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Abstract. Error-quantified, synoptic-scale relationships be-

tween chlorophyll-a (Chl-a) and phytoplankton pigment

groups at the sea surface are presented. A total of ten pig-

ment groups were considered to represent three Phytoplank-

ton Size Classes (PSCs, micro-, nano- and picoplankton) and

seven Phytoplankton Functional Types (PFTs, i.e. diatoms,

dinoflagellates, green algae, prymnesiophytes (haptophytes),

pico-eukaryotes, prokaryotes and Prochlorococcus sp.). The

observed relationships between Chl-a and PSCs/PFTs were

well-defined at the global scale to show that a community

shift of phytoplankton at the basin and global scales is re-

flected by a change in Chl-a of the total community. Thus,

Chl-a of the total community can be used as an index of

not only phytoplankton biomass but also of their commu-

nity structure. Within these relationships, we also found non-

monotonic variations with Chl-a for certain pico-sized phy-

toplankton (pico-eukaryotes, Prokaryotes and Prochlorococ-

cus sp.) and nano-sized phytoplankton (Green algae, prym-

nesiophytes). The relationships were quantified with a least-

square fitting approach in order to enable an estimation of the

PFTs from Chl-a where PFTs are expressed as a percentage
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of the total Chl-a. The estimated uncertainty of the relation-

ships depends on both PFT and Chl-a concentration. Max-

imum uncertainty of 31.8% was found for diatoms at Chl-

a = 0.49 mg m−3. However, the mean uncertainty of the rela-

tionships over all PFTs was 5.9% over the entire Chl-a range

observed in situ (0.02 < Chl-a < 4.26 mg m−3). The rela-

tionships were applied to SeaWiFS satellite Chl-a data from

1998 to 2009 to show the global climatological fields of the

surface distribution of PFTs. Results show that microplank-

ton are present in the mid and high latitudes, constituting

only ∼10.9% of the entire phytoplankton community in the

mean field for 1998–2009, in which diatoms explain ∼7.5%.

Nanoplankton are ubiquitous throughout the global surface

oceans, except the subtropical gyres, constituting ∼45.5%,

of which prymnesiophytes (haptophytes) are the major group

explaining ∼31.7% while green algae contribute ∼13.9%.

Picoplankton are dominant in the subtropical gyres, but con-

stitute ∼43.6% globally, of which prokaryotes are the major

group explaining ∼26.5% (Prochlorococcus sp. explaining

22.8%), while pico-eukaryotes explain ∼17.2% and are rela-

tively abundant in the South Pacific. These results may be of

use to evaluate global marine ecosystem models.
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1 Introduction

Phytoplankton play numerous roles in ocean biogeochemi-

cal cycling: CO2 is utilised to form organic matter via pho-

tosynthetic processes and is then released through respira-

tion; macro- and micronutrients are assimilated by phyto-

plankton for their metabolic needs. While these processes

are common to all phytoplankton, some species have specific

chemical requirements for their distinct physiological pro-

cesses, thereby fulfilling a range of different functional roles

in ocean biogeochemical cycles: Si is utilised by diatoms, Ca

by coccolithophores and N2 by some cyanobacteria (e.g. Tri-

chodesmium). Some phytoplankton such as dinoflagellates

and prymnesiophytes (haptophytes) appear responsible for

enhanced dimethylsulfoniopropionate (DMSp) production in

the ocean, contributing to an exchange of S between the

ocean and atmosphere (Sunda et al., 2002). These func-

tional differences have led to phytoplankton being classified

according to their biogeochemical functions.

In order to quantify the contributions of these phytoplank-

ton functional types (PFTs) to biogeochemical cycling on a

global scale, it is first important to understand their spatio-

temporal variability throughout the oceans. Ocean biogeo-

chemistry and ecosystem models, such as NEMURO (Aita

et al., 2007; Hashioka and Yamanaka, 2007; Kishi et al.,

2007), ERSEM (Blackford et al., 2004; Petihakis et al.,

2005), PlankTOM-5 and -10 (Le Quéré et al., 2005; Le Quéré

and Pesant, 2009) and NOBM (e.g. Gregg et al., 2003; Gregg

and Casey, 2007), can be used to investigate the processes re-

sponsible for spatial and temporal variability of phytoplank-

ton populations at large scales and provide some potential

for forecasting future ocean states. The populations within

these models are generally based on biogeochemical func-

tion (usually linked to size), rather than explicit taxonomy.

Validation of these models is essential, which is cumbersome

when large spatial and temporal scales are concerned (Allen

et al., 2010), so a globally consistent approach based on a

functional classification of marine phytoplankton groups is

required.

In general, the agreement between functional- and

taxonomic- or size-based classifications, while far from uni-

versal, is adequate for comparisons to be undertaken with

current model estimates. The close similarity between the

functional classification of Le Quéré et al. (2005) and size

structure or taxonomic groupings (Sieburth et al., 1978; mi-

croplankton >20 µm, nanoplankton 20–2 µm, picoplankton

<2 µm) is shown in Table 1. On the other hand, direct es-

timation of phytoplankton community structure at basin to

global scales is non-trivial. Traditional microscopic obser-

vations, flow cytometry, pigment and DNA analyses have

all been used to classify phytoplankton community struc-

ture in situ. Pigment analysis by High Performance Liq-

uid Chromatography (HPLC) has become increasingly pop-

ular in oceanography because of the relatively large num-

ber of samples that can be collected and analysed rapidly,

categorizing the phytoplankton community (at least accord-

ing to broad classes based on size or taxonomy) much faster

than with traditional microscopy. Even so, spatial and tem-

poral coverage is inevitably limited by the mismatch in scales

between in situ observational capabilities and the vast size of

the oceans.

Since the launch of space-borne ocean colour sensors,

satellites have been able to provide a continuous record of

multi-spectral optical observations of the ocean surface, that

at certain wavelengths are strongly affected by concentra-

tions of the ubiquitous photosynthetic pigment, chlorophyll-

a (Chl-a). As a result, ocean colour measurements have been

used to observe Chl-a at the global scale (O’Reilly et al.,

1998). From this proxy of phytoplankton biomass, variations

in oceanic phytoplankton populations and global marine pri-

mary production have been investigated (e.g. Longhurst et

al., 1995; Behrenfeld and Falkowski, 1997; Behrenfeld et

al., 2006; Polovina et al., 2008). More recently, this tech-

nology has revealed the capability for more in depth inves-

tigation of phytoplankton community structure by means of

Phytoplankton Functional Types, PFTs, or size classes, PSCs

(e.g. Ciotti and Bricaud, 2006; Sathyendranath et al., 2004;

Alvain et al., 2005, 2008; Devered et al., 2006; Uitz et al.,

2006; Aiken et al., 2007, 2009; Hirata et al., 2008; Raitsos

et al., 2008; Bracher et al., 2009; Brewin et al., 2010, 2011;

Mouw and Yorder, 2010; Kostadinov et al., 2010), allowing

the extrapolation of in situ PFT/PSC descriptions to larger

spatial scales with better temporal resolution, thus providing

a method to more adequately evaluate biogeochemical and

ecosystem models.

The current suite of satellite PFT algorithms are derived

from either (1) the “dominance” of specific PFTs or size

classes without estimation of their fractional contributions to

the overall phytoplankton community (Sathyendranath et al.,

2004; Alvain et al., 2005, 2008; Hirata et al., 2008; Rait-

sos et al., 2008), or (2) a limited number of phytoplank-

ton groups (Devred et al., 2006; Uitz et al., 2006; Bracher

et al., 2009; Brewin et al., 2010; Kostadinov et al., 2010),

for which the fractional contribution is in some cases esti-

mated. This paper bridges the gap between these approaches

by estimating the fractional contribution of an increased

number of PFTs (7 PFTs), partitioned within 3 size classes

where appropriate. The novelty of this work is that, in ad-

dition to size classes such as micro-, nano- and picoplank-

ton, we estimate diatoms, dinoflagellates, prymnesiophytes

(haptophytes), green algae, pico-eukaryotes, prokaryotes and

Prochlorococcus sp. These PFTs have not been globally

estimated simultaneously from satellite by previous stud-

ies. The relationships between phytoplankton Chl-a concen-

trations and the phytoplankton functional types determined

from their biomarker pigments were quantified from a global

in situ data set, and the uncertainty of these relationships

was assessed to enable satellite observations of PFT fields

throughout the World’s oceans.
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Table 1. Phytoplankton Size Classes (PSCs) and Phytoplankton Functional Types (PFTs) represented by their pigments.

PSCs/PFTs Diagnostic Pigments Estimation Formula

Microplankton (>20 µm)∗2 Fucoxanthin (Fuco), Peridinin (Perid) 1.41 (Fuco + Perid)/6DP∗2

Diatoms Fuco 1.41 Fuco/6DP∗2

Dinoflagellates Perid 1.41 Perid/6DP∗2

Nanoplankton (2–20 µm)∗1 19’-Hexanoyloxyfucoxanthin (Hex) (Xn∗1.27 Hex + 1.01 Chl-b

+ 0.35 But + 0.60 Allo)/6DP∗3

Chlorophyll-b (Chl-b)

Butanoyloxyfucoxanthin (But)

Alloxanthin (Allo)

Green algae Chl-b 1.01 Chl-b/6DP∗2

Prymnesiophytes∗4 Hex, But

(Haptophytes)

Picoplankton (0.2–2 µm)∗1 Zeaxanthin (Zea), Hex, Chl-b (0.86 Zea + Yp1.27 Hex)/6DP∗3

Prokaryotes Zea 0.86 Zea/6DP∗2

Pico-eukaryotes∗5 Hex, Chl-b

Prochlorococcus sp. Divinyl Chlorophyll-a (DVChl-a) 0.74 DVChl-a/Chl-a

∗1 Sieburth et al. (1978)
∗26DP = 1.41 Fuco + 1.41 Perid + 1.27 Hex + 0.6 Allo + 0.35 But + 1.01 Chl-b + 0.86 Zea = Chl-a (Uitz et al., 2006)
∗3 Xn indicates a proportion of nanoplankton contribution in Hex. Similarly Yp indicates a proportion of picoplankton in Hex, (Brewin et al., 2010)
∗4 Given that contributions of Allo to nanoplankton were only a few percent in our data set, haptophytes were approximated to Nano minus Green Algae (see also Fig. 2 caption)
∗5 Pico-eukaryotes can be determined from picoplankton minus prokaryotes (see also Fig. 2 caption).

2 Data and methods

Phytoplankton pigments derived from High Performance

Liquid Chromatography (HPLC) were obtained from various

sources, including data collected between 1997–2004 by the

Atlantic Meridional Transect programme (AMT) operated by

the Plymouth Marine Laboratory (PML, UK) and Natural

Environmental Research Council (NERC, UK), the BEA-

GLE cruise in 2003–2004 by Japan Agency for Marine-Earth

Science and TEChnology (JAMSTEC, Japan), data from

1995–2008 in the SeaWiFS Bio-optical archive and Stor-

age System (SeaBASS) operated by the National Aeronautics

and Space Administration (NASA, USA), data from 1995–

2003 in the NASA bio-Optical Marine Algorithm Dataset

(NOMAD), the SEEDS II iron enrichment experiment in

2004 by the University of Tokyo (Japan), A-line stations in

2005 by Fisheries Research Agency (FRA, Japan), and the

Oshoro-Maru cruise by Hokkaido University (HU, Japan) in

2004–2006 (Fig. 1). The data were quality controlled in

the following way: Individual pigment data were visually

checked and data of clear low-quality (e.g. continuously re-

peated value over several stations within a cruise, typically

low values, suspected as outside the detection limits of an

instrument) were removed. Further outliers were determined

from the regression of accessory pigments against Chl-a con-

centration, excluding values beyond the 95% confidence in-

terval of the regression (Aiken et al., 2009). The data were

then sorted by numerical value of Chl-a and smoothed with

a 5-point running mean low-pass filter to improve the sig-

nal to noise ratio (Hirata et al., 2008; Brewin et al., 2010).

This resulted in a database of 3966 observations. From the

quality controlled data, 70% were used for algorithm devel-

opment and 30% were reserved for validation. The validation

dataset were constructed in such a way that 30% of each sub-

dataset (i.e. each cruise or dataset described previously) was

sub-sampled using a random number generator, to ensure that

each sub-dataset evenly contributed to the validation dataset.

SeaWiFS 9 km Level-3 monthly composites of Chl-a data

(O’Reilley et al., 1998) for the period 1998–2009 were ob-

tained from NASA Goddard Space Flight Centre using the

2009 reprocessing which has resulted in improved atmo-

spheric and radiometric corrections, more comprehensive vi-

carious calibration and corrections to instrument calibration

drift over the time series. Validation results show substan-

tially improved agreement with in situ measurements in tur-

bid and highly productive waters (see http://oceancolor.gsfc.

nasa.gov/REPROCESSING/R2009/ and linked forum topics

for further details). In order to focus on oceanic waters,

coastal and shelf waters (<200 m) were masked out in the

SeaWiFS Chl-a data, using the ETOPO5 bathymetry (Na-

tional Geophysical Data Center, 1988).

Diagnostic Pigment Analysis (DPA) is applied to classify

phytoplankton types from HPLC pigment data (Vidussi et

al., 2001). DPA defines a suite of Diagnostic Pigments

(DP) for specific PFTs that can be quantified relative to the

sum of all DP concentrations (i.e. DP/6DP) to estimate the

relative abundance of a specific PFT (Table 1). The DPA

procedure, originally proposed by Vidussi et al. (2001),

was subsequently refined by Uitz et al. (2006) to scale

www.biogeosciences.net/8/311/2011/ Biogeosciences, 8, 311–327, 2011
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Table 2. Equations to estimate fractions [0.0–1.0] of PSCs (Micro-, Nano- and Picoplankton) and PFTs (other). Set PFT fraction to 1.0 if

>1.0, and 0 if <0. To get % Chl-a, multiply 100 to the fractions derived.

PSCs/PFTs Formula a0 a1 a2 a3 a4 a5 a6

Microplankton [a0 + exp (a1x + a2)]−1 0.9117 −2.7330 0.4003

Diatoms [a0 + exp (a1x + a2)]−1 1.3272 −3.9828 0.1953 – – – –

Dinoflagellates (= Micro-Diatoms) – – – – – – –

Nanoplankton (= 1-Micro-Pico) – – – – – – –

Green Algae (a0/y) exp [a1(x + a2)2] 0.2490 −1.2621 −0.5523 – – – –

Prymnesiophytes (≃ Nano-Green Algae) – – – – – – –

(Haptophytes)

Picoplankton – [a0 + exp (a1x + a2)]−1 + a3x + a4 0.1529 1.0306 –1.5576 –1.8597 2.9954 – –

Prokaryotes (a0/a1/y) exp [a2(x + a3)2/a2
1
]

+ a4 x2 + a5x + a6 0.0067 0.6154 −19.5190 0.9643 0.1027 −0.1189 0.0626

Pico-eukaryotes (= Pico-Prokaryotes) – – – – – – –

Prochlorococcus sp.

(a0/a1/y) exp [a3(x + a4)2/a2
1
]

+ a4x2 + a5x + a6 0.0099 0.6808 −8.6276 0.9668 0.0074 −0.1621 0.0436

x = log10(Chl-a); y = Chl-a

 180
o
W  120

o
W   60

o
W    0

o
    60

o
E  120

o
E  180

o
W 

  80
o
S 

  40
o
S 

   0
o
  

  40
o
N 

  80
o
N 

 1 

Fig. 1. Distribution of phytoplankton pigment data used in this study; blue dot: the NERC AMT cruise (Aiken et al., 2009), black triangle:

the JAMSTEC BEAGLE cruise (Barlow et al., 2007), cyan diamond: the NASA NOMAD (Werdell and Bailey, 2005), magenta cross:

the NASA SeaBASS, brown star: the SEEDS II cruise (Suzuki et al., 2005) + A-line stations (Isada et al., 2009), green square: the HU

Oshoro-maru cruise.

6DP to Chl-a, permitting the application of DPA-based

approaches to satellite-derived Chl-a. In addition, Hirata et

al. (2008) used the refined DPA to separate pico-eukaryotes

from nano-eukaryotes, and Brewin et al. (2010) developed

a method to quantify the relationship, which is used in the

present work. Here, DPA is further refined to account for

ambiguity of the fucoxanthin (Fuco) signal. Fuco is defined

as a DP for Diatoms by Vidussi et al. (2001). However, Fuco

is also a precursor pigment of 19’-Hexanoyloxyfucoxanthin

(Hex), the DP for prymnesiophytes (haptophytes), and

can co-occur in this group. Fuco is also contained in the

other heterokonts (e.g. chrysophytes, bolidophytes) and

dinoflagellates, which are relatively abundant in coastal

environments (Wright and Jeffrey, 2006). Thus, diatoms

Biogeosciences, 8, 311–327, 2011 www.biogeosciences.net/8/311/2011/
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Fig. 2. Global relationships between Chl-a and % Chl-a of each PFT; (a) Picoplankton, (b) Nanoplankton, (c) Microplank-

ton, (d) Pico-eukaryotes, (e) Prymnesiophytes (Haptophyotes), (f) Diatoms, (g) Prokaryotes, (h) Green algae, (i) Dinoflag-

ellates, (j) Prochlorococcus sp. The orange thick curves are the least-square fits to the original data (a, c, f, g, h,

j), whereas the black thin curves are the fits indirectly derived from the least square fits (b, d, i; e.g. 100 × Nanofit

[%] = 100 × (1.0 – Microfit – Picofit); see also Table 2. Refer to Table 3 for goodness of the fits. The following mass-balances are

maintained; Microplankton + Nanoplankton + Picoplankton) = 1.0; Diatoms + Dinoflagellates = Microplankton; Prymnesiophytes (Hapto-

phytes) + GreenAlgae ≃ Nanoplankton; Prokaryotes + PicoEukaryotes = Picoplankton.

could be overestimated in DPA. Hirata et al. (2008) found

a non-negligible proportion of Fuco within the oligotrophic

gyres of the subtropical Atlantic, where small prokaryotes

(predominantly Prochlorococcus sp. and Synechococcus

sp.) and pico-eukaryotes (which can partly belong to

the prymnesiophytes (haptophytes) so may also contain

Hex) usually dominate the phytoplankton community

(Zubkov et al., 1998; Tarran et al., 2006). In these olig-

otrophic waters, Chl-a is low (<0.25 mg m−3, Aiken et

al., 2009), therefore, it is more reasonable to assume

that the background level of Fuco detected results from

smaller prymnesiophytes (haptophytes) rather than diatoms

which are more prevalent in eutrophic waters. There-

fore, we calculated a baseline for the Fuco/Hex ratio,

(Fuco/Hex)baseline, using Fuco and Hex in the Chl-a range

less than 0.25 mg m−3 in the original data set (denoted as

Fucooriginal and Hexoriginal, respectively). The proportion

of Fuco as a diatom biomarker is then corrected so that

Fucocorrected = Fucooriginal − (Fuco/Hex)baseline× Hexoriginal.

The Fuco conversion is only significant in the lower Chl-a

range (<0.5 mg m−3) and is negligible for higher Chl-a

values.

Using these HPLC pigment signals, PSCs and PFTs are

defined and classified as in Table 1, and their relationships to

Chl-a are analysed below.

3 Results

3.1 Synoptic relationships between Chl-a and

phytoplankton functional types (PFTs)

Figure 2 shows the global relationships between Chl-a and

the fraction of DP associated with each PFT, derived from in

situ HPLC. A clear co-variability is found between Chl-a and

DP for each PFT. While Chl-a is commonly used as an index

of phytoplankton biomass, the co-variability indicates that

Chl-a is also an index of phytoplankton community struc-

ture. For microplankton, the fractional contribution to Chl-a

www.biogeosciences.net/8/311/2011/ Biogeosciences, 8, 311–327, 2011
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Table 3. Statistical results of the reconstructed relationships between Chl-a and PSCs/PFTs against in situ data.

PSCs/ Observed Max. Abs. Chl-a at Max.

PFT range of % Chl-a r2 p RMSE [%] Error [%] Abs. Error [mg m3]

Microplankton 0–82 0.76 <0.001 6.7 31.1 0.49

Diatoms 0–80 0.77 <0.001 6.3 31.8 0.49

Dinoflagellates 0–14 0.00 <0.190 2.1 12.0 4.26

Nanoplankton 7–73 0.65 <0.001 7.6 27.6 0.12

Green algae 0–37 0.59 <0.001 4.2 17.8 0.19

Prymnesiophytes 0–61 0.41 <0.001 8.4 29.5 0.12

(Haptophytes)

Picoplankton 7–93 0.82 <0.001 6.1 23.8 0.08

Prokaryotes 1–73 0.75 <0.001 7.1 25.2 0.08

PicoEukaryotes 3–37 0.46 <0.001 4.6 16.6 0.19

Prochlorococcus sp. 0–58 0.75 <0.001 6.1 21.4 0.06

Mean 0.65 <0.001 5.9 23.7 0.61

(% Chl-a) monotonically increases with increasing Chl-a

(Fig. 2c), whereas for picoplankton, this monotonically de-

creases with increasing Chl-a (Fig. 2a). From these data,

the microplankton contribution to total Chl-a ranges between

0–82% Chl-a and the picoplankton contribution ranges be-

tween 7–93% Chl-a, showing large variations in time and/or

space. The fractional contribution of nanoplankton does not

vary monotonically with Chl-a as found in micro- and pi-

coplankton (Fig. 2b). Rather % Chl-a of nanoplankton in-

creases as Chl-a increases up to approximately 0.2 mg m−3

but decreases as Chl-a further increases, resulting in a broad

maximum between approximately 0.1–0.5 mg m−3. The

nanoplankton contribution to total Chl-a ranges from 7–73%

Chl-a, showing a smaller range of variation than micro- and

picoplankton.

These size-class relationships (micro-, nano-, and pi-

coplankton) are further decomposed into a range of PFTs.

Microplankton (Fig. 2c) is subdivided into diatoms and di-

noflagellates (Fig. 2f and i), and their abundance ratios vary

against Chl-a showing a similar relationship to that of mi-

croplankton. Picoplankton is composed of pico-eukaryotes

and prokaryotes (Fig. 2d and g), the latter of which include

Prochlorococcus sp. (Fig. 2i). The relationships between

Chl-a and subtypes within the picoplankton community are

not the same. The % Chl-a of prokaryotes and Prochloro-

coccus sp. non-monotonically changes with Chl-a, with a

local maximum at Chl-a = 0.06–0.13 mg m3 (Fig. 2g and i).

Pico-eukaryotes also show a non-monotonic variation with

Chl-a but with a local minimum at 0.08–0.13 mg Chl-a m−3,

increasing slightly up to 0.70 mg Chl-a m−3, then decreas-

ing gradually again above this. Prymnesiophytes (hapto-

phytes) show a similar distribution and magnitude to those

of the nanoplankton (Fig. 2e), implying that they are the ma-

jor group within the nanoplankton community. Green algae

also show a broad peak between 0.3 and 0.7 mg Chl-a m−3,

consistent with the distribution of nanoplankton (Fig. 2h).

The relationships between Chl-a and % Chl-a shown in

Fig. 2 can be quantified using a least square fit (thick solid

lines in Fig. 2), enabling the estimation of % Chl-a of each

PFT from Chl-a alone, hence from satellite-derived Chl-a

fields (O’Reilly et al., 1998; McClain et al., 2009). Table 2

summarizes the fitting formulae and associated coefficients

to quantify the relationship between Chl-a and % Chl-a for

each PFT. The relationships between Chl-a and % Chl-a of

micro- and picoplankton as well as Diatoms were represented

using a logistic equation, however, the relationships with

other PFTs were not represented by this form. Thus, the use

of the logistic growth model for % Chl-a was only applicable

to a limited number of phytoplankton classifications (micro,

diatoms and pico) in our data set.

Simple polynomial fitting functions could also have been

applied to the quantification of the relationships, however,

they tend to over- or underestimate at lower and upper

bounds of the Chl-a range observed, without introduc-

ing a significant statistical improvement (hence, results not

shown). When the simple polynomial fitting is used to ex-

trapolate outside the Chl-a range in Fig. 2, which would be

necessary for satellite data processing, they would introduce

larger errors than those shown in Table 3. Hence, we did not

employ the simple polynomial fitting.

To maintain “mass balance”, not all relationships are re-

gressed. For example, % Chl-a due to nanoplankton is de-

rived from 100 – % Chl-a (microplankton) – % Chl-a (pi-

coplankton) so that micro-, nano- and picoplankton sum up

to 100%. The nanoplankton relationship derived in this way

(shown as a thin curve in Fig. 2b) still fits the observed

data well, reflecting strength in the micro- and picoplankton

fits. This subtraction could equally have been undertaken

between micro- and nanoplankton derived from regression,

or similarly between nano- and picoplankton. However, the

best statistical fit was found in our data set when % Chl-a

(nanoplankton) was not regressed. The method was also
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Table 4. Statistical results of the validation.

Size Class/PFT slope intercept r2 p RMSE [% Chl-a]

Microplankton 1.109 1.073 0.72 <0.001 8.28

Diatoms 1.115 1.732 0.73 <0.001 7.98

Dinoflagellates 0.075 3.055 0.00 0.106 1.87

Nanoplankon 1.168 −9.721 0.56 <0.001 8.55

Green algae 0.809 2.035 0.40 <0.001 4.71

Prymnesiophytes 1.218 −8.093 0.37 <0.001 10.0

(Haptophytes)

Picoplankton 1.000 −0.480 0.74 <0.001 7.12

Prokaryotes 0.864 3.712 0.65 <0.001 7.71

Pico-Eukaryotes 0.801 2.564 0.31 <0.001 5.25

Prochlorococcus sp. 0.982 0.353 0.72 <0.001 6.25

Mean 0.914 −0.377 0.52 <0.001 5.97

used to derive prymnesiophytes within the nanoplankton, di-

noflagellates within the microplankton community and pico-

eukaryotes within the picoplankton community (see Table 2).

Figure 3 shows the estimated uncertainties of the relation-

ships between % Chl-a and Chl-a, defined here as the resid-

ual between in situ data and the least-square fit. The un-

certainty varies according to both the PFT considered and

the Chl-a level. Maximum mean uncertainty (i.e. maximum

Root Mean Square Error, RMSE), is 8.4% Chl-a for prym-

nesiophytes (haptophytes, Fig. 3e), while minimum is 2.1%

Chl-a for dinoflagellates (Fig. 3i). The overall mean uncer-

tainty is 5.9% Chl-a when all PFTs are considered (Table 3).

The uncertainty is variable even within a specific PFT con-

sidered. For example, for diatoms the local maximum of un-

certainty is as high as +31.8% Chl-a at Chl-a of 0.49 mg m−3

but −20% Chl-a at Chl-a of 1.8 mg m−3 (Fig. 3f; see also

Table 3). Thus the regressions obtained in Fig. 2 would rep-

resent synoptic relationships between Chl-a and % Chl-a of

each PFT, and small scale variability of PFT, both in time and

space, may not be represented well in our proposed formula-

tions.

3.2 Validation of the relationships between

Chl-a and PFTs

Figure 4 shows validation results and Table 4 summarises its

statistical details; the mean regression slope over all PFTs

is 0.914, the intercept −0.377, the coefficient of determi-

nation r2 = 0.52 with RMSE = 5.97% Chl-a. The algorithm

performance varies depending on the PFT of interest. While

for picoplankton the algorithm performed particularly well

(r2 = 0.74, Fig. 4a and see also Table 4), for dinoflagellates

it performed poorly (r2 < 0.00, Fig. 4i) which resulted in a

reduction of the mean r2 over all PFTs. Careful examina-

tion of results for microplankton (Fig. 4c), diatoms (Fig. 4f)

and dinoflagellates (Fig. 4i) suggests that the estimation of

large-cell phytoplankton is less accurate when they com-

prise <12% Chl-a (recall the uncertainties for these PFTs

are 6.7, 6.3, 2.1% Chl-a as shown in Table 3). Nanoplank-

ton (Fig. 4b), prymnesiophytes (haptophytes, Fig. 4e), green

algae (Fig. 4h) indicate artificial cut-offs at the higher end of

the estimated % Chl-a. This results from the fact that (1) the

relationships between Chl-a and % Chl-a of PFTs are for-

mulated by the least-square regression, so that a single value

of Chl-a returns a single value of % Chl-a and (2) the func-

tional forms of the relationships for these particular PFTs

show a local maxima which is also the maximum over the

given range of Chl-a, thus does not allow to return % Chl-

a above the maximal value; for example, see Fig. 2b where

the reconstructed curve takes the unique maximal value of

% Chl-a at Chl-a of 0.20 mg m−3, which is also the max-

imum value over the entire Chl-a range, while % Chl-a in

the in situ data fluctuates around the same Chl-a value of

0.20 mg m−3 (approx. 35–62 % Chl-a).

3.3 Global distribution of PSCs/PFTs

Figure 5 shows the global mean distributions of each PFT,

derived from SeaWiFS Chl-a observed over the period 1998–

2009. Dinoflagellates are not considered here due to a poor

result in the validation. Microplankton is relatively abun-

dant at mid and high latitudes (Fig. 5a). Microplankton-

dominated waters (e.g. % Chl-a >50%) are rather restricted

along some parts of the Arctic and Antarctic coasts and

coastal upwelling regions such as the Benguela, Humbolt,

California and Canary current regions. Thus, microplank-

ton, which are almost entirely composed of diatoms at the

synoptic scale (Fig. 5d), do not show a basin-scale spa-

tial dominance within the phytoplankton community in the

mean field over 1998–2009. Nanoplankton is ubiquitously

distributed, and constitutes a background population con-

tributing approximately 45.5% Chl-a as a global mean, but

less in the subtropical gyres (Fig. 5b). Prymnesiophytes

(haptophytes) comprise the major group in the nanoplankton
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Fig. 3. Uncertainties of the synoptic relationships between Chl-a and % Chl-a of each PFT, i.e. (Xobs-Xfit) where Xobs and Xfit represent

% Chl-a observed or fitted for each PFT and PSC, respectively; (a) Picoplankton, (b) Nanoplankton, (c) Microplankton, (d) Pico-eukaryotes,

(e) Prymnesiophytes (Haptophyotes), (f) Diatoms, (g) Prokaryotes, (h) Green algae, (i) Dinoflagellates, (j) Prochlorococcus sp. The root

mean square error, RMSE (% Chl-a), is also calculated by SQRT{6(Xobs-Xfit)
2/n} where n represents the number of data.

(Fig. 5e), explaining 31.7% Chl-a and 70% of the nanoplank-

ton % Chl-a. The results obtained in this study are consistent

with those of Liu et al. (2009) who found that prymnesio-

phytes (haptophytes) dominate the Chl-a-normalized phy-

toplankton stock in modern oceans. The subtropical gyres

are largely dominated by picoplankton (% Chl-a > 65%,

Fig. 5c), mostly by prokaryotes (Fig. 5h) which include

Prochlorococcus sp. (Fig. 5i). In the South Pacific gyre,

pico-eukaryotes constitute a significant proportion (up to

37% Chl-a, Fig. 5g), along with prokaryotes, which may be

supported by the in situ data analysis of Ras et al. (2008)

who postulate a possible significance of pico-sized flagel-

lates (i.e. pico-eukaryotes) in the South Pacific Ocean, espe-

cially at the surface. On average over the 1998–2009 period,

microplankton, nanoplankton and picoplankton explain 10.9,

45.5 and 43.6% Chl-a respectively of global surface Chl-a,

whereas diatoms, green algae, pico-eukaryotes, prokaryotes

and Prochlorococcus sp. explain approximately 7.5, 13.8,

17.2, 26.5 and 22.8% Chl-a, respectively.

Figure 6 shows the global map of mean maximum un-

certainty in the algorithm, estimated for the PSCs/PFTs in

the following way: (1) 7 ocean biomes were defined accord-

ing to the method of Hardman-Mountford et al. (2008); (2)

the absolute deviations (residuals) between the PSCs/PFTs

estimated (PFTest) and observed (PFTobs) shown earlier,

i.e. PFTest-PFTobs, were classified geographically using lat-

itude and longitude associated with the observed data, and

assigned to an ocean biome; (3) the residuals within each

biome were averaged and the mean uncertainty was calcu-

lated for each biome, then mapped globally. The global un-

certainty shows a relatively large uncertainty of >+35% for

microplankton and diatoms at high latitudes and in the east-

ern boundary upwelling regions. Uncertainty in the subtrop-

ical gyres of the South Pacific is approximately +22% for

nanoplankton and −8% for picoplankton. This inverted bias

for nano- and picoplankton in the South Pacific is due to the

maintenance of mass balance between these PSCs. While un-

certainties for other PFTs are rather small (< ±5%), a rela-

tively large uncertainty is found for prymnesiophytes in trop-

ical oceans (−25%). It is important to note that uncertainty

of Chl-a, which is an input to the present estimation of

PSCs/PFTs, should be added to obtain an overall uncertainty
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Fig. 4. Results of validation; (a) Picoplankton, (b) Nanoplankton, (c) Microplankton, (d) Pico-eukaryotes, (e)) Prymnesiophytes (Hapto-

phyotes), (f) Diatoms, (g) Prokaryotes, (h) Green algae, (i) Dinoflagellates, (j) Prochlorococcus sp. The root mean square error, RMSE

(% Chl-a), is also calculated by SQRT{6(Xobs-Xfit)
2/n} where n represents the number of data. See Table 4 for statistical details.

for the derivation of PSCs/PFTs from space.

Figure 7 shows the global distribution of PFTs as in

Fig. 5 but in terms of Chl-a with the unit of mg m−3 rather

than % Chl-a. Microplankton (Fig. 7a) is rather limited to

marginal seas and coastal upwelling regions but mean Chl-

a is as high as ∼0.11 mg m−3 on average over the globe and

the 1998–2009 period. Nano- and picoplankton are relatively

wide-spread over the globe (Fig. 7b and c). Nanoplank-

ton (∼0.12 mg m−3) is abundant in the mid and high lat-

itude and largely explained by prymnesiophytes (hapto-

phytes) (∼0.08 mg m−3), showing the relatively high global

mean Chl-a comparable to microplankton. This implies

a large role of nanoplankton in primary production in the

global surface oceans as well as microplankton. Picoplank-

ton (global average of ∼0.08 mg m−3) is also wide spread but

more abundant in the subtropical gyres (Fig. 7c). Although

small phytoplankton such as pico-eukaryotes, prokaryotes

and Prochlororoccus sp. were shown to have relatively high

% Chl-a in the subtropical gyres (Fig. 5g, h and i), their

absolute Chl-a abundance (Fig. 7g, h and i) is relatively low

(∼0.04, ∼0.04 and ∼0.03 mg m−3, respectively), as the Chl-

a of the total phytoplankton community is low in these re-

gions. Green algae (Fig. 6f) and pico-eukaryotes (Fig. 6g)

show a similar global distribution and mean Chl-a value

(∼0.04 mg m−3) to each other, although they are notably dif-

ferent in % Chl-a (Fig. 5f and g).

3.4 Seasonal variations of PSCs/PFTs

Along with the characteristic spatial distributions shown,

strong seasonality in the composition of the phytoplankton

community is exhibited for each ocean basin, clearly shown

in the monthly climatologies (Fig. 8). In the Northern Hemi-

sphere (Fig. 8a, c, e), the spring bloom of microplankton and

diatoms in May is obvious, which is reflected in the global

average (Fig. 8h). A characteristic second bloom is also seen

in the North Pacific (Fig. 8e). Apart from the Southern Ocean

(Fig. 8b), less remarkable blooms are found in September to

December in the Southern Hemisphere (Fig. 8d, f and g), the

amplitude of which varies between regions and according to

PSCs/PFTs. A relatively large bloom is found in December

for the Southern Ocean and the South Atlantic (Fig. 8b and

d), whereas an increase in Chl-a is found in September to

November for the South Pacific and the Indian Ocean (Fig. 8f
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Fig. 5. Synoptic distribution of surface PFTs [% Chl-a] over 1998–2009 derived from SeaWiFS. (a) Microplankton (global average ∼10.9%

Chl-a), (b) Nanoplankton (∼45.5% Chl-a), (c) Picoplankton (∼43.6% Chl-a), (d) Diatoms (∼7.5% Chl-a), (e) Green Algae (∼13.8%

Chl-a), (f) Pico-eukaryotes (∼17.2% Chl-a), (g) Prymnesiophytes (Haptophytes) (∼31.7% Chl-a), (h) Prokaryotes (∼26.5% Chl-a), (i)

Prochlorococcus sp. (∼22.8% Chl-a). White area shows a continental shelf mask defined by <200 m.

 1 

Fig. 6. Spatial distribution of uncertainty in the algorithm estimated for PSCs (a–c) and PFTs (d–h); (a) Microplankton, (b) Nanoplankton,

(c) Picoplankton, (d) Diatoms, (e) Prymnesiophytes, (f) Green algae, (g) Pico-Eukaryotes, (h) Prokaryotes, (i) Prochlorococcus sp.
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Fig. 7. Synoptic distribution of mean surface Chl-a (mg m−3) of PSCs (a–c) and PFTs (d–i) over 1998–2009 derived from SeaW-

iFS; (a) Microplankton (global average ∼0.11 mg m−3), (b) Nanoplankton (0.12 mg m−3), (c) Picoplankton (0.08 mg m−3), (d) Diatoms

(0.09 mg m−3), (e) Green Algae (0.04 mg m−3), (f) Pico-eukaryotes (0.04 mg m−3), (g) Prymnesiophytes (Haptophytes) (0.08 mg m−3), (h)

Prokaryotes (0.04 mg m−3), (i) Prochlorococcus sp. (0.03 mg m−3). White area shows a continental shelf mask defined by <200 m.

and g). Variability in bloom timing between PSCs/PFTs sug-

gests taxonomic succession. This is relatively clear even in

the basin scale for the North Pacific and the Indian Ocean

(Fig. 8e and g), where an increase in nano/picoplankton pre-

cedes the onset of the microplankton (diatom) bloom.

4 Comparison with other approaches

Figure 9 shows comparisons between PSCs estimated by

the present study with existing methods (Uitz et al., 2006;

Brewin et al., 2010). PFTs are not compared since there is

currently no other method available to derives 7 PFTs, nei-

ther in % Chl-a nor mg m−3. For microplankton, this study

gives a reduced estimate of their contribution (approx. −6%

Chl-a) compared to both Uitz et al. (2006) and Brewin et

al. (2010) (Fig. 9a and b, respectively) in the majority of

the ocean but an increased estimate of their contribution in

the higher chlorophyll regions around ocean margins and

in the temperate North Atlantic (up to approx. 21% Chl-

a); note that the comparison is undertaken during the bo-

real spring bloom period. These differences are explained

by the application of a fucoxanthin correction to the DPA

in the present study to improve discrimination of diatoms

from prymnesiophytes (haptophytes) (as described above).

The differences at higher Chl-a might also result from the

fact that different data sets were used to parameterize each

method.

The spatial pattern of differences in nanoplankton also re-

flects this adjustment, with this study showing an increase

in nanoplankton % Chl-a. A further contribution to the in-

creased estimation of nanoplankton by the present method

results from the treatment of Chlorophyll-b (Chl-b) in the

DPA. In the present analysis, Chl-b was used in the definition

of nanoplankton, whereas it was used to define picoplankton

in the previous methods. The rationale for the treatment of

Chl-b as a biomarker contributing to nanoplankton in this

work is as follows; (i) Fig. 2 shows that the predominant

occurrence of green algae, for which Chl-b is the diagnos-

tic marker pigment (Table 1), occurs at Chl-a>0.2 mg m−3

where Prochlorococcus sp., which contains divinyl Chl-b

(dvChl-b) as well as divinyl Chl-a and is defined indepen-

dently from nanoplankton in our DPA, show a progressive

decline (as seen in Fig. 2h). Therefore, Chl-b is largely rep-

resentative of monovinyl Chl-b (mvChl-b) in our data set, (ii)

The Chl-a value of 0.20–0.25 mg m−3 geographically corre-

sponds to the border of the region of the subtropical gyres

(Polovina et al., 2001; Aiken et al., 2009) where Prochloro-

coccus sp. becomes less dominant. Thus, our approach is

the first to mechanistically consider separation of mono- and

divinyl Chl-b in the DPA and the global distribution of Chl-b

vs. Chl-a used for the regression (Fig. 2e) justifies the use of

mvChl-b in the nano range, providing an improvement over
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Fig. 8. Monthly climatology of each PSC and PFT derived from SeaWiFS satellite chla over 1998–2009: (a) the Arctic Ocean (ARC), (b)

the Southern Ocean (SOC), (c) the North Atlantic (NAT), (d) the South Atlantic (SAT), (e) the North Pacific (NPC), (f) the South Pacific

(SPC), (g) the Indian Ocean (IND), (h) the Global Oceans (GLB). For the Arctic and Southern Oceans, the satellite Chl-a is not available for

winter period.

improvement over the previous studies. A future improve-

ment would be to add a pico-eukaryote adjustment to mvChl-

b as we have for Hex. Care also needs to be taken at very low

Chl-b concentrations where discrimination of mvChl-b and

dvChl-b is less reliable, possibly contributing another source

of uncertainty.

A further difference in the nanoplankton is seen in the

subtropical gyre regions with the present study giving much

lower estimates than Uitz et al. (2006), particularly in the

South Pacific (Fig. 9.a.2 and 9.b.2). The inverse difference is

seen in the picoplankton, with the present study giving higher

estimates than Uitz et al. (2006), reflecting the mass-balance

applied in our analysis (i.e. micro + nano + pico = 100%). In

both cases, differences with Brewin et al. (2010) are far less

marked. These differences are explained by the application

of a pico-eukaryote correction in this study and by Brewin et

al. (2010) but not by Uitz et al. (2006). The correction ad-

justs the picoplankton by partitioning the diagnostic marker

pigment Hex to account for prymnesiophytes (haptophytes)

within both the nano and the pico size domains separately,

reducing the contribution to nanoplankton and increasing the

contribution to picoplankton at low Chl-a. The smaller dif-

ferences between Brewin et al. (2010) and this study at very

low Chl-a may be due to acceleration in the regression slopes

derived by this study when extrapolated below 0.03 mg m−3.

5 Discussion

Monthly climatologies show intensive blooms of mi-

croplankton and diatoms to occur but only at specific periods

throughout the year (Fig. 8). Recalling that their spatial dis-

tributions are limited to coastal and some parts of mid and

high latitudes (Fig. 5a and d), microplankton and diatoms

can be dominant only at a localized scale, both spatially and

temporally, rather than as a background group at the syn-

optic scale. Supporting this global view of microplankton

and diatom distributions, Obayashi et al. (2001) suggested

for the subarctic North Pacific that an ubiquitous basic struc-

ture made up of a diverse population was apparent, on which

a flourishing diatom population, limited by area and sea-

son, was superimposed sporadically. However, a number

of patches dominated by microplankton or diatoms can also

be found in open oceans, especially in the Southern Ocean

(Fig. 7a). These patches may be associated with turbulent

flows such as eddies, and be captured by ship observation
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Fig. 9. Absolute deviation of PSCs in Chl-a (mg m−3) between this study and Uitz et al. (2006) as well as between this study and Brewin et

al. (2010) for May 2005.

even if the observation is usually limited in temporal and spa-

tial coverage.

The high levels of Prochlorococcus sp. predicted to occur

in the Southern Ocean by the present study are outside the

known distribution range for this organism and most likely an

anomaly caused by extrapolation from in situ samples taken

in areas where the Prochlorococcus signal is strong to areas

where there are few or no Prochlorococcus sp. but where

similar chlorophyll-a levels occur. This is a fundamental un-

dersampling issue and requires in situ data to identify what

replaces Prochlorococcus sp. in these ecosystems to correct

the present algorithm. Known problems with remote sens-

ing algorithms for Chl-a at higher latitudes may also con-

tribute to this anomaly. The dominance of Prochlorococcus

sp. in the gyres is consistent with observations (Zwirglmaier

et al., 2007, 2008; Grob et al., 2007). The low contribu-

tion of other prokaryotes, which are most likely repesented

by Synechococcus sp. in the gyres, is consistent with the or-

ders of magnitude lower number of cells for this organism in

these regions and its reduced dependence on chlorophyll-a

as a photosynthetic pigment, instead using phycoerythrin as

well.

The spatial distribution and temporal variation of

PFTs captured by SeaWiFS are based on the empirical

relationships between Chl-a and PFTs obtained from in situ

data collected at various times of the year in the global sur-

face oceans. While the derived relationships reasonably re-

produced the PFT structure within the time span of the data

(1995–2008) as shown in Fig. 4, an extrapolation of the re-

lationships to future satellite observations may introduce an

ambiguity between possible real natural fluctuations of the

PFTs and a potential drift of the empirical relationships from

reality. When the relationships are viewed as algorithms to

estimate the PFTs from satellite, ongoing re-calibration of

the algorithm may be required over time to reduce any such

ambiguity. Furthermore, it is currently unknown whether or

not an unexpected shift in PSC/PFT composition in marine

ecosystems can be detected by the present method over the

period analyzed, for which it is well-calibrated. Our global in

situ data collected over 1995–2008 showed that a variation of

PSCs/PFTs at the synoptic scale is reflected, or accompany, a

change in Chl-a in a complex marine ecosystem. Further in-

vestigation is needed to investigate, perhaps in a probabilistic

sense, if an unexpected abrupt change of PSCs/PFTs could

occur independently of a change in Chl-a, thereby remaining

undetected by the algorithm. This contrasts with a gradual
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shift in the community composition to Chl-a relationship,

which could be recalibrated.

The results presented in this work are limited to the surface

ocean and global applications. Caution must be taken when

the relationships are applied to analysis for smaller scales,

in space or time (i.e. within a narrower Chl-a range), be-

cause an increased noise-to-signal ratio in the relationships

is expected from Fig. 2. Fluctuations of % Chl-a (or vari-

ability along y-axis in Fig. 2) for a restricted range of Chl-a

can become significantly large relative to the variability of

Chl-a itself (or variability along x-axis), which may result

in a degraded relationship between Chl-a and % Chl-a for

each PFT in that Chl-a range. Such a fluctuation of % Chl-

a at a given Chl-a value could partly result from a temporal

variation in phytoplankton community structure at a given

geographical point, and partly from geographical spread of

data points where the community composition is not neces-

sarily the same. The mathematical representation within the

ecological ambiguity is a limitation of the present approach.

The data used to quantify the relationships, or to develop the

algorithms, should ideally include sampling during pre- to

post bloom periods for all ocean basins, providing a greater

degree of confidence in the relationships. Continuous accu-

mulation of in situ data to build such a data set would also

enable a regular ongoing calibration of the relationships, im-

proving detection of variability in PFTs at smaller temporal

and spatial scales.

Physiological changes in the phytoplankton due to envi-

ronmental changes may also be reflected in the natural vari-

ability of the relationships. While laboratory studies show

phytoplankton pigment ratios to vary with environmental

stimuli (nutrient forcing, light climate), for in situ studies

a much clearer relationship between phytoplankton commu-

nity structure and pigment composition exists. Specifically,

the ratio of Chl-a to accessory pigments co-varies with the

abundance of different phytoplankton functional types (Fish-

wick et al., 2006; Aiken et al., 2007, 2008; Hirata et al.,

2008). Thus, shifts in phytoplankton community composi-

tion rather than acclimation tend to dominate variability in

surface oceanic pigment relationships. For example, iron en-

richment experiments have shown an increase in Chl-a to be

associated with a shift towards larger size classes (e.g. Gall

et al., 2001). The link between phytoplankton-type specific

Chl-a and carbon (both particulate organic and living carbon)

is less well parameterized so care must be taken when con-

verting between these different biomass measures. Nonethe-

less, physiological changes in the phytoplankton due to envi-

ronmental changes may necessitate a regular recalibration of

the PFT-Chl-a relationship over time.

While other techniques for classification and quantifica-

tion of PSCs/PFTs, such as flow-cytometric analysis and

microscopic analysis, may be available, diagnostic pigment

analysis (Vidussi et al., 2001; Uitz et al., 2006; Hirata et al.,

2008; Brewin et al., 2010) has been used in this work due to

the wide availability of HPLC pigment data. If PSCs/PFTs

classified using other techniques were applied to validate the

present method, a deviation may be found due to inherent

uncertainties between these different methods. This uncer-

tainty is likely to be enhanced in coastal environments where

definitions of biomarker pigments may become less robust

due to, for example, increased populations of dinoflagellates

and colonial Phaeocystis blooms, which can both also con-

tain Fuco (Wright and Jeffrey, 2006), confusing the interpre-

tation of the Fuco signal which is defined in this work as a

biomarker pigment for diatoms. Thus, a further correction to

diagnostic pigment analysis may be required. There are alter-

native methods available for classification and quantification

of phytoplankton (such as particle counting, microscopic and

flow-cytometric analysis), but they also have their own prac-

tical and technical difficulties in analyzing natural samples:

microscopy requires too much time to complete cell count-

ing and species identification to obtain statistical significance

of classification and quantification of phytoplankton at the

global scale; particle counters count not only the number of

phytoplankton but also any other suspended particles, so re-

quire the application of another technique for phytoplankton

classification; Flow-cytometers may not size particles well

for a wide range of size while counting due to the optical

method employed, and they require a priori knowledge of

phytoplankton composition within the water sample for clas-

sification or identification of phytoplankton. More extensive

inter-comparison of cell classification and quantification re-

sults from these different methods would be useful to further

understand uncertainties associated with both DPA and the

present algorithm.

An extensive comparison of several bio-optical algorithms

to classify PSCs dominating in seawater, rather than in

% Chl-a or mgChl-a m−3 of each PSC, has been conducted

by Brewin et al. (2011). It showed that abundance-based

approaches using Chl-a, or its optical analogue such as

the absorption coefficient at 443 nm, may be more robust

than spectral-response approaches that use either the spec-

tral shape of the absorption coefficient of phytoplankton or

the second order variability in the remotely-sensed spec-

tral radiance. However, the spectral-response approaches

did perform with similar accuracy and may require less re-

calibration than the abundance-based approaches regarding

long-term trend applications. Since a change in the abun-

dance of Chl-a, or its optical analogue, often accompanies

a change in the spectral shape (of the absorption coeffi-

cient of phytoplankton or the remotely-sensed radiance), the

spectral-response and abundance-based approaches are prob-

ably inter-related. Continuous exploitation and improvement

of both approaches are required for the global observation of

PFTs.
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6 Conclusions

The synoptic relationships between Chl-a and its fractional

contribution from three PSCs and seven PFTs were presented

for the first time using a global in situ data set of pigment

measurements. It was found that variation in the phytoplank-

ton community structure is not independent of the variation

in Chl-a of the total community at large scales. The rela-

tionships and their associated uncertainties were quantified

and validated to enable global estimation of the PSCs/PFTs

from satellite Chl-a. The present work revealed global dis-

tributions of the detailed structure of dynamic phytoplankton

communities within the marine ecosystem, through the de-

scription of multiple PFTs, in terms of both percentage and

fractional Chl-a, derived from satellite ocean colour mea-

surements.
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