) and do not depend on the incoming PAR of the
image acquisition date. Thus, we performed the comparison
of daily integrated GPP directly with the VIs obtained from
cloud-free and atmospherically corrected imagery (as opposed
to the product of VI and incoming PAR used at close range
[9], which allowed to collect reflectance data even under cloudy
conditions).

Site VI values were regressed against the average daytime
GPP values obtained by the eddy covariance technique for
the same days of image acquisitions. Best-fit-functions and
parameters were obtained for each VI versus GPP relation
tested.

To compare the sensitivity of each of the above VIs to
changes in GPP, the noise equivalent GPP (NE ∆GPP) was
calculated as

NE ∆GPP = rmse(VI versus GPP)/ [d(VI)/d(GPP)] (6)

where rmse is the root mean squared error of the relationship
VI versus GPP, and d(VI)/d(GPP) is the first derivative of VI
with respect to GPP. Thus, NE ∆GPP brings the rmse value
adjusted for sensitivity of the VI to GPP. Defined in this way, the
noise equivalent allows the direct comparison among different
indices, with different scales and dynamic ranges [15].

III. RESULTS AND DISCUSSION

The daytime GPP varied widely, ranging from 1.88 gC ·
m−2 · d−1 in June 2001 to 23.1 gC · m−2 · d−1 in July 2002,
which requires a wide dynamic range of the remote sensing
technique for an accurate GPP assessment. The five Landsat-7
ETM+ images used in this letter provided observations for all
maize physiological stages: green-up (June and July), reproduc-
tion (beginning of August) and senescence (end of August to
late September).

The VI versus GPP relationship was calculated using linear
and nonlinear regressions (Fig. 1). The NDVI versus GPP
relationship was asymptotic, with a significant decrease in the
slope as GPP exceeds 10 gC · m−2 · d−1 [Fig. 1(a)]. Thus,
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Fig. 2. Noise equivalent of GPP estimation by four VIs plotted versus
daytime GPP.

NDVI exhibits limitations in GPP estimation at moderate
to high vegetation densities, similar to what was found for
the relationship between NDVI and the fraction of incoming
PAR absorbed by photosynthetically active vegetation [15]. It
prevents an accurate estimation of GPP > 10 gC · m−2 · d−1,
which corresponds to more than two months of the growing
season in irrigated and rainfed maize [5]. Both EVI and WDRVI
also exhibited asymptotic relationships with GPP with decrease
in sensitivity as GPP exceeded 15 gC · m−2 · d−1. However, the
sensitivity of these indices to moderate to high GPP was higher
than that of NDVI [Fig. 1(b) and (c)]. The relationship CIgreen
versus GPP was linear with a coefficient of determination of
0.96, and an rmse of GPP estimation of less than 1.58 gC ·
m−2 · d−1 in the range of GPP from 1.88 to 23.1 gC · m−2 · d−1

[Fig. 1(d)].
The noise equivalent of GPP estimation by each VI is

shown in Fig. 2. NDVI and EVI had minimal NE ∆GPP
for GPP < 5 gC · m−2 · d−1. With GPP > 8 gC · m−2 · d−1,
the NE ∆GPP of NDVI increased exponentially, reach-
ing 28 gC · m−2 · d−1 for GPP = 23 gC · m−2 · d−1 (not
shown in Fig. 2). In the range of GPP from 5 to
12 gC · m−2 · d−1, WDRVI had the lowest noise equiv-
alent. With increase in GPP beyond 10 gC · m−2 · d−1,
NE ∆GPP of both EVI and WDRVI also increased but at
lower rates than that of NDVI. However, NE ∆GPP of EVI and
WDRVI became much higher (2.5-fold for WDRVI and 3-fold
for EVI) than that of CIgreen at maximal GPP values.

The CIgreen was the most accurate index for GPP beyond
12 gC · m−2 · d−1 and it appeared to be the most suitable index
for the estimation of GPP using Landsat ETM+ data. Since the
relationship is linear, it is straightforward to invert it between
CIgreen and GPP to obtain a synoptic measure of GPP. The
differential sensitivity of the CIgreen and other VIs to GPP could
be combined optimizing the monitoring of GPP using a single,
blended index (details are given in [31]).

These results are promising; however, there are several lim-
itations of the approach. First, variations in GPP due to short
term environmental stresses and irradiation conditions cannot
be estimated by CIgreen as well as by other VIs, if these stresses
do not affect crop Chl. The inclusion of other remote sensing

products, such as the land surface temperature and indices for
the estimation of leaf water content (e.g., [32] and [33]) may
result in more robust models of carbon balance based entirely
on remote sensing data. Second, CIgreen, as well as other VIs,
are species specific (i.e., the coefficients of the VI versus GPP
relations depend on the species) [9], [24]. Thus, the CIgreen
calculated with sensor systems with coarse spatial resolutions
(e.g., MODIS 500 m/pixel) becomes less accurate for crop GPP
estimation, due to the increase in within pixel heterogeneity, as
more species with different types of canopy architecture and
leaf structure might be included within a single pixel. Thus, at
coarse spatial resolutions, the use of a different spectral region
would be recommended. For instance, it was found that the lin-
ear relationship between Chl and a red edge chlorophyll index is
not species specific [24]. Thus, this index can be used for GPP
retrieval when a pixel includes different species, but only using
sensor systems that collect reflectance data in the red-edge
spectral region (e.g., MERIS, HYPERION). Third, the effects
of soil color variability on GPP retrieval are not completely
understood. We are presently evaluating these effects on the
accuracy of maize GPP retrieval, although they are minimized
once the maize canopy cover exceeds 60% (i.e., day of the year
beyond 170). Finally, the use of satellite data in general and
Landsat ETM+ data in particular, for the remote estimation of
annual crop GPP and its multiannual variation, is limited by
the availability of cloud-free data, requiring the use of temporal
interpolations (e.g., maximum value compositing). An evalua-
tion of the archive of cloud-free Landsat ETM+ imagery of the
corn-belt region of the U.S. (between 2001 and 2006) suggests
that an average of eight image acquisitions are available to be
used for each growing season. This Landsat ETM+ imagery can
also be complemented by Landsat TM imagery, extending the
temporal resolution of the image time series. Therefore, with
adequate data assimilation techniques that allow to incorporate
incomplete and/or noisy measurements from remote sensing
platforms (e.g., [34] and [35]), a suitable time-series of imagery
can be obtained for monitoring both the spatial (within and
between fields) and temporal (within and between growing
seasons) variability of GPP, using Landsat data.

IV. CONCLUSION

We explore the potential of models based entirely on re-
motely sensed data for the remote estimation of GPP. Here, we
have shown that the CIgreen index is linearly related with GPP,
therefore, when applied to atmospherically corrected Landsat
ETM+ data, it appears to be the best one among the four tested,
to obtain accurate synoptic estimates of the daytime maize GPP
for a wide range of vegetation biomass (including moderate to
high values), where other VIs lose sensitivity. The implications
of these findings are far-reaching, since the CIgreen opens
a new possibility for an accurate remote GPP estimation of
crops using the extensive archive of Landsat imagery acquired
since the early 1980s. With this index, it could be possible
to obtain global synoptic estimates of GPP in crops at the
moderate spatial resolution of Landsat TM and ETM+. Other
satellite sensor systems that contain the red and the NIR bands
only (e.g., MODIS-250 m/pixel and the Advanced Very High
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Resolution Radiometer), can also be utilized to obtain synoptic
estimates of GPP, if the WDRVI is used instead.
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