
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8292–8307,

November 16–20, 2020. c©2020 Association for Computational Linguistics

8292

SynSetExpan: An Iterative Framework for Joint Entity
Set Expansion and Synonym Discovery

Jiaming Shen1⋆, Wenda Qiu1⋆, Jingbo Shang2, Michelle Vanni3, Xiang Ren4, Jiawei Han1

1University of Illinois Urbana-Champaign, IL, USA, 2University of California San Diego, CA, USA
3U.S. Army Research Laboratory, MD, USA, 4University of Southern California, CA, USA

1{js2, qiuwenda, hanj}@illinois.edu 2jshang@ucsd.edu 4michelle.t.vanni.civ@mail.mil 4xiangren@usc.edu

Abstract

Entity set expansion and synonym discovery

are two critical NLP tasks. Previous studies

accomplish them separately, without exploring

their interdependences. In this work, we hy-

pothesize that these two tasks are tightly cou-

pled because two synonymous entities tend to

have similar likelihoods of belonging to var-

ious semantic classes. This motivates us to

design SynSetExpan, a novel framework that

enables two tasks to mutually enhance each

other. SynSetExpan uses a synonym discovery

model to include popular entities’ infrequent

synonyms into the set, which boosts the set

expansion recall. Meanwhile, the set expan-

sion model, being able to determine whether

an entity belongs to a semantic class, can gen-

erate pseudo training data to fine-tune the syn-

onym discovery model towards better accuracy.

To facilitate the research on studying the in-

terplays of these two tasks, we create the first

large-scale Synonym-Enhanced Set Expansion

(SE2) dataset via crowdsourcing. Extensive

experiments on the SE2 dataset and previous

benchmarks demonstrate the effectiveness of

SynSetExpan for both entity set expansion and

synonym discovery tasks.

1 Introduction

Entity set expansion (ESE) aims to expand a

small set of seed entities (e.g., {“United States”,

“Canada”}) into a larger set of entities that belong

to the same semantic class (i.e., Country). En-

tity synonym discovery (ESD) intends to group all

terms in a vocabulary that refer to the same real-

world entity (e.g., “America” and “USA” refer to

the same country) into a synonym set (hence called

a synset). Those discovered entities and synsets in-

clude rich knowledge and can benefit many down-

stream applications such as semantic search (Xiong

*Equal Contributions.

Connecticut CT

SynSetExpan Framework

Illinois IL

Land of Lincoln

Texas TX

Lone Star State

California CA

Golden State

User Provided

SSeed Synsets

Text Corpus DVocabulary V

derives

part of Wisconsin WI

America’s Dairyland

Washington WA

Evergreen State

…… …… ……

Discovered Synsets SVC

of Semantic Class C

inputs inputs

inputs

outputs

Set Expansion Synonym Discovery

Figure 1: An illustrative example of joint entity set

expansion and synonym discovery.

et al., 2017), taxonomy construction (Shen et al.,

2018a), and online education (Yu et al., 2019a).

Previous studies regard ESE and ESD as two

independent tasks. Many ESE methods (Mamou

et al., 2018b; Yan et al., 2019; Huang et al., 2020;

Zhang et al., 2020; Zhu et al., 2020) are developed

to iteratively select and add the most confident en-

tities into the set. A core challenge for ESE is to

find those infrequent long-tail entities in the target

semantic class (e.g., “Lone Star State” in the class

US_States) while filtering out false positive en-

tities from other related classes (e.g., “Austin” and

“Dallas” in the class City) as they will cause se-

mantic shift to the set. Meanwhile, various ESD

methods (Qu et al., 2017; Ustalov et al., 2017a;

Wang et al., 2019; Shen et al., 2019) combine string-

level features with embedding features to find a

query term’s synonyms from a given vocabulary or

to cluster all vocabulary terms into synsets. A ma-

jor challenge here is to combine those features with

limited supervisions in a way that works for enti-

ties from all semantic classes. Another challenge

is how to scale a ESD method to a large, extensive

vocabulary that contains terms of varied qualities.

To address the above challenges, we hypothe-

size that ESE and ESD are two tightly coupled

tasks and can mutually enhance each other because

two synonymous entities tend to have similar like-

lihoods of belonging to various semantic classes

and vice versa. This hypothesis implies that (1)

8293

knowing the class membership of one entity en-

ables us to infer the class membership of all its

synonyms, and (2) two entities can be synonyms

only if they belong to the same semantic class. For

example, we may expand the US_States class

from a seed set {“Illinois”, “Texas”, “California”}.

An ESE model can find frequent state full names

(e.g., “Wisconsin”, “Connecticut”) but may miss

those infrequent entities (e.g., “Lone Star State”

and “Golden State”). However, an ESD model may

predict “Lone Star State” is the synonym of “Texas”

and “Golden State” is synonymous to “California”

and directly adds them into the expanded set, which

shows synonym information help set expansion.

Meanwhile, from the ESE model outputs, we may

infer 〈“Wisconsin”, “WI”〉 is a synonymous pair

while 〈“Connecticut”, “SC”〉 is not, and use them

to fine-tune an ESD model on the fly. This relieves

the burden of using one single ESD model for all

semantic classes and improves the ESD model’s

inference efficiency because we refine the synonym

search space from the entire vocabulary to only the

ESE model outputs.

In this study, we propose SynSetExpan, a novel

framework jointly conducting two tasks (cf. Fig. 1).

To better leverage the limited supervision signals

in seeds, we design SynSetExpan as an iterative

framework consisting of two components: (1) a

ESE model that ranks entities based on their prob-

abilities of belonging to the target semantic class,

and (2) a ESD model that returns the probability of

two entities being synonyms. In each iteration, we

first apply the ESE model to obtain an entity rank

list from which we derive a set of pseudo training

data to fine-tune the ESD model. Then, we use this

fine-tuned model to find synonyms of entities in the

currently expanded set and adjust the above rank

list. Finally, we add top-ranked entities in the ad-

justed rank list into the currently expanded set and

start the next iteration. After the iterative process

ends, we construct a synonym graph from the last

iteration’s output and extract entity synsets (includ-

ing singleton synsets) as graph communities.

As previous ESE datasets are too small and con-

tain no synonym information for evaluating our

hypothesis, we create the first Synonym Enhanced

Set Expansion (SE2) benchmark dataset via crowd-

sourcing. This new dataset1 is one magnitude larger

than previous benchmarks. It contains a corpus of

the entire Wikipedia, a vocabulary of 1.5 million

1http://bit.ly/SE2-dataset.

terms, and 1200 seed queries from 60 semantic

classes of 6 different types (e.g., Person, Location,

Organization, etc.).

Contributions. In summary, this study makes the

following contributions: (1) we hypothesize that

ESE and ESD can mutually enhance each other

and propose a novel framework SynSetExpan to

jointly conduct two tasks; (2) we construct a new

large-scale dataset SE2 that supports fair compari-

son across different methods and facilitates future

research on both tasks; and (3) we conduct exten-

sive experiments to verify our hypothesis and show

the effectiveness of SynSetExpan on both tasks.

2 Problem Formulation

We first introduce important concepts in this work,

and then present our problem formulation. A term

is a string (i.e., a word or a phrase) that refers to

a real-world entity2. An entity synset is a set of

terms that can be used to refer to the same real-

world entity. For example, both “USA” and “Amer-

ica” can refer to the entity United States and thus

compose an entity synset. We allow the singleton

synset and a term may locate in multiple synsets

due to its ambiguity. A semantic class is a set of

entities that share a common characteristic and a

vocabulary is a term list that can be either provided

by users or derived from a corpus.

Problem Formulation. Given (1) a text corpus D,

(2) a vocabulary V derived from D, and (3) a seed

set of user-provided entity synonym sets S0 that

belong to the same semantic class C, we aim to

(1) select a subset of entities VC from V that all

belong to C; and (2) clusters all terms in VC into

entity synsets SVC
where the union of all clusters

is equal to VC . In other words, we expand the seed

set S0 into a more complete set of entity synsets

S0 ∪SVC
that belong to the same semantic class C.

A concrete example is presented in Fig. 1.

3 The SynSetExpan Framework

In this study, we hypothesize that entity set expan-

sion and synonym discovery are two tightly cou-

pled tasks and can mutually enhance each other.

Hypothesis 1. Two synonymous entities tend to

have similar likelihoods of belonging to various

semantic classes and vice versa.

The above hypothesis has two implications.

First, if two entities ei and ej are synonyms and

2In this work, we use “term” and “entity” interchangeably.

http://bit.ly/SE2-dataset

8294

Vocabulary V

Score

0.98

0.62

0.58

……

……

0.91

0.94

0.57

0.78

0.85

Entity

……

Lone Star State

Golden State

South Korea

……

Chicago

SC

WI

South Carolina

Wisconsin

…61 3 2002 5 …4Rank 2017

…
South

Korea
Chicago…

Land of

Lincoln
SCWI

Golden

State

Lone Star

State

South

Carolina
WisconsinEntity

string match

Final Merged Entity Rank List

Set Expansion Output Lse

…

California

TX

Texas

IL

Illinois

Current Set

……

0<SC, Lone Star State>

0<South Carolina, South Korea>

<South Carolina, SC> 1

<WI, Golden State> 0

0

1

Label

<Wisconsin, South Korea>

<Wisconsin, WI>

Term Pair

Pseudo Training Data Dpl

… …

1

<Kobe Bryant, NBA>

0

<United States, U.S.>

Label

<United States, United Kingdom>

Term Pair

1<Kobe Bryant, Black Mamba>

0

Synonym Discovery Model Mc

Pretrained Class-Agnoistic Model M0

…

Fitted Trees on Dpl

…

Score

0.99

0.02

0.01

……

……

0.96

0.97

Entity

……

Chicago

South Korea

……

Golden State

Land of Lincoln

Lone Star State

Knowledge Base K

Distant Supervision

Synonym Discovery Output Lsy

Add top-

ranked

entities
merge

merge

predict

on

fine-tune pretrain

derive

Set Expansion Model

x1

x2

g
1(·)

x1

x2

g
T (·)

x1

x2

g
2(·)

… …

Positive

Examples

Negative

Examples

Vocabulary

randomly

sample

V

predict

onVlearn

E

V

Figure 2: Overview of one iteration in our proposed SynSetExpan framework. Starting from the current set E, we

first run a set expansion model to obtain an entity rank list Lse based on which we generate pseudo training data

Dpl to fine-tune a generic synonym discovery model M0. We then apply this fine-tuned model to get a new rank

list Lsy; merge it with Lse to obtain the final entity rank list, and add top ranked entities into the current set E.

ei belongs to semantic class C, ej likely also be-

longs to class C even if it is currently outside C.

This reveals how synonym information can help set

expansion by directly introducing popular entities’

infrequent synonyms into the set and thus increas-

ing the expansion recall. The second implication

is that if two entities are not from the same class

C, then they are likely not synonyms. This shows

how set expansion can help synonym discovery by

restricting the synonym search space to set expan-

sion outputs and generating additional training data

to fine tune the synonym discovery model.

At the beginning, when we only have limited

seed information, this hypothesis may not be di-

rectly applicable as we do not have complete knowl-

edge of either entity class memberships or entity

synonyms. Therefore, we design our SynSetExpan

as an iterative framework, shown in Fig. 2.

Framework Overview. Before the iterative pro-

cess starts, we first learn a general synonym dis-

covery model M0 using distant supervision from

a knowledge base (cf. Sect. 3.1). Then, in each

iteration, we learn a set expansion model based

on the currently expanded set E (initialized as all

entities in user-provided seed synsets S0) and ap-

ply it to obtain a rank list of entities in V , denoted

as Lse (cf. Sect. 3.2). Next, we generate pseudo

training data from Lse and use it to construct a new

class-dependent synonym discovery model Mc by

fine-tuning M0. After that, for each entity in V ,

we apply Mc to predict its probability of being the

synonym of at least one entity in E and use such

synonym information to adjust Lse (cf. Sect. 3.3).

Finally, we add top-ranked entities in the adjusted

rank list into the current set and start the next itera-

tion. After the iterative process ends, we identify

entity synsets from the final iteration’s output using

a graph-based clustering method (cf. Sect. 3.4).

3.1 Proposed Synonym Discovery Model

Given a pair of entities, our synonym discovery

model returns the probability that they are syn-

onymous. We use two types of features for entity

pairs3: (1) lexical features based on entity surface

names (e.g., Jaro-Winkler similarity (Wang et al.,

2019), token edit distance (Fei et al., 2019), etc),

and (2) semantic features based on entity embed-

dings (e.g., cosine similarity between two entities’

SkipGram embeddings). As these feature values

have different scales, we use a tree-based boost-

ing model XGBoost (Chen and Guestrin, 2016) to

predict whether two entities are synonyms. An-

other advantage of XGBoost is that it is an additive

model and supports incremental model fine-tuning.

We will discuss how to use set expansion results to

fine-tune a synonym discovery model in Sect. 3.2.

To learn the synonym discovery model, we first

acquire distant supervision data by matching each

term in the vocabulary V with the canonical name

of one entity (with its unique ID) in a knowledge

base (KB). If two terms are matched to the same

entity in KB and their embedding similarity is

larger than 0.5, we treat them as synonyms. To

generate a non-synonymous term pair, we follow

the same “mixture” sampling strategy proposed

in (Shen et al., 2019), that is, 50% of negative pairs

come from random sampling and the other 50% of

negative pairs are those “hard” negatives which are

required to share at least one token. Some concrete

3We list all features in supplementary materials Section A.

8295

examples are shown in Fig. 2. Finally, based on

such generated distant supervision data, we train

our XGBoost-based synonym discovery model us-

ing binary cross entropy loss.

3.2 Proposed Set Expansion Model

Given a set of seed entities E0 from a semantic

class C, we aim to learn a set expansion model

that can predict the probability of a new entity

(term) ei ∈ V belonging to the same class C, i.e.,

P(ei ∈ C). We follow previous studies (Mela-

mud et al., 2016; Mamou et al., 2018a) to represent

each entity using a set of 6 embeddings learned on

the given corpus D, including SkipGram, CBOW

in word2vec (Mikolov et al., 2013), fastText (Bo-

janowski et al., 2016), SetExpander (Mamou et al.,

2018b), JoSE (Meng et al., 2019) and averaged

BERT contextualized embeddings (Devlin et al.,

2019). Given the bag-of-embedding representa-

tion [f1(ei), f
2(ei), . . . , f

B(ei)] of entity ei and

the seed set E0, we define the entity feature

xi = ‖6b=1
‖|E0|
j=1

[√

dbij , d
b
ij , (d

b
ij)

2

]

, where “‖”

represents the concatenation operation, and dbij =

cos(f b(ei), f
b(ej)) is the cosine similarity between

two embedding vectors. One challenge of learning

the set expansion model is the lack of supervision

signals — we only have a few “positive” examples

(i.e., entities belonging to the target class) and no

“negative” examples. To solve this challenge, we

observe that the size of target class is usually much

smaller than the vocabulary size. This means if

we randomly select one entity from the vocabulary,

most likely it will not belong to the target semantic

class. Therefore, we can construct a set of |E0|×K
negative examples by random sampling. We also

test selecting only entities that have a low embed-

ding similarity with the entities in the current set.

However, our experiment shows this restricted sam-

pling does not improve the performance. Therefore,

we choose to use the simple yet effective “random

sampling” approach and refer to K as “negative

sampling ratio”. Given a total of |E0| × (K + 1)
examples, we learn a SVM classifier g(·) based on

the above defined entity features.

To further improve set expansion quality, we re-

peat the above process T times (i.e., randomly sam-

ple T different sets of |E0| ×K negative examples

for learning T separate classifiers {gt(·)}|Tt=1
) and

construct an ensemble classifier. The final classifier

predicts the probability of an entity ei belonging to

the class C by averaging all individual classifiers’

Algorithm 1: SynSetExpan Framework.

Input: A seed set S0, a vocabulary V , a
knowledge base K, maximum iteration
number max iter, maximum size of
expanded set Z, and model
hyper-parameters {K,T,N,H}.

Output: A complete set of entity synsets SVC
.

1 Learn a general ESD modelM0 using distant
supervision in K;

2 E ← Union of all synsets in S0;
3 for iter from 1 to max iter do
4 Lse ← ESEModel(E,V,K, T);
5 Generate pseudo training data Dpl from Lse;
6 Construct a class-specific ESD modelMc by

fine-tuningM0 on Dpl;
7 ApplyMc on entities in V and adjust Lse;

8 Add top ⌈ Z
max iter

⌉ entities in the adjusted rank

list into E;

9 Construct a synonym graph G based on final set E;
10 SVC

← Louvain(G);
11 Return SVC

.

outputs (i.e., P(ei ∈ C) = 1

T

∑T
t=1

gt(ei). Finally,

we rank all entities in the vocabulary based on their

predicted probabilities.

3.3 Two Models’ Mutual Enhancements

Set Expansion Enhanced Synonym Discovery.

In each iteration, we generate a set of pseudo train-

ing data Dpl from the ESE model output Lse, to

fine-tune the general synonym discovery model

M0. Specifically, we add an entity pair 〈ex, ey〉
into Dpl with label 1, if they are among the top

100 entities in Lse and M0(ex, ey) ≥ 0.9. For

each positive pair 〈ex, ey〉, we generate N negative

pairs by randomly selecting ⌈N/2⌉ entities from

Lse whose set expansion output probabilities are

less than 0.5 and pairing them with both ex and

ey. The intuition is that those randomly selected

entities likely come from different semantic classes

with entity ex and ey, and thus based on our hy-

pothesis, they are unlikely to be synonyms. After

obtaining Dpl, we fine-tune model M0 by fitting

H additional trees on Dpl and incorporate them

into the existing bag of trees in M0. We discuss

the detailed choices of N and H in the experiment.

Synonym Enhanced Set Expansion. Given a

fine-tuned class-specific synonym discovery model

Mc, the current set E, we calculate a new score

for each entity ei ∈ V as follows:

sy-score(ei) = max{Mc(ei, ej)|ej ∈ E}. (1)

The above score measures the probability that ei
is the synonym of one entity in E. Based on Hy-

pothesis 1, we know an entity with a large sy-score

8296

is likely belonging to the target class. Therefore,

we use a multiplicative measure to combine this

sy-score with the set expansion model’s original

output P(ei ∈ C) as follows:

final-score(ei) =
√

P(ei ∈ C)× sy-score(ei). (2)

An entity will have a large sy-score as long as it is

the synonym of one single entity in E. Such a prop-

erty is particularly important for capturing long-tail

infrequent entities. For example, suppose we ex-

pand US_States class from a seed set {“Illinois”,

“IL”, “Texas”, “TX”}. The original set expansion

model, biased toward popular entities, assigns a low

score 0.57 to “Lone Star State” and a large score

0.78 to “Chicago”. However, the synonym discov-

ery model predicts, with over 99% probability, that

“Lone Star State” is the synonym of “Texas” and

thus has a sy-score 0.99. Meanwhile, “Chicago”

has no synonym in the seed set and thus has a low

sy-score 0.01. As a result, the final score of “Lone

Star State” is larger than that of “Chicago”. More-

over, we emphasize that Eq. 2 uses synonym scores

to enhance, not replace, set expansion scores. A

correct entity e⋆ that has no synonym in current

set E will indeed be ranked after other correct enti-

ties that have synonyms in E. However, this is not

problematic because (1) all compared entities are

correct, and (2) we will not remove e⋆ from final

results because it still outscores other erroneous

entities that have the same low sy-score as e⋆ but

much lower set expansion scores.

3.4 Synonym Set Construction

After the iterative process ends, we have a syn-

onym discovery model Mc that predicts whether

two entities are synonymous and an entity list E
that includes entities from the same semantic class.

To further derive entity synsets, we first construct

a weighted synonym graph G where each node ni

represents one entity ei ∈ E and each edge (ni, nj)
with weight wij indicates Mc(ei, ej) = wij . Then,

we apply the Louvain algorithm (Blondel et al.,

2008) (a popular non-overlapping community de-

tection method) to find all clusters in G and treat

them as entity synsets. Note here we narrow the

original full vocabulary V to the set expansion

model’s final output E based on our hypothesis. We

summarize our whole framework in Algorithm 1

and discuss its computational complexity in sup-

plementary materials.

Corpus Size # Entities # Classes # Queries

1.9B Tokens 1.5M 60 1200

Table 1: Our SE2 dataset statistics

4 The SE2 Dataset

To verify our hypothesis and evaluate the

SynSetExpan framework, we need a dataset that

contains a corpus, a vocabulary with labeled

synsets, a set of complete semantic classes, and

a list of seed queries. However, to the best of our

knowledge, there is no such a public benchmark

dataset4. Therefore, we build the first Synonym

Enhanced Set Expansion (SE2) benchmark dataset

in this study5.

4.1 Dataset Construction

We construct the SE2 dataset in four steps.

1. Corpus and Vocabulary Selection. We use the

Wikipedia 20171201 dump as our evaluation cor-

pus as it contains a diverse set of semantic classes

and enough context information for methods to dis-

cover those sets. We extract all noun phrases with

frequency above 10 as our selected vocabulary.

2. Semantic Class Selection. We identify 60 ma-

jor semantic classes based on the DBpedia-Entity

v2 (Hasibi et al., 2017) and WikiTable (Bhagavatula

et al., 2015) entities found in our corpus. These 60

classes cover 6 different entity types (e.g., Person,

Location, Organization). As such generated classes

may miss some correct entities, we enlarge each

class via crowdsourcing in the following step.

3. Query Generation and Class Enrichment.

We first generate 20 queries for each semantic class.

Then, we aggregate the top 100 results from all

baseline methods (cf. Sect. 5) and obtain 17,400

〈class, entity〉 pairs. Next, we employ crowdwork-

ers on Amazon Mechanical Turk to check all those

pairs. Workers are asked to view one semantic class

and six candidate entities, and to select all entities

that belong to the given class. On average, workers

spend 40 seconds on each task and are paid $0.1.

All 〈class, entity〉 pairs are labeled by three workers

independently and the inter-annotator agreement is

0.8204, measured by Fleiss’s Kappa (k). Finally,

we enrich each semantic class Cj by adding the en-

tity ei whose corresponding pair 〈Cj , ei〉 is labeled

“True” by at least two workers.

4More discussions on existing set expansion datasets are
available in supplementary materials Section C.

5More details and analysis can be found in the Section D
and E of supplementary materials.

8297

Class Type ESE ESD (Lexical) ESE (Semantic)

Location 0.3789 0.2132 0.6599

Person 0.2322 0.2874 0.5526

Product 0.0848 0.3922 0.4811

Facility 0.0744 0.2345 0.4466

Organization 0.1555 0.2566 0.4935

Misc 0.4282 0.2743 0.5715

Table 2: Difficulty of each semantic class for entity set

expansion (ESE) and entity synonym discovery (ESD).

4. Synonym Set Curation. To construct synsets

in each class, we first run all baseline methods to

generate a candidate pool of possible synonymous

term pairs. Then, we treat those pairs with both

terms mapped to the same entity in WikiData as

positive pairs and ask two human annotators to la-

bel the remaining 7,625 pairs. The inter-annotator

agreement is 0.8431, measured by Fleiss’s Kappa.

Then, we construct a synonym graph where each

node is a term and each edge connects two syn-

onymous terms. Finally, we extract all connected

components in this graph and treat them as synsets.

4.2 Dataset Analysis

We analyze some properties of the SE2 dataset

from the following three aspects.

1. Semantic class size. The 60 semantic classes

in our SE2 dataset consist on average 145 entities

(with a minimum of 16 and a maximum of 864)

for a total of 8697 entities. After we group these

entities into synonym sets, these 60 classes consist

of on average 118 synsets (with a minimum of 14

and a maximum of 800) for a total of 7090 synsets.

The average synset size is 1.258 and the maximum

size of one synset is 11.

2. Set expansion difficulty of each class. We

define the set expansion difficulty of each semantic

class as follows:

Set-Expansion-Difficulty(C) =
1

|C|

∑

e∈C

|C − Topk(e)|

|C|
,

(3)

where Topk(e) represents the set of k most similar

entities to entity e in the vocabulary. We set k
to be 10,000 in this study. Intuitively, this metric

calculates the average portion of entities in class C
that cannot be easily found by another entity in the

same class. As shown in Table 2, the most difficult

classes are those Location classes6 and the easiest

ones are Facility classes.

3. Synonym discovery difficulty of each class.

6We exclude MISC type because by its definition classes
of this type will be very random.

We continue to measure the difficulty of finding

synonym pairs in each class. Specifically, we cal-

culate two metrics: (1) Lexical difficulty defined

as the average Jaro-Winkler distance between the

surface names of two synonyms, and (2) Seman-

tic difficulty defined as the average cosine distance

between two synonymous entities’ embeddings. Ta-

ble 2 lists the results. We find Product classes have

the largest lexical difficulty and Location classes

have the largest semantic difficulty.

5 Experiments

5.1 Entity Set Expansion

Datasets. We evaluate SynSetExpan on three pub-

lic datasets. The first two are benchmark datasets

widely used in previous studies (Shen et al., 2017;

Yan et al., 2019; Zhang et al., 2020): (1) Wiki,

which contains 8 semantic classes, 40 seed queries,

and a subset of English Wikipedia articles, and (2)

APR, which includes 3 semantic classes, 15 seed

queries, and all news articles published by Associ-

ated Press and Reuters in 2015. Note that these two

datasets do not contain synonym information and

are used primarily to evaluate our set expansion

model performance. We decide not to augment

these two datasets with additional synonym infor-

mation (as we did in our SE2 dataset) in order to

keep the integrity of two existing benchmarks. The

third one is our proposed SE2 dataset which has 60

semantic classes, 1200 seed queries, and a corpus

of 1.9 billion tokens. Clearly, our SE2 is an order

of magnitude larger than previous benchmarks and

covers a wider range of semantic classes.

Compared Methods. We compare the follow-

ing corpus-based set expansion methods: (1)

EgoSet (Rong et al., 2016): A method initially

proposed for multifaceted set expansion using skip-

grams and word2vec embeddings. Here, we treat

all extracted entities forming in one set as our

queries have little ambiguity. (2) SetExpan (Shen

et al., 2017): A bootstrap method that first com-

putes entity similarities based on selected qual-

ity contexts and then expands the entity set using

rank ensemble. (3) SetExpander (Mamou et al.,

2018b): A one-time entity ranking method based

on multi-context term similarity defined on mul-

tiple embeddings. (4) MCTS (Yan et al., 2019):

A bootstrap method combining the Monte Carlo

Tree Search algorithm with a deep similarity net-

work to estimate delayed feedback for pattern eval-

uation and entity scoring. (5) CaSE (Yu et al.,

8298

Methods
SE2 Wiki APR

MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50

Egoset (Rong et al., 2016) 0.583 0.533 0.433 0.904 0.877 0.745 0.758 0.710 0.570

SetExpan (Shen et al., 2017) 0.473 0.418 0.341 0.944 0.921 0.720 0.789 0.763 0.639

SetExpander (Mamou et al., 2018b) 0.520 0.475 0.397 0.499 0.439 0.321 0.287 0.208 0.120

MCTS (Yan et al., 2019) — — — 0.980 0.930 0.790 0.960 0.900 0.810

CaSE (Yu et al., 2019c) 0.534 0.497 0.420 0.897 0.806 0.588 0.619 0.494 0.330

SetCoExpan (Huang et al., 2020) — — — 0.976 0.964 0.905 0.933 0.915 0.830

CGExpan (Zhang et al., 2020) 0.601 0.543 0.438 0.995 0.978 0.902 0.992 0.990 0.955

SynSetExpan-NoSYN 0.612 0.567 0.484 0.991 0.978 0.904 0.985 0.990 0.960

SynSetExpan 0.628∗ 0.584∗ 0.502∗ — — — — — —

Table 3: Set expansion results on three datasets. MCTS and SetCoExpan do not scale to the SE2 dataset. SynSetExpan-Full
is inapplicable for Wiki and APR datasets because they contain no synonym information. The superscript ∗ indicates the
improvement is statistically significant compared to SynSetExpan-NoSYN.

2019b): Another one-time entity ranking method

using both term embeddings and lexico-syntactic

features. (6) SetCoExpan (Huang et al., 2020): A

set expansion framework which generates auxiliary

sets that are closely related to the target set and

leverages them to guide the expansion process. (7)

CGExpan (Zhang et al., 2020): Current state-of-

the-art method that generates the target set name by

querying a pre-trained language model and utilizes

generated names to expand the set. (8) SynSetEx-

pan: Our proposed framework which jointly con-

ducts two tasks and enables synonym information

to help set expansion. (9) SynSetExpan-NoSYN:

A variant of our proposed SynSetExpan framework

without the synonym discovery model. All imple-

mentation details and hyperparameter choices are

discussed in supplementary materials Section F.

Evaluation Metrics. We follow previous studies

and evaluate our results using Mean Average Pre-

cision at different top K positions: MAP@K =
1

|Q|

∑

q∈Q APK(Lq, Sq), where Q is the set of

all seed queries and for each query q, we use

APK(Lq, Sq) to denote the traditional average pre-

cision at position K given a ranked list of entities

Lq and a ground-truth set Sq. To compare the per-

formance of multiple models, we conduct statistical

significance test using the two-tailed paired t-test

with 99% confidence level.

Experimental Results. We analyze the set expan-

sion performance from the following aspects.

1. Overall Performance. Table 3 presents the

overall set expansion results. We can see that

SynSetExpan-NoSYN achieves comparable perfor-

mances with the current state-of-the-art methods

on Wiki and APR datasets7, and outperforms previ-

ous methods on SE2 dataset, which demonstrates

7We feel both CGExpan and our method have reached
the performance limit on Wiki and APR as both datasets are
relatively small and contain only a few coarse-grained classes.

Class Type MAP@10 MAP@20 MAP@50

Person 86.7% 80.0% 93.3%
Organization 83.3% 83.3% 100%

Location 69.2% 65.4% 80.8%
Facility 85.7% 71.4% 100%
Product 100% 66.7% 100%

Misc 66.7% 66.7% 100%

Overall 78.3% 71.7% 90.0%

Table 4: Ratio of semantic classes on which SynSetExpan
outperforms SynSetExpan-NoSYN.

SynSetExpan vs. Other MAP@10 MAP@20 MAP@50

vs. CGExpan 78.9% 85.4% 93.8%
vs. SynSetExpan-NoSYN 72.7% 83.0% 91.4%

Table 5: Ratio of seed queries from the SE2 dataset on which
the first method outperforms the second one.

the effectiveness of our set expansion model alone.

Besides, by comparing SynSetExpan-NoSYN with

SynSetExpan on SE2 dataset, we show that adding

synonym information indeed helps set expansion.

2. Fine-grained Performance Analysis. To pro-

vide a detailed analysis on how SynSetExpan im-

proves over SynSetExpan-NoSYN, we group se-

mantic classes based on their types and calculate

the ratio of classes on which SynSetExpan out-

performs SynSetExpan-NoSYN. Table 4 shows

the results and we can see that on most classes

SynSetExpan is better than SynSetExpan-NoSYN,

especially for the MAP@50 metric. In Table 5,

we further analyze the ratio of seed set queries

(out of total 1200 queries) on which one method

achieves better or the same performance as the

other method. We can see that SynSetExpan can

win on the majority of queries, which further shows

that SynSetExpan can effectively leverage syn-

onym information to enhance set expansion.

3. Case Studies. Figure 3 shows some expanded

semantic classes by SynSetExpan. We can see

that the set expansion task benefits a lot from the

synonym information. Take the semantic class

8299

…………

Qingdao Guangzhou15

Yunnan14 Nanjing

13
Guangdong

Province
Shandong

11

3

1

2

…

12

5

Rank

4

 Zhejiang ProvinceHangzhou

Fujian ProvinceYunnan

……

ZhejiangZhejiang

Shenzhen Guangdong Province

Xizang ProvinceFujian

Hainan Hainan

FujianGuangzhou

SynSetExpan
SynSetExpan-

NoSYN

Class: Chinese 1st Level Administrative divisions

Query: {{‘Shanghai’}, {‘Guangdong’}, {‘Tibet’}}

…………

Story Musgrave William Anders15

Charlie Duke14 Alexei_Leonov

13 William Anders Edgar Mitchell

11

3

1

2

…

12

5

Rank

4

Ken MattinglyCharlie Duke

Pete ConradEdgar Mitchell

……

Eugene CernanPete Conrad

Harrison Schmitt Buzz Aldrin

Frank BormanBuzz Aldrin

Jim Lovell Jim Lovell

Neil A. ArmstrongFrank Borman

SynSetExpan
SynSetExpan-

NoSYN

Class: Astronauts who walked on the Moon

Query: {{’Neil Armstrong’}, {‘Gene Cernan’}}

…………

Android OS Google Wallet15

iPad Pro14 iCloud

13 Google Wallet Apple App Store

11

3

1

2

…

12

5

Rank

4

iPod TouchiPad Pro

iPhonesiPod Touch

……

iWatchiPad

Android Wear iPad

Apple TVApple iPhone

Apple TV iPhone

Apple iPhoneAndroid Pay

SynSetExpan
SynSetExpan-

NoSYN

Class: Apple Product

Query: {{’Apple Pay’}, {‘Apple Watch’}}

…………

Second World War Bosnian War15

Vietnam War14 First World War

13 Iraq War Iraq War

11

3

1

2

…

12

5

Rank

4

WWIIKorean War

Operation Desert

Storm
Vietname War

……

World WarGulf War

World War WWI

Gulf WarWWI

WWII First World War

World War IIWorld War II

SynSetExpan
SynSetExpan-

NoSYN

Class: War involving USA

Query: {{’World War I”, “WW1”}, {Cold War’}}

…………

NBA coach Boston Celtics15

New Orleans Pelicans14 New Orleans Pelicans

13 Washington Bullets Houston Rockets

11

3

1

2

…

12

5

Rank

4

Washington BulletsPhoenix Suns

Milwaukee BucksBoston Celtics

……

Golden State WarriorsLA Dodgers

Chicago Bulls L.A. Lakers

New Jersey NetsGolden State Warriors

New Jersey Nets St. Louis Hawks

New York KnicksNew York Knicks

SynSetExpanSynSetExpan-NoSYN

Class: NBA Teams

Query: {{’Cleveland Cavaliers’}, {‘Atlanta Hawks’}, {‘Lakers’,

‘Los Angeles Lakers’}}

Figure 3: Case studies on entity set expansion. Erroneous entities are colored in red. Entities discovered only by

SynSetExpan in top-20 results are colored in green.

Method
SE2 PubMed

AP AUC F1 AP AUC F1

SVM 0.1870 0.8547 0.3300 0.2250 0.8206 0.4121

XGB-S (Chen and Guestrin, 2016) 0.7654 0.9696 0.6389 0.5012 0.8625 0.4968

XGB-E (Chen and Guestrin, 2016) 0.4762 0.8750 0.4810 0.4906 0.9190 0.5388

DPE (Qu et al., 2017) 0.7972 0.9792 0.6392 0.6338 0.8979 0.6038

SynSetMine (Shen et al., 2019) 0.7562 0.9782 0.6347 0.6757 0.9453 0.6287

SynSetExpan-NoFT 0.8197 0.9844 0.7159 0.6615 0.9445 0.6204

SynSetExpan 0.8736 0.9953 0.7592 0.7152 0.9695 0.6388

Table 6: Synonym discovery results on both SE2

dataset and PubMed dataset.

NBA_Teams for example, we find “L.A. Lakers”

(i.e., the synonym of “Los Angeles Lakers”) as well

as “St. Louis Hawks” (i.e., the former name of “At-

lanta Hawks”) and further use them to improve the

set expansion result. Moreover, by introducing syn-

onyms, we can lower the rank of those erroneous

entities (e.g., “LA Dodgers” and “NBA coach”).

5.2 Synonym Discovery

Datasets. We evaluate SynSetExpan for synonym

discovery task on two datasets: (1) SE2, which con-

tains 60,186 synonym pairs (3,067 positive pairs

and 57,119 negative pairs), and (2) PubMed, a

public benchmark used in (Qu et al., 2017; Shen

et al., 2019), which contains 203,648 synonym

pairs (10,486 positive pairs and 193,162 negative

pairs). More details can be found in supplementary

materials Section G.1.

Compared Methods. We compare following syn-

onym discovery methods: (1) SVM: A classifica-

tion method trained on given term pair features.

We use the same feature set described in Sect. 3.1.

(2) XGBoost (Chen and Guestrin, 2016): Another

classification method trained on given term pair fea-

tures. Here, we test its two variants: XGB-S which

only leverages lexical features based on entity sur-

face names, and XGB-E which only utilizes entity

embedding features. (3) DPE (Qu et al., 2017): A

distantly supervised method integrating embedding

features and textual patterns for synonym discovery.

(4) SynSetMine (Shen et al., 2019): Another dis-

……

{Inner Mongolia,
Nei Mongol}

{Fujian, Fujian

Province}

{Tibet, Xizang

Province}

Class: Chinese
1st Level

Administrative
divisions

……

{Pete Conrad,
Charles Conrad}

{Gene Cernan,

Eugene Cerne}

{Neil Armstrong,

Neil A. Armstrong}

Class: Astronauts
who walked
on the Moon

…

{iPad Pro}

{Apple Watch,

iWatch}

{Apple iPhone,

iPhone, iPhones,
Apple’s iPhone}

Class: Apple
Product

……

{Exeter Airport,

EXT}

{Gatwick Airport,
London-Gatwick,

LGW, EGKK}

{London Heathrow,
Heathrow Airport}

Class: Airport in
British Isles

……

{New Jersey Nets,
Brooklyn Nets}

{St. Louis Hawks,
Atlanta Hawks}

{Lakers, L.A.

Lakers, Los
Angeles Lakers}

Class: NBA
Teams

……

{Gulf War,

Operation

Desert Storm}

{World War II,
WWII, Second

World War}

{WW1, WWI,
First World War}

Class: War
involving USA

Figure 4: Case studies on synonym discovery. Entities

discovered only by SynSetExpan are colored in green.

tantly supervised framework that learns to represent

the entire entity synonym set. (5) SynSetExpan:

Our proposed framework that fine-tunes synonym

discovery model using set expansion results. (6)

SynSetExpan-NoFT: A variant of SynSetExpan

without using the model fine-tuning. More imple-

mentation details and hyper-parameter choices are

discussed in supplementary materials Section G.

Evaluation Metrics. As all compared methods

output the probability of two input terms being syn-

onyms, we first use two threshold-free metrics for

evaluation — Average Precision (AP) and Area Un-

der the ROC Curve (AUC). Second, we transform

the output probability to a binary decision using

threshold 0.5 and evaluate the model performance

using standard F1 score.

Experimental Results. Table 6 shows the over-

all synonym discovery results. First, we can see

that the SynSetExpan-NoFT model can outper-

form both XGB-S and XGB-E methods signifi-

cantly, which shows the importance of using both

types of features for predicting synonyms. Sec-

ond, we find that SynSetExpan can further improve

SynSetExpan-NoFT via model fine-tuning, which

demonstrates that set expansion can help synonym

discovery. Finally, we notice that our SynSetExpan

framework, with the fine-tuning mechanism en-

abled, can achieve the best performance across all

evaluation metrics. In Figure 4, we show some

synsets discovered by SynSetExpan. We can see

that SynSetExpan is able to detect different types

8300

of entity synsets across various semantic classes.

Furthermore, we highlight those entities discovered

only after model fine-tuning, and we can see clearly

that with fine-tuning, our SynSetExpan framework

can detect more accurate synsets.

6 Related Work

Entity Set Expansion. Entity set expansion can

benefit many downstream applications such as

question answering (Wang and Cohen, 2008), lit-

erature search (Shen et al., 2018b), and online ed-

ucation (Yu et al., 2019a). Traditional entity set

expansion systems such as GoogleSet (Tong and

Dean, 2008) and SEAL (Wang and Cohen, 2007)

require seed-oriented online data extraction, which

can be time-consuming and costly. Thus, more

recent studies (Shen et al., 2017; Mamou et al.,

2018b; Yu et al., 2019c; Huang et al., 2020; Zhang

et al., 2020) are proposed to expand the seed set

by offline processing a given corpus. These corpus-

based methods include two general approaches: (1)

one-time entity ranking (Pantel et al., 2009; He and

Xin, 2011; Mamou et al., 2018b; Kushilevitz et al.,

2020) which calculates all candidate entities’ distri-

butional similarities with seed entities and makes

a one-time ranking without back and forth refine-

ment, and (2) iterative bootstrapping (Rong et al.,

2016; Shen et al., 2017; Huang et al., 2020; Zhang

et al., 2020) which starts from seed entities to ex-

tract quality textual patterns; applies the extracted

patterns to obtain more quality entities, and iterates

this process until sufficient entities are discovered.

In this work, in addition to just adding entities into

the set, we go beyond one step and aim to organize

those expanded entities into synonym sets. Further-

more, we show those detected synonym sets can in

turn help to improve set expansion results.

Synonym Discovery. Early efforts on synonym

discovery focus on finding entity synonyms from

structured or semi-structured data such as query

logs (Ren and Cheng, 2015), web tables (He et al.,

2016), and synonymy dictionaries (Ustalov et al.,

2017b,a). In comparison, this work aims to de-

velop a method to extract synonym sets directly

from raw text corpus. Given a corpus and a term

list, one can leverage surface string (Wang et al.,

2019), co-occurrence statistics (Baroni and Bisi,

2004), textual pattern (Yahya et al., 2014), distri-

butional similarity (Wang et al., 2015), or their

combinations (Qu et al., 2017; Fei et al., 2019) to

extract synonyms. These methods mostly find syn-

onymous term pairs or a rank list of query entity’s

synonym, instead of entity synonym sets. Some

studies propose to further cut-off the rank list into a

set output (Ren and Cheng, 2015) or to build a syn-

onym graph and then apply graph clustering tech-

niques to derive synonym sets (Oliveira and Gomes,

2014; Ustalov et al., 2017b). However, they all op-

erate directly on the entire input vocabulary which

can be too extensive and noisy. Compared to them,

our approach can leverage the semantic class infor-

mation detected from set expansion to enhance the

synonym set discovery process.

7 Conclusions

This paper shows entity set expansion and syn-

onym discovery are two tightly coupled tasks and

can mutually enhance each other. We present

SynSetExpan, a novel framework jointly conduct-

ing two tasks, and SE2 dataset, the first large-scale

synonym-enhanced set expansion dataset. Exten-

sive experiments on SE2 and several other bench-

mark datasets demonstrate the effectiveness of

SynSetExpan on both tasks. In the future, we plan

to study how we can apply SynSetExpan at the en-

tity mention level for conducting contextualized

synonym discovery and set expansion.

Acknowledgements

Research was sponsored in part by US DARPA

SocialSim Program No. W911NF-17-C0099, NSF

IIS 16-18481, IIS 17-04532, and IIS 17-41317, and

DTRA HDTRA11810026. Any opinions, findings

or recommendations expressed herein are those

of the authors and should not be interpreted as

necessarily representing the views, either expressed

or implied, of DARPA or the U.S. Government.

We thank anonymous reviewers for valuable and

insightful feedback.

References

Marco Baroni and Sabrina Bisi. 2004. Using cooccur-
rence statistics and the web to discover synonyms in
a technical language. In LREC.

Chandra Bhagavatula, Thanapon Noraset, and Doug
Downey. 2015. Tabel: Entity linking in web tables.
In ISWC.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. TACL.

8301

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In KDD.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Hongliang Fei, Shulong Tan, and Ping Li. 2019. Hi-
erarchical multi-task word embedding learning for
synonym prediction. In KDD.

Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisz-
tian Balog, Svein Erik Bratsberg, Alexander Kotov,
and James P. Callan. 2017. Dbpedia-entity v2: A test
collection for entity search. In SIGIR.

Yeye He, Kaushik Chakrabarti, Tao Cheng, and Tomasz
Tylenda. 2016. Automatic discovery of attribute syn-
onyms using query logs and table corpora. In WWW.

Yeye He and Dong Xin. 2011. Seisa: set expansion by
iterative similarity aggregation. In WWW.

Jiaxin Huang, Yiqing Xie, Yu Meng, Jiaming Shen,
Yunyi Zhang, and Jiawei Han. 2020. Guiding corpus-
based set expansion by auxiliary sets generation and
co-expansion.

Guy Kushilevitz, Shaul Markovitch, and Yoav Goldberg.
2020. A two-stage masked lm method for term set
expansion. In ACL.

Jonathan Mamou, Oren Pereg, Moshe Wasserblat, Ido
Dagan, Yoav Goldberg, Alon Eirew, Yael Green,
Shira Guskin, Peter Izsak, and Daniel Korat. 2018a.
Term set expansion based on multi-context term em-
beddings: an end-to-end workflow. In COLING.

Jonathan Mamou, Oren Pereg, Moshe Wasserblat, Alon
Eirew, Yael Green, Shira Guskin, Peter Izsak, and
Daniel Korat. 2018b. Term set expansion based nlp
architect by intel ai lab. In EMNLP.

Oren Melamud, David McClosky, Siddharth Patward-
han, and Mohit Bansal. 2016. The role of context
types and dimensionality in learning word embed-
dings. In HLT-NAACL.

Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang,
Honglei Zhuang, Lance Kaplan, and Jiawei Han.
2019. Spherical text embedding. In NeurlPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS.

Hugo Gonalo Oliveira and Paulo Gomes. 2014. Eco and
onto.pt: a flexible approach for creating a portuguese
wordnet automatically. Language Resources and
Evaluation, 48:373–393.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu, and Vishnu Vyas. 2009. Web-scale
distributional similarity and entity set expansion. In
EMNLP.

Meng Qu, Xiang Ren, and Jiawei Han. 2017. Automatic
synonym discovery with knowledge bases. In KDD.

Xiang Ren and Tao Cheng. 2015. Synonym discovery
for structured entities on heterogeneous graphs. In
WWW.

Xin Rong, Zhe Chen, Qiaozhu Mei, and Eytan Adar.
2016. Egoset: Exploiting word ego-networks and
user-generated ontology for multifaceted set expan-
sion. In WSDM.

Jiaming Shen, Ruiilang Lv, Xiang Ren, Michelle Vanni,
Brian Sadler, and Jiawei Han. 2019. Mining entity
synonyms with efficient neural set generation. In
AAAI.

Jiaming Shen, Zeqiu Wu, Dongming Lei, Jingbo Shang,
Xiang Ren, and Jiawei Han. 2017. Setexpan: Corpus-
based set expansion via context feature selection and
rank ensemble. In ECML/PKDD.

Jiaming Shen, Zeqiu Wu, Dongming Lei, Chao Zhang,
Xiang Ren, Michelle T. Vanni, Brian M. Sadler, and
Jiawei Han. 2018a. Hiexpan: Task-guided taxonomy
construction by hierarchical tree expansion. In KDD.

Jiaming Shen, Jinfeng Xiao, Xinwei He, Jingbo Shang,
Saurabh Sinha, and Jiawei Han. 2018b. Entity set
search of scientific literature: An unsupervised rank-
ing approach. In SIGIR.

Simon Tong and Jeff Dean. 2008. System and methods
for automatically creating lists. US Patent 7,350,187.

Dmitry Ustalov, Mikhail Chernoskutov, Christian Bie-
mann, and Alexander Panchenko. 2017a. Fighting
with the sparsity of synonymy dictionaries for auto-
matic synset induction. In AIST.

Dmitry Ustalov, Alexander Panchenko, and Christian
Biemann. 2017b. Watset: Automatic induction of
synsets from a graph of synonyms. In ACL.

Huazheng Wang, Bin Gao, Jiang Bian, Fei Tian, and
Tie-Yan Liu. 2015. Solving verbal comprehension
questions in iq test by knowledge-powered word em-
bedding. CoRR, abs/1505.07909.

Richard C. Wang and William W. Cohen. 2007.
Language-independent set expansion of named enti-
ties using the web. In ICDM.

Richard C. Wang and William W. Cohen. 2008. Iterative
set expansion of named entities using the web. In
ICDM.

Zhen Wang, Xiang An Yue, Soheil Moosavinasab, Yun-
gui Huang, Simon Lin, and Huan Sun. 2019. Surfcon:
Synonym discovery on privacy-aware clinical data.
In KDD.

Chenyan Xiong, Russell Power, and James P. Callan.
2017. Explicit semantic ranking for academic search
via knowledge graph embedding. In WWW.

8302

Mohamed Yahya, Steven Euijong Whang, Rahul Gupta,
and Alon Y. Halevy. 2014. Renoun: Fact extraction
for nominal attributes. In EMNLP.

Lingyong Yan, Xianpei Han, Le Sun, and Ben He. 2019.
Learning to bootstrap for entity set expansion. In
EMNLP.

Jifan Yu, Chenyu Wang, Gan Luo, Lei Hou, Juan-Zi Li,
Zhiyuan Liu, and Jie Tang. 2019a. Course concept
expansion in moocs with external knowledge and
interactive game. In ACL.

Puxuan Yu, Zhiqi Huang, Razieh Rahimi, and James
Allan. 2019b. Efficient corpus-based set expansion
with lexico-syntactic features and distributed repre-
sentations. In SIGIR.

Puxuan Yu, Zhiqi Huang, Razieh Rahimi, and James D
Allan. 2019c. Corpus-based set expansion with lex-
ical features and distributed representations. In SI-
GIR.

Shuo Zhang and Krisztian Balog. 2018. On-the-fly table
generation. In SIGIR.

Yunyi Zhang, Jiaming Shen, Jingbo Shang, and Jiawei
Han. 2020. Empower entity set expansion via lan-
guage model probing. In ACL.

Wanzheng Zhu, Hongyu Gong, Jiaming Shen, Chao
Zhang, Jingbo Shang, S. Bhat, and J. Han. 2020.
Fuse: Multi-faceted set expansion by coherent clus-
tering of skip-grams. In ECMLPKDD.

8303

A Entity Pair Features

Feature Description Example

IsPrefix (Florida, FL) → 1

IsInitial (North Carolina, NC) → 1

Edit distance (North Carolina, Texas) → 13

Jaro-Winkler similarity (Arizona, Texas) → 0.4476

Characters in common (Lone Star State, Texas) → 2

Tokens in common (North Carolina, South Carolina) → 1

Difference in #tokens (Land of Lincoln, Illinois) → |3-1| = 2

Initial edit distance (North Carolina, State of North Carolina) → 2

Longest token edit distance (North Dakota, North Carolina) → 5

Cosine similarity of embedding (Texas, Lone Star State) → 0.9

Transformed cosine similarities (Texas, Lone Star State) → [1

0.9
,
√
0.9, (0.9)2]

Multiplication of two entities’ (Illinois, Land of Lincoln) →
PCA-reduced embedding [0.006, 0.072, -0.008, 0.074, · · · , -0.004]

Table 7: All entity pair features used in our synonym

discovery model.

B SynSetExpan Framework Complexity

From the Algorithm 1 in the main text, we can

see our SynSetExpan framework costs O(T × (1+
K) × |S| + |V|) for each iteration, where T is

the ensemble times (usually 50), K is the negative

sampling size (usually 10-20), S is the currently

expanded set (usually of size < 100), and |V| is

the vocabulary size. Although such complexity

looks expensive, we can significantly reduce the

practical running time in two ways. First, we can

learn T separate classifiers in set expansion model

in parallel. Second, we can aggregate all words in

the vocabulary into one batch and apply synonym

discovery model for inference in one run. We report

the practical running time for each component in

the below experiments.

C Existing ESE Datasets

An ideal set expansion benchmark dataset should

contain four parts: a corpus, a vocabulary, a set

of complete semantic classes, and a collection of

seed queries for each semantic class. One of the

earliest corpus-based set expansion work (Pantel

et al., 2009) uses “List of ” pages in Wikipedia to

construct 50 semantic classes and applies random

sampling to construct 30 queries for each class. Al-

though those classes and queries are still available

today, we have no access to its underlying corpus

and vocabulary and thus cannot easily reproduce

their results. Similarly, SEISA (He and Xin, 2011)

and EgoSet (Rong et al., 2016) also release their

constructed semantic classes and seed queries but

hold the corpus and vocabulary. On the other side,

SetExpander (Mamou et al., 2018b) and CaSE (Yu

et al., 2019b) clearly describe their corpus and vo-

cabulary but do not release their classes/queries. To

the best of our knowledge, SetExpan (Shen et al.,

2017) is the only public dataset consisting of all

four essential components. However, it only con-

tains 65 queries from 13 classes and has no syn-

onym information. Below Table 8 compares our

proposed SE2 with all existing datasets and we can

see that our new dataset contains all four key parts

for a set expansion benchmark dataset, as well as

additional synonym information.

Dataset Corpus Vocab Classes Queries Synonyms

Pantel et al. (Pantel et al., 2009) × × X X ×
SEISA (He and Xin, 2011) × × X X ×
EgoSet (Rong et al., 2016) × × X X ×

SetExpander (Mamou et al., 2018b) X X × × ×
CaSE (Yu et al., 2019b) X X × × ×

SetExpan (Shen et al., 2017) X X X X ×
SE2 X X X X X

Table 8: Comparison of ESE datasets.

D SE2 Dataset Construction Details

We construct our dataset in four stages: (1) Corpus

and vocabulary selection, (2) Semantic class selec-

tion, (3) Query generation and class enrichment,

and (4) Synonym set curation.

Corpus and vocabulary selection. An ideal cor-

pus for set expansion task should contain a diverse

set of semantic classes and enough context informa-

tion for methods to discover those sets. Based on

these two criteria, we select Wikipedia 20171201

dump as our evaluation corpus. This corpus is also

used in previous studies (Mamou et al., 2018b,a)

and contains 1.9 billion tokens of raw size 14GB.

Next, we extract all noun phrases with frequency

above 10 and filter out those noun phrases that start

with either a stopword (e.g., “a/an” and “the”) or

a non-word character (e.g., “(”, and “-”). The re-

maining 1.47 million noun phrases consist of our

vocabulary.

Semantic class selection. To select a diverse set of

semantic classes, we first use simple string match-

ing to align our corpus and vocabulary with two

benchmark datasets designed for tasks closely re-

lated to Set Expansion: (1) DBpedia-Entity v2 (Ha-

sibi et al., 2017) for Entity Search (particularly

entity list search), and (2) WikiTable (Bhagavatula

et al., 2015; Zhang and Balog, 2018) for Entity

Linking in Wikipedia Table. Then, we retain all

semantic classes with at least 10 entities and ob-

tain totally 60 classes covering 6 different types

(e.g., Person, Location, Organization, etc). Table 9

shows some examples. Such generated classes have

high precision but low recall in the sense that some

correct entities are not included. In the following

8304

stage, we enlarge each semantic class and increase

its coverage using crowdsourcing.

Query generation and class enrichment. For

each semantic class, we generate 5 queries for each

of four query sizes: 2, 3, 4, 5, which results in 20

queries per class and 1200 queries in total. Further-

more, we want those queries to cover both popular

and long-tail entities. To achieve this goal, we first

sort all entities based on their frequencies within

each class. Then, we generate each subgroup of

5 queries (of the same size M ∈ {2, 3, 4, 5}) as

follows: we select 1 query consisting of the M
most frequent entities, 2 queries of entities in fre-

quency quantile top-10%, and 2 queries of entities

in frequency quantile [top-10%, top-30%].

After generating queries, we run all baseline

methods to retrieval their top 100 results and ag-

gregate all results to a set of 17,400 〈class, entity〉
pairs. Next, we employ crowdworkers to check all

those pairs on Amazon Mechanical Turk. Crowd-

workers are required to have a 95% HIT acceptance

rate, a minimum of 1000 HITs, and be located in

the United States or Canada. Workers are asked to

view one semantic class and six candidate entities,

and to select all entities that belong to the given

class. On average, workers spend 40 seconds on

each task and are paid $0.1, which is equivalent

to a $9 hourly payment. All 〈class, entity〉 pairs

are labeled by three workers independently and

the inter-annotator agreement is 0.8204, measured

by Fleiss’s Kappa (k). Finally, we enrich each

semantic class Cj by adding the entity ei whose

corresponding pair 〈Cj , ei〉 is labeled “True” by at

least two workers.

Synonym set curation. To construct synonym sets

in each semantic class, we first run all baseline

methods to generate a candidate pool of possible

synonymous pairs. Then, we enlarge this pool to

include all term pairs that form an inflection8. After

that, we automatically treat those terms that can be

mapped to the same entity in WikiData9 as positive

pairs and manually label the remaining 7,625 pairs.

The inter-annotator agreement is 0.8431. Note here

we do not use Amazon MTurk because labeling

synonym pairs are much simpler than labeling en-

tity class membership and also has less ambiguity.

Here, we avoid using YAGO KB in order to prevent

8We check word inflection using: https://github.
com/jazzband/inflect.

9https://www.wikidata.org/wiki/

Wikidata:Main_Page

possible data leakage problem. Next, we construct

a synonym graph where each node is a term and

each edge connects two synonymous terms. Fi-

nally, we extract all connected components in this

synonym graph and treat them as synonym sets.

E SE2 Dataset Analysis

We analyze some properties of SE2 dataset from

the following aspects: (1) semantic class size, (2)

set expansion difficulty of each class, and (3) syn-

onym discovery difficulty of each class.

Semantic class size. The 60 semantic classes in

our SE2 dataset consist on average 145 entities

(with a minimum of 16 and a maximum of 864) for

a total of 8697 entities. After we grouping these

entities into synonym sets, these 60 classes consist

of on average 118 synsets (with a minimum of 14

and a maximum of 800) for totally 7090 synsets.

The average synset size is 1.258 and the maximum

size of one synset is 11.

Set expansion difficulty of each class. We define

the set expansion difficulty of each semantic class

as follows:

Set-Expansion-Difficulty(C) =
1

|C|

∑

e∈C

|C − Topk(e)|

|C|
,

(4)

where Topk(e) represents the set of k most similar

entities to entity e in the vocabulary. We set k
to be 10,000 in this study. Intuitively, this metric

calculates the average portion of entities in class

C that cannot be easily found by another entity

in the same class. As shown in Table 2, the most

difficult classes are those LOC classes10 and the

easiest ones are FAC classes.

Synonym discovery difficulty of each class. We

continue to measure the difficulty of finding syn-

onym pairs in each class. Specifically, we calculate

two metrics: (1) Lexical difficulty defined as the av-

erage Jaro-Winkler distance11 between the surface

names of two synonyms, and (2) Semantic difficulty

defined as the average cosine distance between two

synonymous entities’ embeddings. Table 2 lists

the results. We find PRODUCT classes have the

largest lexical difficulty and LOC classes have the

largest semantic difficulty.

10We exclude MISC type because by its definition classes
of this type will be very random.

11We use Jaro-Winkler distance instead of other edit dis-
tances because it is symmetric, normalized to range from 0 to
1, and is widely used in previous synonym literature.

https://github.com/jazzband/inflect
https://github.com/jazzband/inflect
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page

8305

Class ID Class Name Class Type (Class Description) Entities with Synsets

WikiTable-21 U.S. states LOC (Locations)
[{“Texas”, “TX”, “Lone Star State”}, {“Arizona”, “AZ”},

{“California”, “CA”, “Golden State”},]

SemSearch-LS-3
Astronauts who landed

PERSON (People)
[{“Eugene Andrew Cernan”, “Gene Cernan”}, {“Pete Conrad”},

on the Moon {“Neil A. Armstrong”, “Neil Armstrong”},]

Enriched-1 Apple Products PRODUCT (Objects, vehicles, ...) [{“MacBook Pro”, “MBP”}, { “iTouch”, “iPod Touch”},]

Enriched-3 Volcanoes in USA LOC (Non-GPE locations)
[{“Yellowstone”}, {“Mount Rainier”, “Tahoma”, “Tacoma”},

{“Mount Hood”, “Mt. Hood”, “Wy’east”},]

WikiTable-27 Airports in British Isles FAC (Facilities)
[{“Ringway Airport”, “Manchester Airport” },

{“RAF Exeter”, “Exeter International Airport”},]

Enriched-4 NBA Teams ORG (Organizations)
[{“Washington Bullets”, “Washington Wizards” },

{“Los Angeles Lakers”, “L.A. Lakers”, “Lakers”},]

INEX-XER-147
Chemical elements that

MISC (Miscellaneous classes)
[{“Gadolinium”}, {“Seaborgium”, “Element 106”},

are named after people {“Einsteinium”, “Es99”},]

Table 9: Example Semantic Classes in SE2 Dataset.

Class Type ESE ESD (Lexical) ESE (Semantic)

Location 0.3789 0.2132 0.6599

Person 0.2322 0.2874 0.5526

Product 0.0848 0.3922 0.4811

Facility 0.0744 0.2345 0.4466

Organization 0.1555 0.2566 0.4935

Misc 0.4282 0.2743 0.5715

Table 10: Difficulty of each semantic class for entity set

expansion (ESE) and entity synonym discovery (ESD).

F Entity Set Expansion Experiments

F.1 Implementation Details and

Hyper-parameter Choices

For Wiki and APR datasets, we directly report each

baseline method’s performance obtained in the CG-

Expan paper (Zhang et al., 2020). For our pro-

posed SE2 dataset, we tune each method’s hyper-

parameters on 6 semantic classes (one for each

class type) and use tuned parameters for all the

other classes. The implementation details and spe-

cific hyper-parameter choices are discussed below:

1. EgoSet: There is no open-source code for

EgoSet and thus we implement it on our own.

We use each entity’s 250 most relevant skip-

grams to calculate entity-entity similarity.

2. SetExpan12: We run SetExpan for 10 iterations

and add 10 entities into the set in each itera-

tion. We set ensemble time to be 90 and use the

default values for all other hyper-parameters.

3. SetExpander13: We directly download the pre-

trained vectors (as they are trained on the same

corpus as ours) and filter out those words that

do not exist in our vocabulary.

12https://github.com/mickeystroller/

SetExpan
13http://nlp_architect.nervanasys.com/

term_set_expansion.html

4. MCTS14: In each iteration, we perform 1000

MCTS simulations and select 10 patterns to add

10 entities.

5. CaSE15: We use its CaSE-BERT version where

a BERT-base-uncased model is used to calculate

entity representations.

6. CGExpan16: We use BERT-base-uncased as

its underlying Language Model for generating

class names. We run CGExpan for 5 iterations

and each iteration finds 5 candidate classes and

adds 10 most confident entities into the currently

expanded set.

7. SynSetExpan: We set the ensemble times T =
50, the negative sampling ratio (in set expansion

model) K = 10, the maximum iteration num-

ber max iter= 6, the number of fine-tuning trees

H = 10, and the negative sampling ratio (in syn-

onym discovery model) N = 10. For other (less

important) hyper-parameters, we directly dis-

cuss their values in the paper and SynSetExpan

is robust to those hyper-parameters.

F.2 Hyper-parameter Sensitivity Analysis

Within our SynSetExpan framework, there are two

important hyper-parameters in the set expansion

model: the ensemble times T and negative sam-

pling ratio K. Figure 5 shows the hyper-parameter

sensitivity analysis. We see that the model perfor-

mance first increases when the ensemble times T
increases from 1 to 10 and then becomes stable

when T further increases. A similar trend is also

witnessed on the negative sampling ratio K. Over-

all, we can say that SynSetMine is insensitive to

14https://github.com/lingyongyan/

mcts-bootstrapping
15https://github.com/PxYu/

entity-expansion
16https://github.com/yzhan238/CGExpan

https://github.com/mickeystroller/SetExpan
https://github.com/mickeystroller/SetExpan
http://nlp_architect.nervanasys.com/term_set_expansion.html
http://nlp_architect.nervanasys.com/term_set_expansion.html
https://github.com/lingyongyan/mcts-bootstrapping
https://github.com/lingyongyan/mcts-bootstrapping
https://github.com/PxYu/entity-expansion
https://github.com/PxYu/entity-expansion
https://github.com/yzhan238/CGExpan

8306

Ensemble Times T

0 20 40 60 80 100

M
A

P
 s

c
o
re

s

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7 MAP@10

MAP@20

MAP@50

MAP@100

(a) Ensemble Times T

Negative Sampling Ratio K
0 20 40 60 80 100

M
A

P
 s

c
o
re

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7
MAP@10
MAP@20
MAP@50
MAP@100

(b) Negative Ratio K

Figure 5: Sensitivity analysis of hyper-parameters T
and K in SynSetExpan for the set expansion task.

these two hyper-parameters as long as their values

are larger than 10.

F.3 Efficiency Analysis

We test the efficiency of our SynSetExpan frame-

work (with T = 50 and K = 10) on a single server

with 20 CPU threads. For each query, the first itera-

tion of SynSetExpan on average takes 7.5 seconds,

the first three iterations need 27 seconds, and the

first six iterations consume 56 seconds. Later it-

erations take longer time because there are more

entities in the already expanded set of that itera-

tion. In comparison, one iteration of EgoSet takes

86 seconds, six iterations of SetExpan need 188

seconds, and CGExpan takes 174 seconds for five

iterations on a 1080Ti GPU. This result shows the

efficiency of SynSetExpan.

G Synonym Discovery Experiments

G.1 PubMed Dataset Details

Besides using our SE2 dataset, we also evaluate

SynSetExpan for synonym discovery task on the

public PubMed dataset which consists of a corpus

of 1.5 million paper abstracts in biomedical domain,

a vocabulary of 357,991 terms, and a collection

of 203,648 synonym pairs (10,486 positive pairs

and 193,162 negative pairs). All terms involved in

synonym pairs are linked to one entity in UMLS

knowledge base17 and we group these terms into

10 semantic classes based on their linked entities’

types.

G.2 Implementation Details and

Hyper-parameter Choices

All compared synonym discovery methods are

tested using the same distant supervision data (c.f.

Section 3 in the main text) and hyper-parameter

values are obtained using 5-fold cross validation.

17https://uts.nlm.nih.gov/home.html

We discuss the implementation details and hyper-

parameter choices of each compared synonym dis-

covery methods below:

1. SVM18: We use the RBF kernel and set regular-

ization parameter λ to be 0.3.

2. XGBoost19: We set the maximum tree depth

to be 5, γ = 0.1, η = 0.1, subsample ratio to

be 0.5, and use the default values for all other

hyper-parameters.

3. SynSetMine20: We use two hidden layers (of

dimension 250, 500) for its internal set encoder.

We learn the model using the “mix sampling”

strategy.

4. DPE21: We set the embedding dimension as 300,

λ = 0.3, and use the default values for all other

hyper-parameters.

5. SynSetExpan: We use the same hyper-

parameter values as XGBoost to obtain the class-

agonistic synonym discovery model. During the

fine-tuning stage, we fit 10 additional trees in

each iteration. For other (less important) hyper-

parameters, we directly discuss their values in

the paper and SynSetExpan is robust to those

hyper-parameters.

G.3 Hyper-parameter Sensitivity Analysis

We study how sensitive SynSetExpan is to the

choices of two fine-tuning hyper-parameters in its

synonym discovery module: (1) the number of addi-

tional fitted trees H , and (2) the negative sampling

ratio N in constructing pseudo-labeled dataset for

fine-tuning. Results are shown in Figure 6. First,

we find that our model is insensitive to the nega-

tive sampling ratio N in terms of all three metrics.

Second, we notice that the model performance first

increases as H increases until it reaches about 15

and then starts to decrease when we further in-

crease H . Although SynSetExpan is somewhat

sensitive to the hyper-parameter H , we find that

a wide range of H choices are better than H = 0
which essentially disables the model fine-tuning.

18https://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVC.html#

sklearn.svm.SVC
19https://github.com/dmlc/xgboost
20https://github.com/mickeystroller/

SynSetMine-pytorch
21https://github.com/mnqu/DPE

https://uts.nlm.nih.gov/home.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://github.com/dmlc/xgboost
https://github.com/mickeystroller/SynSetMine-pytorch
https://github.com/mickeystroller/SynSetMine-pytorch
https://github.com/mnqu/DPE

8307

Number of fine-tune trees H

0 10 20 30 40 50

E
v
a
lu

a
ti
o
n
 m

e
tr

ic
s

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
AP

AUC

F1

(a) SE2 Dataset-H

Negative Sampling Ratio N
0 10 20 30 40 50

E
v
a
lu

a
ti
o
n
 m

e
tr

ic
s

0.7

0.75

0.8

0.85

0.9

0.95

1

AP
AUC
F1

(b) SE2 Dataset-N

Number of fine-tune trees H

0 10 20 30 40 50

E
v
a
lu

a
ti
o
n
 m

e
tr

ic
s

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 AP

AUC

F1

(c) PubMed Dataset-H

Negative Sampling Ratio N
0 10 20 30 40 50

E
v
a
lu

a
ti
o
n
 m

e
tr

ic
s

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
AP
AUC
F1

(d) PubMed Dataset-N

Figure 6: Sensitivity analysis of hyper-parameters H
and N in SynSetExpan framework for the synonym

discovery task.

G.4 Efficiency Analysis

By linking SE2 Dataset with YAGO KB, we can

obtain 260 thousand synonym pairs based on

which training a class-agnostic synonym discovery

model takes 15 minutes. Then, each iteration of

SynSetExpan generates on average 5000 pseudo-

labeled synonym pairs and fitting 10 additional

trees needs about 0.75 seconds. After training, our

synonym discovery model can predict 4000 term

pairs per second.

