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The synovial tissue is an immunologically challenging environment where, under
homeostatic conditions, highly specialized subsets of immune-regulatory macrophages
and fibroblasts constantly prevent synovial inflammation in response to cartilage- and
synovial fluid-derived danger signals that accumulate in response to mechanical stress.
During inflammatory joint diseases, this immune-regulatory environment becomes
perturbed and activated synovial fibroblasts and infiltrating immune cells start to
contribute to synovial inflammation and joint destruction. This review summarizes our
current understanding of the phenotypic and molecular characteristics of resident
synovial macrophages and fibroblasts and highlights their crosstalk during joint
homeostasis and joint inflammation, which is increasingly appreciated as vital to
understand the molecular basis of prevalent inflammatory joint diseases such as
rheumatoid arthritis.
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INTRODUCTION

The Synovial Microenvironment
The synovial joint is a complex structure that connects distinct skeletal elements to allow
locomotion. The corresponding articular bones are covered by articular cartilage and separated by
synovial fluid that fills the spacing of the synovial cavity. A joint capsule supports the stability of the
joint from the outside, whereas an inner synovial membrane physically encloses the synovial cavity
separating its fluid from exterior joint structures (Figure 1). The synovial membrane itself consists
of a lining layer that is enriched in macrophages (type A synoviocytes) and synovial fibroblasts
(type B synoviocytes), while the sublining interstitial synovial tissue additionally harbors mast cells,
adipocytes, blood vessels, lymphocytes, and heterogeneous populations of interstitial macrophages
and fibroblasts (1, 2).

Apart from physically enclosing the synovial cavity, the synovial tissue fulfills several important
physiological tasks that ensure proper joint function and which include the control and regulation
of the composition of the synovial fluid and the consequent support of cartilage homeostasis.

During various forms of joint inflammation such as during rheumatoid arthritis (RA), psoriatic
arthritis or also during degenerative joint diseases such as osteoarthritis (OA), the synovial
membrane undergoes substantial changes in morphology and cellular composition and thereby
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becomes enlarged and inflamed. These inflammation-associated
changes of the synovial tissue are best studied during different
stages of RA, where the formation of a synovial pannus is a
typical hallmark of joint pathology and characterized by synovial
hyperplasia consisting of activated macrophages and fibroblasts
as well as of infiltrating monocytes, granulocytes, lymphocytes,
and monocyte-derived osteoclasts, which are considered to drive
bone and cartilage destruction (2–4).

These observations have led to the perception and the
concept that cells of the synovial tissue, and especially synovial
macrophages and fibroblasts, critically contribute to joint
inflammation and joint destruction during RA. Notably, however,
emerging molecular data that have provided insights into the
complex cellular heterogeneity of resident synovial cells and their
diverse biologic functions indicate that the synovial membrane
and in particular the various populations of resident synovial
macrophages and fibroblasts exert differential and partially
diverging pro- and anti-inflammatory functions that can both
prevent and promote synovial inflammation (1, 3, 5–7).

Among the different resident synovial cell types, synovial
fibroblasts and synovial macrophages have thus emerged as
central regulators of synovial tissue homeostasis and factors
determining onset and progression of inflammatory joint diseases
such as RA. Our current review therefore focuses on the role
of these two heterologous cell types with a particular emphasis
on their role during the pathogenesis of RA. Notably, fibroblasts
and macrophages closely associate and co-inhabit different
microenvironmental niches of the synovial tissue, highlighting
the importance of better understanding both the individual roles
of these cellular subsets as well as their mutual interactions
and influence. Insights into molecular pathways underlying
their functional properties and crosstalk during homeostasis
and inflammation is essential to understand the events that
trigger and perpetuate inflammatory joint disease and will help
to develop novel therapeutic concepts for the prevention and
the treatment of prevalent chronic inflammatory musculoskeletal
disorders such as RA and OA, which represent disabling diseases
that do not only impose a significant health problem for millions
of patients, but also an increasing socioeconomic burden for
societies worldwide (8).

THE GOLDEN SCALE: SYNOVIAL
MACROPHAGE HETEROGENEITY IN
HEALTH AND DISEASE

The history of macrophage research started as early as 1883
when Ilja (Élie) Metchnikoff first described these cells and
described phagocytosis as a central host defense mechanism,
which substantially paved the way for our current understanding
of the cellular base of innate immunity. Notably, Metchnikoff
already anticipated the various functions of macrophages
beyond immunity during the control of tissue homeostasis
and turnover (9). Recently, new sequencing and imaging
techniques have confirmed his early assumptions and
allowed to shed more light on the plethora of macrophage-
mediated functions as well as on their diverse developmental

origin. Macrophages are now appreciated to play vital roles
during host defense, the developmental establishment of
organs and the maintenance of tissue homeostasis (10, 11).
Despite their physiological relevance, however, these cells
have been also implicated in the pathogenesis of various
inflammatory and autoimmune diseases such as RA (7,
12, 13).

During various types of inflammation, the majority of
macrophages derives from circulating blood monocytes that
infiltrate the inflamed tissue and differentiate into newly recruited
macrophages that display a pro-inflammatory gene expression
pattern and consequently participate in host defense and the
inflammatory response (14–17). During steady state, however,
most tissue macrophage subsets throughout the body have a
more diverse ontogeny and often do not directly derive from
blood monocytes. These resident tissue macrophages mostly self-
maintain their numbers independently of blood monocytes and
are often established prenatally (16, 18–21). Classical examples
of such monocyte-independent tissue resident macrophages are
microglia in the brain (19, 22), Kupffer cells of the liver (23),
and alveolar macrophages (24) in the lung. However, related
populations of tissue resident macrophages can be as well found
in other tissues such as the heart (25) or the bones (26). In
contrast to their monocyte-derived counterparts in inflamed
tissues, resident macrophages usually lack the expression of pro-
inflammatory genes and usually display an anti-inflammatory
phenotype. Another specific feature of such tissue resident
macrophages is their close interconnection with stromal and
parenchymal cells of their specific microenvironmental niche
(27, 28). Thereby, they acquire distinct phenotypes that
are reflected by tissue-specific transcriptional signatures and
epigenetic profiles (29, 30). Especially the different (often
tissue- and organ-specific) populations of fibroblasts interact
and communicate with their corresponding counterparts on
the side of tissue resident macrophages (3, 5, 27, 31). These
functional modules consisting of tissue macrophages and
fibroblasts seem to exert an important and mutual influence
on each other and, together with other factors of the local
microenvironment, shape the macrophage’s phenotypic and
functional properties (27). Such tissue resident macrophages that
are part of the organ-specific stromal scaffold then contribute
to various organ-specific functions such as synaptic pruning in
the CNS or metabolic adaption of the liver and adipose tissue
(32–35). Apart from such organ-specific functions, however,
resident macrophages throughout the body also share common
properties. An important common denominator is their ability
to rapidly and efficiently clear apoptotic cells and damage-
derived danger signals allowing them to prevent spontaneous
damage-induced inflammatory reactions in an otherwise healthy
tissue microenvironment (28, 36, 37). The generally high cell
turnover in barrier tissues such as the gut and skin seems
to partially overextend the clearance capacity provided by the
local population of tissue resident macrophages and therefore
triggers the constant influx of additional monocyte-derived
macrophages that help to maintain a necessary pool of tissue
macrophages required to sustain tissue homeostasis (20, 22,
38–40).
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FIGURE 1 | Cellular heterogeneity of the synovial microenvironment. Due to constant mechanical stress, the synovial cavity harbors endogenous danger signals. The
synovial lining layer separates the synovial cavity from the tissue and consists of lining macrophages and fibroblasts. Lining macrophages express Trem2 and tight
junctions (Zonula Occludens) as well as desmosomes, allowing maintenance and integrity of the synovial barrier. In addition, the subling interstitial tissue hosts
various interstitial macrophage (and fibroblast) populations. During joint inflammation such as in patients suffering from rheumatoid arthritis, the lining integrity is
disrupted and inflammatory immune cells infiltrate the tissue and the cavity. Under such inflammatory conditions, lining macrophages change their morphology to a
phagocytic phenotype.

Macrophage Heterogeneity Within the
Synovial Tissue
For decades, macrophages were considered main drivers of RA-
associated joint pathology as they were found to be enriched in
histopathological samples of RA patients where they contribute
to synovial pannus formation (2, 4). Moreover, macrophages
populating the inflamed synovial tissue of RA patients were
shown to highly express proinflammatory cytokines such as
TNF and IL-1β, provide matrix metalloproteinases (MMPs)
and act as important source of reactive oxygen species thereby
potentially contributing to inflammation, synovial tissue damage
and cartilage degradation (41–45). More recently, however,
a combination of complex fate mapping approaches, high
resolution imaging, single-cell RNA sequencing (scRNA-seq)
and computational analysis allowed uncovering a more complex
role of synovial macrophages during synovial tissue homeostasis
and RA, respectively. These insights revealed a high degree of
developmental and functional heterogeneity of different synovial
macrophage populations in the murine and human joint and

showed that these cells exert diverse and partially opposing
functions during joint inflammation (1, 5, 7, 46).

During steady-state, the synovial tissue hosts distinct
populations of tissue resident macrophages that show close
similarities and overlapping features in murine and human joints.
One dominant population are synovial “lining macrophages” that
are located at the top lining layer of the synovial membrane and
are characterized by a combination of surface markers including
Trem2 and CX3CR1 in mice as well as Trem2 and MerTK in
humans. Another population of murine Lyve1+Relma+ (and
human Lyve+MerTK+Folr2high) macrophages additionally
populates the underlying interstitial synovial tissue. Such
Lyve1+Relma+ macrophages most likely represent vessel-
associated macrophages as their gene expression profile
resembles perivascular macrophages in other organs such as the
lung, heart, brain, and dermis (1, 47, 48). The murine interstitial
synovial tissue additionally harbors a heterogeneous population
of MHCII+CSF1R+ macrophages that resemble human
MerTK+Folr2+ID2+ synovial macrophages. Onset of arthritis
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during experimental animal models and during human RA, in
turn, is accompanied by the influx of additional populations
of macrophages that show a typically pro-inflammatory gene
expression pattern. These recruited macrophages secrete TNF
and IL-1β, express chemokine receptors such as CCR2 in mice (1)
and are MerTKnegCD48highS100A12pos in human (5). During
joint inflammation, these cells infiltrate both the interstitial
synovial tissue and the synovial lining layer (1, 5, 7, 45, 46, 49).

Ontogeny of Synovial Macrophages
Studies using parabiotic mice as well as genetic fate-mapping
studies indicate that all three populations of resident synovial
macrophages present during steady state (Trem2+CX3CR1+
lining macrophages, Lyve1+Relma+ perivascular macrophages
and MHCII+CSF1R+ interstitial macrophages) are maintained
independent of blood monocytes and suggest that these resident
synovial macrophage subsets are established at a prenatal
stage of development. These studies additionally indicate
that MHCII+CSF1R+ interstitial macrophages are able to
proliferate and represent a pool of “precursor macrophage”
that constantly replenishes the pool of the other two synovial
macrophage subsets of Trem2+CX3CR1+ lining macrophages
and Lyve1+Relma+ perivascular macrophages that both show a
higher degree of differentiation, but have lost their proliferative
capacity (1). An important and currently unanswered question
is the exact nature of factors that triggers the proliferation
of MHCII+CSF1R+ interstitial macrophages as well as
their subsequent differentiation of the more differentiated
synovial macrophage subsets of Trem2+CX3CR1+ lining and
Lyve1+Relma+ perivascular macrophages. Likely candidates
include different micro-environmental factors such as small
metabolites, components of the synovial fluid and/or the
extracellular matrix as well as stromal-derived growth factors that
are produced by synovial fibroblasts. Similar studies with arthritic
mice show that CCR2- and IL1β-expressing inflammatory
macrophages that become abundant in the inflamed synovial
tissue represent a distinct population of macrophages that
directly originate from blood monocytes, which are readily
recruited upon onset of synovial inflammation (1).

Resident Synovial Lining Macrophages
Form an Anti-inflammatory Barrier
The Trem2-expressing subset of resident lining macrophages
form a unique barrier-like structure between the fluid-filled
synovial cavity and the interstitial synovial tissue in both mice
and human (Figure 1). These lining macrophages are uniquely
characterized by their ability to form tight junctions (Zonula
Occludens) as well as desmosomes, express aquaporin channels
and additionally show signs of an apical/basal polarization (1, 5).
These findings indicate that they possess various features that are
otherwise typical of epithelial cells in barrier tissues including
the gut (50), which likely allow these macrophages to tightly
enclose the fluid-filled synovial cavity and to simultaneously
sense and regulate the molecular composition of the synovial
fluid. Notably, however, synovial lining macrophages do possess
high phagocytosis capacities, a feature that might be necessary to

cope with a specific problem of the synovial microenvironment:
the continuous presence of mechanical stress within the joint
space (51). This mechanical stress results in constant and
usually reversible cartilage damage as well as the degradation of
integral components of the synovial fluid including hyaluronic
acids and other glycosaminoglycans. This process results in
the generation of various form of cellular debris and typical
endogenous danger signals such as hyaluronan fragments that
would potentially accumulate within the synovial fluid and
subsequently induce synovial inflammation via activation of
pattern recognition receptors such as Toll-Like Receptor (TLR)
2 and TLR 4 (52, 53), which are highly expressed in synovial
lining macrophages and synovial fibroblasts (1, 54, 55). The
microarchitecture of the synovial tissue and the absence of
inflammation during steady state, however, suggests that lining
macrophages constantly remove and clear such debris as well as
the associated molecular danger signals in a non-inflammatory
manner thereby preventing spontaneous joint inflammation.
RNA sequencing indeed revealed that this macrophage subset
lacks the expression of pro-inflammatory cytokines, but expresses
a panel of immune-regulatory genes such as VSIG4 (V-Set
and Immunoglobulin Domain Containing 4) and receptors
that mediate efferocytosis including Axl, MerTK, Marco, and
Tim4 allowing them an efficient non-inflammatory clearance of
danger signals and apoptotic cell debris while maintaining an
anti-inflammatory phenotype in an otherwise pro-inflammatory
environment. These immune regulatory properties of synovial
lining macrophages can be observed even upon onset of synovial
inflammation during experimental arthritis and human RA
(1, 5, 56). Synovial lining macrophages thereby appear to
create an “immune-privileged microenvironment” and form an
anti-inflammatory inside-outside barrier that normally prevents
both a danger signal-induced spontaneous inflammation of the
synovial tissue in response to mechanical stress as well as
an inflammation-induced cell trafficking into the inner joint
structures. On a functional level, the synovial barrier is therefore
partially comparable both to the gut barrier that prevents
spreading of danger signals into the surrounding intestinal tissue
as well as to the blood-brain barrier that limits immune cell
trafficking into the CNS.

Onset of synovial inflammation during murine arthritis
models and human RA is associated with a break-down
of this protective epithelial-like macrophage structure (1, 5).
During arthritis, lining macrophages substantially change their
morphology and lose their cell-cell contacts resulting in an
increased permeability of the synovial membrane. Upon onset
of experimental arthritis and during human RA, there is also
a relative decrease in the number of Trem2-expressing resident
lining macrophages and an increase in infiltrating CCR2-
and IL-1β-expressing monocyte-derived macrophages, which is
reversed again upon clinical disease remission where the anti-
inflammatory tissue resident macrophage populations dominate
again and the synovial barrier reforms (1, 5).

In line with an important anti-inflammatory role of the
Trem2+ lining macrophage subset, selective depletion of murine
synovial lining macrophages (1) as well as global deletion of
resident synovial macrophages (46) resulted in early onset and
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exacerbation of arthritis in mice, emphasizing their crucial role
in the maintenance of joint homeostasis and the prevention of
synovial inflammation. Data from human RA patients confirm
an anti-inflammatory role of resident synovial macrophages and
show that these cells are potent producers of anti-inflammatory
pro-resolving lipid mediators and simultaneously promote a
repair response of synovial fibroblasts (5). The breakdown of
the synovial macrophage barrier during RA thus seems to be
both a cause and a consequence of inflammation and might be
part of a vicious cycle responsible for the chronicity of synovial
inflammation, which is typically observed during RA and related
inflammatory joint diseases.

Immune-Regulatory Perivascular
Macrophages Dominate the Interstitial
Synovial Tissue During Steady State
The sublining interstitial tissue comprises fibroblasts, nerves,
blood vessels as well as additional populations of phenotypically
distinct synovial macrophages (3, 7). A dominant population
within the murine synovial interstitial tissue are Lyve1+Relma+
macrophages. Computational and experimental approaches show
that related perivascular macrophages are conserved across
different organs (e.g., heart, lung, dermis, and brain) (47,
48, 57, 58). All these Lyve1+Relma+ macrophage subsets
express high levels of a distinct set of chemokines such
as CCL-24 and CCL-12, which are important for regulating
leukocyte trafficking. Interestingly, these cells are also enriched
in anti-inflammatory cytokines including IL-10 and TGF-
β, and additionally express markers typical of alternatively
activated macrophages such as mannose-receptor 1 (CD206)
and the receptor for the hemoglobin-haptoglobin complex
(CD163). These latter phenotypic features indicate additional
immune-regulatory properties of this macrophage subset.
Indeed, they seem to regulate blood vessel permeability, control
leukocyte migration and might participate in the resolution of
inflammation (47, 57). Specific depletion of such Lyve1+ Relma+
macrophages resulted in excessive fibrosis in the lung as well as
arterial stiffness underscoring a predominant anti-inflammatory
and pro-resolving role of these cells (47, 57). Their exact role
during synovial tissue homeostasis and synovial inflammation,
however, remains to be addressed in more detail.

Monocyte-Derived Macrophages
Infiltrate the Inflamed Synovial Tissue
A hallmark of arthritis is the infiltration of immune cells
including monocytes and monocyte-derived macrophages.
Recent advances in the field of single-cell RNA sequencing
together with insights from fate mapping studies, show that,
upon onset of arthritis, blood-derived CCR2+ monocytes start to
infiltrate the synovial tissue and give rise to different populations
of monocyte-derived macrophages that are characterized by a
pro-inflammatory activation profile (including high expression
levels of IL-1β). On a phenotypic level, these monocyte-derived
macrophages thus substantially differ from the described subsets
of specialized resident synovial macrophages that dominate
during steady state and that display an immune regulatory

and anti-inflammatory activation profile. In accordance with
the pro-inflammatory role of monocytes and monocyte-
derived macrophages, depletion of these cells diminished joint
pathology and accelerated the resolution of inflammation during
experimental arthritis models (1, 46). In human synovial tissue,
three populations of CD206negMerTKneg macrophages, which
resemble infiltrating CCR2+ monocytes and pro-inflammatory
monocyte-derived macrophages in mice, seem to contribute
to synovial inflammation as well as to RA-associated bone
destruction (1, 5, 7).

MORE THAN A PASSIVE SCAFFOLD:
SYNOVIAL FIBROBLASTS SHAPE THEIR
ENVIRONMENT

Fibroblasts were first described as a distinct cell type in the
late nineteenth century by Rudolph Virchow and Mathias Duval
as “spindle shaped cells of the connective tissue,” referring to
their morphological shape. The term fibroblast was introduced
later to describe cells that were observed to produce new
connective tissue in healing organ structures (59–61). As
structural cells, fibroblasts are ubiquitously present throughout
mammalian tissues. A shared function of all fibroblasts is
the ability to synthesize and deposit major components of
the extracellular matrix (ECM), which includes proteoglycans,
collagens, fibronectin or elastin. Apart from the creation of
ECM, however, these cells exert versatile roles during tissue
homeostasis, inflammation and repair, where the fibroblast
acts as a jack of all trades that shapes its tissue specific
microenvironment. Production of lysyl oxidase and lysyl
hydroxylases allow fibroblasts to modulate cross-linking between
collagens and elastin thereby fine-tuning the physical properties
of the ECM (62). Fibroblasts also express MMPs as well as
MMP inhibitors allowing them to remodel the ECM depending
on the current necessity. Fibroblasts are important participators
in repair processes where they do not only contribute to new
ECM, but simultaneously serve as progenitor cells for other
mesenchymal cell types, such as adipocytes, chondrocytes or
bone-forming osteoblasts (62, 63). Notably, fibroblasts closely
interact with tissue macrophages and other cells of the innate
and adaptive immune response (64). Here, they act as important
sentinel cells that sense and recognize danger signals derived
from pathogens or damaged and dying cells. In response to
damage and danger, fibroblasts then activate pro-inflammatory
signaling pathways in order to support the recruitment and
activation of polymorphonuclear neutrophils, monocytes and
lymphocytes (65–67).

Novel scRNA-seq-based studies that studied fibroblasts across
different organs show that, despite such common features,
fibroblasts also show a substantial heterogeneity that might
enable these cells the execution of tissue—specific functions
(68). Studies on fibroblasts in murine heart, skeletal muscle,
intestine and bladder have shown a high degree of diversity
within their transcriptome where only 20% of fibroblast genes
were shared across these four organs (69). In line with these
findings, another study showed that a fibroblast’s scRNA-seq
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profile more closely resemble that of other structural cells within
the respective organ than that of fibroblasts within other organs
(70). Locally imprinted transcriptional profiles thus likely mirror
the fibroblast’s unique functionalities within its specific tissue
environment. In addition to this heterogeneity on a global scale,
fibroblast can also be differentiated into functionally distinct
subtypes within a single tissue, highlighting that their identity
is shaped by specific and local microenvironmental niches they
inhabit (71). Even within the limbs, differing transcriptional
profiles have been detected in the dermal mesenchyme of the
torso, of the fingers and of toes (72, 73). This positional identity
can be retained in vitro indicating these cells are permanently
primed by local niche-specific factors (74).

Synovial Fibroblast Niche
Fibroblasts are abundant cells within synovial membrane.
Previous data indicate that these cells contribute to the
pathogenesis of inflammatory joint disease at different levels.
Activation of synovial fibroblasts during RA seems to takes
place at a very early disease stage, where activation of
TLR2, 3 and 4, which have been found to be expressed on
synovial fibroblasts in RA patients, might act as important
inflammatory triggers of these cells (75, 76). The activation of
synovial fibroblasts seems to result in extensive alterations of
the synovial tissue microenvironment and remodeling of the
ECM through the secretion of matrix-degrading enzymes, the
production of proangiogenic factors and the expression of pro-
inflammatory cytokines and chemokines (83, 104, 107, 108, 110,
112). Fibroblasts contribute to synovial inflammation via the
production of IL-6, and chemokines like IL-8, CCL2, CCL3, and
CCL5 (105, 106, 109, 111). Especially fibroblast—derived IL-6
has been implicated in the pathogenesis of RA and meanwhile
emerged as a major therapeutic target in the treatment of
RA patients (77, 78). Fibroblast-derived RANKL, in turn, has
been implicated in the enhanced differentiation of osteoclasts as
well as the osteoclast-mediated destruction of periarticular bone
observed in RA patients and thus presents another therapeutic
target (79–81).

Once activated, synovial fibroblasts express increased levels of
adhesion molecules including different integrins and cadherins,
resulting in attachment and invasion of articular cartilage.
Specifically, cadherin-11 was found to be pivotal for the invasive
potential of inflammatory synovial fibroblasts and blockage of
the cadherin-11 accordingly ameliorated cartilage destruction
in experimental arthritis model (82, 83). Furthermore, synovial
fibroblasts secrete growth stimulating factors such as B-cell
activating factor (BAFF) and a proliferation—inducing
ligand (APRIL) that promote survival of B cells and might
contribute to the establishment and maintenance of tertiary
lymphatic structures within the synovial tissue of RA patients
(65, 84).

Within the synovial tissue, two functionally and
phenotypically distinct populations of fibroblasts emerged
from recent studies that built on scRNAseq-based analyses.
These studies could differentiate transcriptionally distinct lining
fibroblasts, which co-localize with the macrophage lining layer
of the synovial membrane, from sublining fibroblasts that are
situated deeper within the synovial tissue (1, 3). Lining and

sublining fibroblasts, however, do not appear to represent two
completely separated fibroblast entities, but rather terminal
points of a continuous differentiation spectrum. This is evident
from the varying expression of various fibroblast markers
including THY1 and proteoglycan 4 (PRG4). Lining synovial
fibroblasts express PRG4, but hardly any THY1, whereas
sublining synovial fibroblast express THY1 but no PRG4.
According to the expression of these markers, most synovial
fibroblasts actually fall in between these two poles (3, 85, 86).
The placement along this THY1:PRG4 gradient seems to be a
result of the positional identity of these cells and dependent
on the spatial distance from endothelial cells and endothelial
cell-derived NOTCH3 signaling (3, 6). During arthritis, both
the pool of lining and sublining fibroblasts is disturbed and can
expand accordingly. The different positional features of synovial
fibroblasts, however, are paralleled by a distinct behavior within
the inflamed synovial tissue.

THY1 + sublining sublining fibroblasts were shown to
primarily promote inflammation in response to increased
endothelial-edrived Notch3 signaling with minimal effect on
bone and cartilage damage during arthritis (3, 6). In active
RA, Notch3 and Notch target genes are accordingly upregulated
in synovial sublining fibroblasts, explaining the expansive
inflammatory behavior of these cells. THY1-negative lining
fibroblasts, in turn, seem to selectively mediate bone and cartilage
damage with little effect on inflammation. Lining layer fibroblasts
indeed induce osteoclastogenesis and subsequent cartilage and
bone erosion mainly through the secretion of RANKL (3, 79,
81, 87).

CROSSTALK BETWEEN SYNOVIAL
FIBROBLASTS AND MACROPHAGES

Understanding how heterologous cell types such as synovial
fibroblasts and synovial macrophages communicate and interact
with each other might be a key to understand disease mechanisms
and identify novel therapeutic approaches in inflammatory joint
disease. A close physical interaction and signaling loops between
fibroblast-like cells and various tissue-specific macrophage
subsets can be observed throughout the body where, e.g.,
osteoblasts and osteoclasts or astrocytes and microglia closely
interact and exert a mutual influence on each other (88, 89). Local
factors throughout the body shape the tissue-specific phenotypes
of both macrophages and fibroblasts during steady state and
inflammation. These include changes in the local concentration
of various metabolites such as retinoic acid or lactate as well as
variations in oxygen tension that impact both on the local pool
of macrophages and fibroblasts (90, 91). Also, the presence of
unique factors that shape the specific microenvironmental niche
such as surfactant in the lung, bacteria in the gut or synovial
fluid within the joints likely imprint on the phenotypic features
of both cell types. Both macrophages and fibroblasts, in turn,
also influence their environment and remodel the ECM, produce
and resorb surfactant and synovial fluid or imprint on the local
metabolic tissue signature (92, 93).

The close physical association of fibroblasts and macrophages
is also reflected by an intense cellular communication between
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both cell types. Fibroblasts are probably the most relevant source
of CSF1 within the microenvironment of tissue macrophages
(Figure 2). Fibroblast-derived CSF1, in turn, binds to the
CSF1R on macrophages promoting the survival, proliferation
and maintenance of the local macrophage pool (31, 94). Mice
lacking CSF1 also lack most macrophage subsets and deletion
of CSF1 in fibroblasts results in related phenotypes (95). Within
many tissues, there seems to be a symbiotic relationship between
macrophages and fibroblasts that does not only involve CSF1
production by fibroblasts, but also the expression of PDGF by
macrophages, a cytokine that exerts a strong impact on the
maintenance of tissue fibroblasts and their proliferative capacity
(27). These insights point toward a complex two cell circuit by
which these cells reciprocally interact and sustain their numbers
and shape their phenotypes within the tissue context (31). The
specific requirements and factors that allow the interaction
and communication of synovial macrophages and fibroblasts
within the specific niches of the synovial lining and synovial
sublining interstitial tissue and their potential for targeted
therapy remain to be identified. This homeostatic equilibrium
and balanced interaction might become disturbed during various
disease states where macrophages and/or fibroblast activity is
altered and consequently affects the other cell type. Excessive
production of cytokines such as IL-6 and of chemokines such
as CCL2 by fibroblasts or increased secretion of TGFbeta
and PDGF by macrophages might be the consequence thereby
contributing to excessive inflammation and/or a fibrotic reaction
Such pathologic circuits have been described to contribute to
diseases such as lung fibrosis, but might well be involved in
synovial inflammation and synovial pannus formation during RA
as well (90, 96). Cellular communication between macrophages
and fibroblasts seem to partially amplify both a pro-fibrotic
response in fibroblasts and a pro-inflammatory response in
macrophages, thereby driving a vicious circle of TGFbeta
production by macrophages and IL-6 production by fibroblasts
(97, 98). Activated synovial fibroblasts were recently described
to have the capacity to influence the metabolic rewiring of
synovial macrophages and skew their metabolic profile toward
an upregulation of glycolysis and mitochondrial respiration
as well as an increase in uptake of glucose and glutamine,
a process that may exert a long lasting influence on the
inflammatory behavioral pattern of these ells (99). During
synovial inflammation, production of HBEGF (heparin binding
EGF-like growth factor) by inflammatory macrophages seem to
promote the invasive behavior of resident synovial fibroblasts
and the consequent destruction of articular cartilage (100). These
findings are in accordance with the observation that human
CD206negMerTKneg (monocyte-derived) synovial macrophages
promote an inflammatory phenotype in synovial fibroblasts when
both cells are co-cultured. CD206posMerTKpos macrophages,
which include the resident subsets of Trem2+ lining and
Lyve1+ interstitial macrophages, in contrast, trigger a repair
response in synovial fibroblasts. The consequently emerging anti-
inflammatory homeostatic response includes the production of
GAS6 by synovial fibroblasts, which in turn induces a pro-
resolving and immune-regulatory phenotype in resident synovial
macrophages that express the GAS6 receptor MerTK. GAS6

FIGURE 2 | Crosstalk of macrophages and fibroblasts. Synovial macrophages
are capable of sensing multiple fibroblast-derived factors including Csf1 and
Gas6. During inflammation, Synovial fibroblasts additionally secrete IL-6,
which amplifies the inflammatory response of both macrophages and
fibroblasts. Synovial fibroblasts, in turn, rely on macrophage-derived HBEGF.

deletion in fibroblasts accordingly provokes a pro-inflammatory
macrophage response (5).

During the treatment of chronic inflammatory diseases such
as RA, our current therapeutic armory that is increasingly
build on monoclonal antibodies, is already able to successfully
target both fibroblast-derived cytokines such as IL-6 as well as
macrophage-derived cytokines such as TNF and thus interfere
with the inflammatory crosstalk between both cell types (4).
Newer small molecular therapeutics such as JAK-inhibitors
seem to target pro-inflammatory signaling in both types of
cells, which might explain the relatively broad and superior
anti-inflammatory and anti-fibrotic properties of this class of
drugs (101). Attractive emerging targets include inhibitors of
cycline-dependent kinases that suppress proliferation of activated
synovial fibroblasts (102). Future therapeutic strategies will likely
benefit from the synergistic action of such different classes of
drugs that allow a combinatorial targeting of different synovial
cell types thereby limiting their crosstalk and interrupting the
vicious cycle of chronic synovial inflammation in diseases such
as RA (103).

CONCLUSION

Distinct resident synovial macrophage and fibroblast populations
that populate the synovial lining layer and the synovial
interstitial tissue closely interact with each other and shape
specific niches within the synovial microenvironment. Resident
synovial Trem2-expressing lining macrophages associate with a
phenotypically distinct population of THY1-negative fibroblasts
and form a dense synovial lining layer. Both cell types
contribute to the composition and turnover of the synovial fluid
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and simultaneously prevent spontaneous synovial inflammation
by forming an anti-inflammatory barrier interface between
the synovial fluid and synovial tissue that facilitates the
constant clearance of synovial fluid-derived danger signals
that accumulate due to mechanical stress. Upon onset of
inflammation, this protective barrier breaches allowing newly
recruited pro-inflammatory monocytes and monocyte-derived
macrophages the access to inner joint structure and promoting
a pro-inflammatory program in the population of THY1-
negative fibroblasts that co-inhabit the synovial lining layer and
consequently initiates joint destruction. Synovial inflammation
also results in the activation of THY-expressing sublining
fibroblasts that depend on endothelial-derived Notch3 and
further promote synovial inflammation. The role of perivascular
macrophages during arthritis is less clear as they might be
theoretically involved both in the initiation and resolution
of inflammation.

Future research needs to identify the local factors and
interaction networks that shape the identity of these various
cellular subsets and identify the causes and consequences

during a complex series of events that promote onset
and progression of synovial inflammation during RA and
related disorders.
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