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Syntactic Segmentation and Labeling of 
Digitized Pages from Technical Journals 

Mukkai Krishnamoorthy, George Nagy, Senior Member, IEEE, Sharad 

Seth, Senior Member, IEEE, and Mahesh Viswanathan, Member, IEEE 

Abstract- Alternating horizontal and vertical projection pro- 
files are extracted from nested sub-blocks of scanned page im- 
ages of technical documents. The thresholded profile strings 
are parsed using the compiler utilities Lex and Yacc. The sig- 
nificant document components are demarcated and identified 
by the recursive application of block grammars. Backtracking 
for error recovery and branch and bound for maximum-area 
labeling are implemented with Unix Shell programs. Results of 
the segmentation and labeling process are stored in a labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X-Y tree. It is shown that families of technical documents 
that share the same layout conventions can be readily analyzed. 
More than 20 types of document entities can be identified in 
sample pages from the IBM Journal of Research and Development 
and IEEE TRANSACTIONS ON PAITERN ANALYSIS AND MACHINE 
INTELLIGENCE. Potential applications include preprocessors for 
optical character recognition, document archival, and digital 
reprographics. 

I. INTRODUCTION 

HIS PAPER demonstrates a specific solution to a general T problem in pattern recognition: simultaneous segmenta- 

tion and classification (a.k.a. scene analysis). Most of the 

published research has concentrated on isolating individual 

objects and then identifying them according to shape or 

texture features and possibly back-tracking to an alternative 

segmentation if the identification is not successful. Spatial 

relations between objects, when they are considered at all, are 

introduced at later stages. It is now becoming clear that this 

approach to the analysis of complex scenes is prone to failure. 

Segmentation and classification must be performed in tandem 

or, at least, very closely interwoven. Although we have not 

discovered the universal solution, for relatively well-structured 

document images, we have developed robust data structures 

and algorithms that may also provide a point of departure for 

more complex vision tasks. 

Our specific objective is to extract the spatial structure of 

a digitized printed page from a technical article, as shown in 
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Fig. 1. Among intended applications are those where key entry 

or optical character recognition (OCR) fail to capture impor- 

tant format-related aspects of the document and those where 

key entry is uneconomical and OCR is beyond the state of the 

art zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[26]. We are also studying other applications where layout 

analysis can be used for preprocessing documents for OCR. 

With the advent of high-resolution, low-cost scanners and 

high-capacity storage devices, digitized document analysis has 

attracted many researchers from both universities and indus- 

trial laboratories. Applications include the selection of encod- 

ing methods for document archival, retrieval, high-quality fac- 

simile, and digital reprographics as well as preprocessors for 

OCR. Diverse methods have been applied to postal addresses, 

business correspondence, newspapers, technical journals, re- 

pair manuals, maps, and engineering drawings. The methods 

are documented in the proceedings of specialized conferences 

on document image analysis [4], [SI, [1S], [23], and pattern 

recognition [2] as well as in recent special issues of technical 

journals [lo], [24], [2S]. Published bibliographies on the topic 

include [7] and [11]. 

Aside from the methodology, the goal of all of these 

projects differs from ours inasmuch as they do not attempt 

to differentiate a large number (several dozen) of categories 

of textual information solely on the basis of publication- 

specific layout information. We are not aware of any other 

formal system that allows detailed hierarchical description of 

the structure of families of technical documents in a form 

that is suitable for recursive segmentation and labeling of the 

significant components of a document image. 

From a theoretical point of view, we present two comple- 

mentary ideas. The first is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-Y tree data structure, which 

transforms a 2-D image analysis problem into a hierarchy of 

quasi-independent 1-D (string) problems. (Successive string- 

analysis problems are quasi-independent in the sense that the 

results of analyzing a predecessor string can be neatly and 

concisely encapsulated as a priori knowledge for the analysis 

of its successors.) The X-Y tree is a nested decomposition of 

blocks into blocks. At each level, the decomposition is induced 

by partitions only in one direction (horizontal or vertical), but 

a block may have an arbitrary number of children. The leaves 

of X-Y tree decompositions represent only an asymptotically 

vanishing fraction of all possible decompositions of rectangles 

into rectangles [ 121, but such decompositions represent almost 

all technical page structures of interest (if only because other 

types of layouts are difficult to obtain with both current and 

classical page-composition tools). 
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Fig. 1. S-Y tree for a title page from the IBA4 Journal of Research and Development. The tree represents a logical segmentation. 

The second idea is the combination of a conventional 

syntactic formulation (and existing Unix compiler tools) with a 

branch-and-bound search algorithm. All legal decompositions 

of a block in a specified direction are prescribed by means of 

a context-free grammar applied to a string extracted from the 

block. Parsing the string effectively segments it into labeled 

substrings that specify both the partitioning of the block and 

the label of each partition. If, at any stage, a string is found in- 

valid (i.e., it cannot be parsed with the assigned grammar), then 

the algorithm backtracks to an alternative grammar (if avail- 

able) for a labeled predecessor-block higher up in the tree. The 

parsing stages will be described in detail in the next section. 

Since both the X-Y tree and the document processing ap- 

plications have been presented previously [9], [ 161, [HI-[22], 
[28]-[30], the emphasis here is on the formulation of the 

multistage syntactic analysis, which will be described in detail. 

As an alternative or adjunct to the method described here for 

document analysis, the use of knowledge bases and expert 

systems has also been suggested by us and others [6], [14], 
~ 7 1 ,  [321. 

11. METHOD 

The essence of our approach is to transform a 2-D segmen- 

tation and labeling problem into a tree-structured set of 1-D 
segmentation and labeling problems. A block is segmented into 

sub-blocks by parsing its profile string, say, in the horizontal 

direction. Each sub-block then engenders a vertical profile 

string that can be similarly parsed for vertical segmentation. 

The segmentation process may be carried out recursively to 

any desired depth with alternating horizontal and vertical 

subdivisions. The parameters (i.e., the grammar) of the parse 

depend on the label of the block to which it was applied. The 

process terminates at leaf nodes, which are characterized by 

having labels for which no grammars are available. 

The algorithm attempts to correct segmentation and labeling 

errors by backtracking to alternative grammars whenever a 

profile string cannot be parsed. Among partially labeled X-Y 
trees, it chooses the one whose labeled leaf blocks cover the 

largest area. 

The preprocessing required by this method is simple and 

will be described first. Then, we will discuss the manner in 

which a 1-D string is generated from a block and explain the 

parsing process for recursively segmenting a single block and 

labeling the resulting sub-blocks. We modify this simple tree 

expansion by incorporating 1) backtracking for recovery from 

errors and 2) a branch-and-bound strategy to find the largest 

area of the root block that can be labeled. 

A. Preprocessing 

Each page is converted to digital form by scanning it 

horizontally at a sampling rate sufficient to preserve all sig- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 
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TABLE I 
NOISE FILTERING RESULTS 

Noise 
Erased. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

nificant white spaces. Since the entire zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX - Y  tree approach is 

extremely sensitive to skew, in our experimental work, each 

page is aligned on the scanner bed with extreme care. In a 

production system, this would be impossible, but excellent 

skew-correction methods are available. 

There are two alternatives for accommodating specks of 

noise due to fiber flaws in the stock, imperfect reproduction, 

or digitization. Such noise does not bother human readers but 

complicates automated analysis. The first method is to make 

the grammars sufficiently robust to ignore such noise. This 

is quite feasible but tedious. The approach we have chosen 

instead is to remove all specks smaller than a given size in 

a preliminary pass (for which we use either a connected- 

components algorithm or transition segmentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 161). 
We studied the effect of such a preprocessing filter on one 

IBM nontitle page obtained by photocopying and scanning. 

Table I presents the result obtained on noise filtering the 

page. The page originally had 171 dots by manual count 

(dots are dots on i’s and j’s, periods, and decimal points). 

Filtering with a 1 x 1 window left all of the dots intact but 

removed 30 noise specks. Increasing the filter size to 2 x 2 

eliminated 34 dots (mostly decimal points and dots on i’s and 

j’s with periods left intact). The 4 x 4 window eliminated all 

of the dots. Clearly, noise specks taper off to just six using 

the 5 x 5 window. Experiments on the CD-ROM database, 

photocopied and scanned pages, and synthesized (typeset using 

the troff formatter) and scanned pages yielded similar results. 

Of course, the number of noise specks is higher on photocopied 

pages. The size threshold therefore can be quite generous. 

Loss of a few periods or dots on the i’s and j’s does not 

affect the layout analysis. Our conclusion is that speckle noise 

cannot be filtered out by purely local means without degrading 

the legibility of the page. Therefore, after the analysis is 

completed, all of the specks are restored before any document 

component is presented for human inspection or OCR. 

Block Segmentation and Labeling 

Each block is segmented into sub-blocks by extracting a 

profile string and parsing it with a context-free grammar. The 

parse divides the string into a sequence of labeled substrings, 

each of which corresponds to one dimension of a sub-block. 

Each block is processed either horizontally or vertically. For 

the sake of concreteness, in the following description, we will 

assume that the block is segmented by parsing the thresholded 

horizontal profile of the block. 

The horizontal profile of a block of m rows and n columns 

of pixels consists of the m row sums of the array [ l ] .  The 

thresholded horizontal profile is the binary string of length m 
obtained by replacing each element of the horizontal profile by 

1 if its value exceeds the threshold and by 0 otherwise. With a 

threshold of 1/2, the thresholded profile string will have zeroes 

only for rows of pixels that are completely white. The program 

that generates the binary profile needs to scan each row only 

until the first black pixel is encountered. 

Although, in principle, a single context-free grammar can 

be constructed for parsing a profile string, in practice, it is 

easier to divide the process into four separate stages. The 

nonterminal symbols of each stage are the terminals of the 

following stage. The parameters of the analysis (which are 

called a block grammar) depend on the label assigned to the 

block by the parse at the level above it. The grammar for the 

root block is called a page grammar. 
All of the block grammars, regardless of the level or label 

of the block being analyzed, contain a number of similar 

productions. These constructs can be readily parametrized. The 

seemingly eccentric notation used below for the parametriza- 

tion was chosen to avoid bias towards the label of the block, 

the direction of segmentation, and the level of segmentation. 

Stage 1 4 t o m  Generation: The first stage, which is writ- 

ten in C, simply counts the lengths of the all-one and all-zero 

substrings (which are called atoms) in the profile and assigns 

them to equivalence classes according to their length. For 

instance, black strings of ranges of length [30-40], [41-45], 
and [46-701 may be assigned to three classes p ,  q, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT .  In 

subsequent stages, atoms of type p or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq may be considered 

candidates for lines of text, whereas atoms of type q or T may 

be candidates for title lines. The ambiguity of the nonterminal 

symbol q is removed in subsequent stages. 

Stage 2 4 o l e c u l e  Generation: The second stage (a lex 
program [13]) assigns the atoms into groups of contigu- 

ous atoms called molecules, according to a set of regular 

expressions based on permissible sequences of atoms. For 

example, an alternating sequence of black atoms corresponding 

to candidate title lines and white atoms corresponding to 

candidate intertitle line spaces will be tentatively labeled as 

title. The number of repetitions in the sequence (which is 

called valence) is taken into account; for instance, title may 

be restricted to no more than three title lines. 
Stage 3 4 a b e l i n g :  The third stage (a yacc parser with 

single-token lookahead for context-free grammars [SI) assigns 

permanent (entity) labels to each molecule according to the 

permissible sequences (precedence) and number (cardinality) 
of molecules in each class of entity. For instance, a page may 

contain multiple instances of some entity (such as a column 

or a paragraph) but only a single author block, and the author 

block must be above the title block. The precedence constraint 

allows the third stage to disambiguate entities even if their 

corresponding molecules appear similar because they are set 

in the same font and have the same number of text lines. If a 

parse according to the given grammar cannot be constructed, 

yacc reports failure. 

Stage 4 4 e r g e r :  After the third stage, the string has been 

segmented and labeled. It is possible, however, that some 

entities of the same type (such as paragraphs of text) were 

unnecessarily separated in the second stage because of wide 

separation that might indicate a change in entity type. The 

fourth stage just merges contiguous entities of the same type. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
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Stage 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ 1{40-501 

IEEE TRANSACTIONS ON P A T E R N  ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 7, JULY 1993 

Stage 2 
A -, r I (rP){'-"h 

Gary Stroebel 

I *  
es in a Packet Netwoi :I 11  - 

Stage 3 
Title-page -+ W A  AUTHOR W A T  TITLE 

W A  - + w  
AUTHOR + A 
W A T  + w  
TITLE + T  
W-TB + w  
ABSTRACT -+ B 
W B X  + w  
TEXT - . x  

W-TB ABSTRACT W B X  TEXT 

Fig. 2. Simplified example of a block grammar. In Stage 1, runs of ones or zeros are condensed into atoms. In Stage 2, atoms are grouped into molecules. 
In Stage 3, molecules are interpreted as document entities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The net result of the profile parsing process described above 

is to convert a string of 1's and 0's (the terminal symbols) into 

a legal sequence of labeled substrings (nonterminals) or report 

failure. Each of the substrings defines a labeled block whose 

profile in the orthogonal direction must be extracted and parsed 

at the next (lower) level of analysis. 

is the top margin, and W A T  is the white space between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AUTHOR and TITLE. White spaces are not explicitly stored in 

the X-Y tree and are therefore not shown in the last column of 

the top part of Fig. 2. The first production of this stage ensures 

the correct top-to-bottom order of entities for this publication. 

In this example, Stage 4 is not illustrated. 

A simplified example of a block grammar for a two-column 

title page is shown in Fig. 2. The top part shows a fragment of 

the page on the left and its interpretation by successive stages 

of the block grammar (shown at the bottom) on the right. The 

runs of one's and zero's in the horizontal profile are shown by 

vertical bars; the thicker bars correspond to runs of 1's (i.e., 

black atoms). These are grouped into four black (p, q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  s) and 

four white (P, Q, R, S) atoms in Stage 1, according to their 

length. For example, black runs of between 55 and 70 pixels 

are called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. In Stage 2, atoms are grouped into molecules, e.g., 

the molecule T is formed by combining from one to three s 
black atoms separated by (an appropriate number of) the P 
white atoms (see grammar in Fig. 2). In Stage 3, molecules 

are labeled as layout entities, such as TITLE. In Fig. 2, W-A 

Nested Block Grammars 

The four-stage analysis described in the previous section is 

based essentially on a single context-free block grammar. In 

this section, we will extend the analysis to be able to segment 

and label a document page consisting of a set of nested blocks. 

We start with the definition of a block grammar g L  as a 

context-free grammar described by the standard four-tuple: 

g L  = ( ~ N I  VT, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) 
where 

VN set of nonterminal symbols 

VT set of terminal symbols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S start nonterminal 

P set of productions for a context-free grammar. 
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A block grammar interprets a given block as a particular entity 

represented by the label zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. For example, a page may be parsed 

according to a block grammar for a title page or a nontitle 
page (i.e., an intermediate page or a last page) of a technical 

journal article. At the sub-block level, block grammars may be 

written for an abstract, a column of regular text, a reference 
entry, etc. During the parsing of a block, a unique label 

is associated with each sub-block; the correctness of the 

interpretation at the block level hinges on the verification that 

all its sub-blocks are correctly labeled. In a block grammar, the 

sub-block labels are represented by the nonterminal symbols. 

Blocks that are assigned terminal symbols for which no 
grammars are provided cannot be further segmented and are 

assumed to be correctly labeled. Only the nonterminal blocks 

with labels for which grammars are provided need to be 

further verified for correctness of label assignments. Thus, 

the nonterminal symbols of a block grammar provide the link 

between processing a block and its sub-blocks. We associate 

a block grammar with each nonterminal symbol that may be 

equated with the start symbol of that grammar. 

The parsing of nested blocks according to a set of block 

grammars (one for each label assignable to a nonterminal 

block) can be carried out using a standard AND search. The 

search strategy could either be depth first or breadth first. 

Neither traversal order is intrinsically superior in terms of 

performance. For a successful parse, the two algorithms would 

take essentially the same time, but in case of a failure, one 

or the other may give an early indication depending on the 

location of the failing block. 

There are two noteworthy features of this search strategy. 

1)  AND Search Tree: The solution may be described by a 

search tree identical in structure to the hierarchy of blocks. 

A boolean value representing the outcome of parsing its 

corresponding block is associated with each node of the tree. 

Since the parsing of a block can fail due to the failure of any 

of its nested blocks (at any depth), it is easily seen that each 

node value in the search tree is determined by AND-ing the 

node values of its children. 

2) Independent Parsing: A block is segmented and labeled 

completely before any of its sub-blocks. The parsing is ten- 

tative in that it can be invalidated by subsequent parsing of 

a segmented sub-block. However, after a block is parsed, all 

its sub-blocks that are assigned a “nonterminal” label can be 

parsed independently; there is no interaction between their 

parsing processes. 

It is certainly possible to postulate more complex interac- 

tions between processing of blocks than that represented by 

independent parsing. For example, the outcome of parsing 

a sub-block may be used to determine further segmentation 

and labeling of a block. Independent parsing, however, may 

be more easily adapted to parallel processing than competing 

schemes. After a block has been segmented and labeled, it 

spawns a new parsing process for each of its sub-blocks that 

requires further analysis. 

Multiple Interpretations 

In technical documents, the occurrence of the same logical 

entity in different forms is all too common. The text may be set 

in one or in two columns, on different pages (or different parts 

of the same page), paragraphs may be flush with the left margin 

or indented, the first lines of paragraphs may be left justified 

or indented, etc. To accommodate multiple interpretations of 

a block with the same label, a publication-specific entity 

grammar is defined for each label that can be assigned to a 

block in the segmentation of a page. The entity grammar GL 
for label L is defined as a list of block grammars { g L } ,  where 

each list element g L  represents a distinct interpretation. 

The parsing algorithm based on AND search must be mod- 

ified for entity grammars. The basic change is the action 

taken when a failure occurs: Instead of reporting a failure 

to higher levels, the algorithm must try another interpretation 

for the block if it is available. For a block at any level of 

segmentation, the algorithm attempts the applicable grammars 

in the list one by one until one of them succeeds in segmenting 

the block into sub-blocks. At this point, each sub-block is 

processed recursively with the complementary direction of 

segmentation. The strategy is to expand each node into a 

sequence of nodes representing the available alternatives for 

the block corresponding to that node and repeating this at each 

subsequent node until the whole page is processed, that is, the 

search can be described as an AND-OR tree. 

Incomplete Interpretation4 Branch-and-Bound Algorithm 

Thus far, we have been discussing exact algorithms for 

multiple interpretations (i.e., when there is more than one 

grammar for any block). Either all the blocks are segmented 

and labeled, or no blocks are labeled. On the other hand, we 

may want to obtain the best labeling possible with the available 

entity grammars, even if the labeling is not complete. The best 

labeling is defined here as that with the maximum cumulative 

area of the labeled blocks. This may be an acceptable objective 

function in situations where the designer of the syntactic model 

has either an incomplete or incorrect understanding of the 

details of the page layout. 

The algorithm SEGLABEL (see Fig. 3) is a branch-and- 

bound method to achieve this goal. It avoids trying an al- 

ternative grammar unless it can increase the total labeled 

area. This algorithm is similar to the AND-OR search described 

earlier, except that the AND nodes are replaced by SUM, the 

OR nodes are replaced by the MAX operation, and a bound 

check is added to avoid trying alternatives wherever possible. 

The algorithm avoids processing a sub-block if the maximum 

labeled area cannot be increased over the current bound even 

with a complete segmentation and labeling of the sub-block. 

SEGLABEL uses the following four parameters: 

the top-level block to be parsed ( A )  
the direction in which the profile of A is generated ( D )  
the entity grammar GL(A) ,  where L ( A )  is the label sought 

the lowerbound, indicating the currently labeled area of a 

SEGLABEL (A ,  D, GL(A) ,  lowerbound). 
The input parameters are as follows: 

A block to be parsed 

D 

for A 

block (by the most successful interpretation). 

direction in which the profile of A is generated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
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begin 
if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(GL(A) is empty) then {A is a leaf block) return zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(area,); 
Extract profile of A in the direction D; 
while (CL(,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# empty do  

begin 
EO: Parse profile of A according to first( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGL(,)) using Lex and Yacc; 

i f  (parsing not successful) then {do nothing; lowerbound is valid) 
else { Let A, be a sub-block assigned to the nonterminal L(A. ) )  

{Parsing results in segmentation and tentative labeling of block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA )  

begin 
ma2 - area,; [maz is an upper bound on labeled area of A by GL(A))  
for each Ai do 

begin 
subblock_lowerbound - maximum(0, lowerbound - (maz - area,,)); 
boundr, - SEGLABEL( A;,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-D, GL(A%), subblocllowerbound); 
mat - maz - ( area,, - boundr,); {subtract area not labeled) 
if (maz < lowerbound) then exit {Sor Imp); 

El:  

E2: 
end [for loop); 

if (maz > lowerbound) then lowerbound + maz; 
end {else clause); 

GL(A) - rest (GL(A)) ;  
end {while loop); 

return(1owerbound); 
end {SEGLABEL). 

Fig. 3. SEGLABEL algorithm. 

GL(A) entity grammar for the label L ( A )  to be as- 
signed to A 

lowerbound area of A labeled by most successful previous 

interpretation of A. 

The output parameters are as follows: The functional value of 

SEGLABEL is the maximum area of A successfully labeled 

by G L ( A )  or a previous interpretation of A. (See Fig. 3 for the 

main program of the SEGLABEL algorithm.) 

The algorithm is called in the main program as follows: 

area + SEGLABEL(page - block, D, G ~ ( ~ ~ ~ ~ - b l ~ ~ k ) ,  0). 

When SEGLABEL has finished the search for the best 

solution for a block, the value of lowerbound is returned 

as the functional value of SEGLABEL. In the initial call to 

SEGLABEL, lowerbound is zero. 

At statement EO of SEGLABEL, we try to label and segment 

the current block A with the next alternative block grammar 

for label L(A) .  The variable max is an upper bound on the 

labeled area of A under the current interpretation. Initially, its 

value is set to the total area of A, but as SEGLABEL is applied 

to each sub-block of A in statement El ,  the value of max is 

decreased by the area of the sub-block that is not labeled. The 

recursive call in statement E l  leads to a depth-first traversal 

of the sub-blocks of A. The value of subblocklowerbound, 
which is computed in the previous statement, is used in the 

call at E l .  This value can be computed from the parent block’s 

lowerbound value by assuming that G L ( A )  is able to label 

everything outside of the current block Ai, that is, an area 

equal to (muz - ureaA,). Each time max is updated, a check 

is made in statement E2 to see if the updated value of max is 

at or below the area of A labeled by a previous interpretation 

of A. If so, it is not necessary to process the remaining sub- 

blocks of A, and an early exit from the for loop occurs. After 

the for loop, if max is still greater than lowerbound, this can 

be only because the current interpretation of A has been able 

to label a larger area than any of the previous interpretations. 

Hence, the value of lowerbound must be modified accordingly. 

Example 

Consider the following entity grammars: 

H 1 G t e x t - b l o c k  = ( g t e z t - b l o c k . a ,  gtext-b1ock.b) 

It is not hard to  find prob- 
lems for document and-  
ysis to  solve, or systems 
designed to  address the 
problems. 

Look at the stacks of pa- 

Department 
Administration 
Arts 
Engineering 
Sciences 

inevitably by different 
computers and software. 
Some include both for- 
matted text and labels 
a s  well as handwritten 
entries. The documents 
come in different sizes, 

Paper Used for 1991 
1000 tons. 

10 tons. 
500 tons. 
200 tons. 

per documents around the 
workplace. Some may be 
computer generated - 

from small business cards 
to  large engineering draw- 
ings. Many of the busi- 

nesses use imaging sys- 
tems to store pictures of 
the paper and to  make re- 
t r i e d  more efficient. 

Future document analysis 
systems will be  able 

Useful 
10% 
70% 
50% 
30% 

to  recognize types of doc- 
uments and enable ex- 
tractions of documents. 

DOC-PAGE 1 

Fig. 4. Three-column text block with imbedded table and an accidental 
alignment of white spaces. 

v 2 Gcompos i te -b lock  = (gcomposi te-b1ock.a , 

v 2 G t a b l e  = ( g t a b l e )  

H 3 G c o l u m n  = ( g c o l u m n )  

$’composite-6lock.b) 

where V and H denote the direction in which the block profile 

is extracted, and the numbers denote the block level. These 

entity grammars are used to parse a sample document, which is 

a three-column, all-text text block of a technical article shown 

in Fig. 4. The first cut or direction of analysis will be horizontal 

in an attempt to extract the three-column table in its entirety. 

The example grammar shows that there are two alternate 

ways of parsing the text-block horizontally using the grammars 

will call composite blocks. A composite block can be a 

three-column object (gcompos i te -b lock .a) ,  a two-column object 

(gcomposz te-b lock .b) ,  Or a table ( g t a b l e ) .  Each column can 
then be further subdivided by Gcolumn into paragraphs. The 

paragraphs are the monolithic (terminal) blocks for this entity 

grammar. We make two assumptions about the grammars used 

here: a) The grammar gtex t -b lock ,b  expects a larger white space 

between the top composite-block and the following table than 

depicted in Fig. 4; b) the grammar gcolumn does not accept a 

footer as part of a column. 

The execution of this branch-and-bound algorithm is sum- 

marized in Fig. 5. Grammar gtez t -b lock .a  is applied first 

yielding three composite blocks. The first composite-block 

yields three columns at the next level. Each column is, in turn, 

parsed into paragraphs. The total labeled area of this composite 

block is 45%. (From here on, all the area percentages refer to 

the fraction of the text-block area. White entities are ignored in 

this example.) The next composite block is then parsed. This 

block is labeled “table” due to the width of its intercolumn 

white spaces. The total area of this composite block is 30%. 

(Further analysis of the table block is avoided since “table” 

is a terminal symbol.) 

Next, the third composite block is parsed into three columns, 

and then, each column is processed. The column grammar 

fails to parse the third column because of the footer. Hence, 

the labeled area for composite block is 14% and 89% for the 

whole text block. It should be noted that Qcomposite-b1ock.b is 

applied in an attempt to obtain a larger labeled area for the 

gtext-block.a and gtex t -b lock .b .  Each yields child objects We 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0 % )  

Text-Column Text-Column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFl Fl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Unprocessed 

(35%) 

(b) 

Fig. 5.  (a) Labeled document from execution of the SEGLABEL algorithm 
for the document shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 by the gcompos , te -b lock  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ;  (b) result of 

applying Qcompos t t e - b 1 ock b .  

third composite block (which has a maximum labelable area 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25%), but it fails to parse the block because there are three 

columns of text. Fig. 5(a) illustrates the labeling that results 

at this stage. 

At this point, the processing is back at the text-block level 

with the lowerbound value for the block set at 89% due to the 

first interpretation. Grammar g t e z t - b l o c k . b  parses the block into 

two composite blocks, incorrectly merging the first composite 

block and the table. The grammar gcompos i te -b lock .a  fails on 
the first composite block because the word “administration” 

in the table decreases the gutter width between the first two 

columns to below the permissible value for the grammar. 

Next, gcomposz te -b~ock .b  is tried, and it finds two columns due 
to the fortuitous alignment of white (gutter) space between 

the second and third columns of the top text block and 

the table. However, grammar gcolvmn fails to parse the left 

column (40%) due to misalignment of text lines. Now, even 

if the second column (35%) and composite block (25%) were 

correctly parsed, the maximum labeled area would be only 

60%. Since this is less than the current lowerbound of 89%, 

the search tree is “pruned,” and SEGLABEL returns without 

any further analysis. Fig. 5(b) illustrates the labeling attempts 

made at this stage. The value returned to the original call is 

89%, representing the area labeled by grammar Qtezt-b1ock.a. 

Adequacy of Context-Free Grammars for Technical Documents 

Algorithm SEGLABEL searches for a solution based on 

the results of profile parsing. Although our implementation 

is restricted to context-free grammars, from a theoretical 

point of view, the following question regarding a syntactic 

model for profile parsing is of some interest. Where in the 

Chomsky hierarchy can the class of profile strings of technical 

documents be placed? 

For simplicity, we will limit our discussion to profile strings 

generated by text blocks. Further, we assume that the analysis 

is to be carried out entirely in terms of the binary profile 

strings. 

There is a trivial answer to the question that we will 

disregard; regular grammars should suffice in all cases since, 

for a given scanner resolution, the binary strings have a fixed 

finite bound. In general, the bound is sufficiently large in 

practice to rule out effective use of the finiteness of the domain 

(of possible binary strings) in analysis. The answer is also 

unsatisfactory since it relies heavily on the specifics of the 

scanner technology. Although any syntactic analysis based on 
profile strings must deal with scanner resolution, we prefer 

that the technology-dependence of the analysis be limited to 

the lowest level of processing, i.e., formation of atoms as 

described earlier. 

Repetition of entities is a very common feature of document 

layouts: repeated letters, words, lines, paragraphs, columns, 

etc. The resulting effect on the binary profile string is generally 

an alternating sequence of blocks of one’s and zero’s in which 

the lengths of one blocks are approximately equal; similarly, 

the lengths of zero blocks are also approximately equal but, 

usually, different from the lengths of one blocks. Ideally, the 

grammar should be able to recognize strings in which the block 

lengths are identical. The language to be recognized may be 

expressed as {(lnOm)klnJm,n,k > 0}, which is context- 

sensitive. Thus, context-free grammars are not sufficient for 

document analysis. 

This establishes the need for a mechanism that can keep 

arbitrarily large counts and match them to augment syntactic 

analysis. The next question is whether there are other aspects 

of document analysis that are not captured by such augmenta- 

tion. Indeed, can we say that a counting mechanism is all that is 

necessary to augment a finite state machine (regular grammar) 

for document analysis? We have not yet been able to come 

up with a good example of a document feature that cannot be 

handled by the augmented finite state machine mechanism. 

We are not the only researchers to use context-free grammar 

(augmented with counting mechanism to handle limited forms 

of context sensitivity) for syntactic pattern recognition. Tanaka 

[27] points out that almost all researchers use context-free 

grammar in their syntactic pattern recognition studies. The 

reasons that he gives are as follows: First, a context-sensitive 

grammar is hard to treat. Second, parsers and error-correcting 

parsers for a context-sensitive language are very complicated 

and costly. 

111. EXPERIMENTAL RESULTS 

Syntactic Segmentation 

Twenty-one photocopied pages of the IBM Journal of Re- 
search and Development (from 1979-1984 issues; see Fig. 1) 

were scanned on a MicroTek flatbed scanner at 300 dotslin. 
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TXT TXT COL TXT COL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPTL TXT COL 
I L  TXT COL PAR - 

~ I i 1 1  

I ' I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. n R  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- E B A  _. - FTR-COI 

Fig. 6. Automatically constructed and labeled tree for the example shown in Fig. 1. For clarity, only the labels and node identities of nonwhite 
nested blocks are shown. 

(Earlier results using a single grammar at each level on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIBM 
Journal pages synthesized using TROFF were reported in 

[28] . )  Multiple block grammars were written for the 20-odd 

entities (such as, header, author, footer, footnotes, abstract, 
paragraphs, and references) that occur in the Research Con- 

tributions section of the journal. Each page was separately 

processed in the manner described down to the paragraph 

level. As discussed in the last section, Fig. 2 shows the 

results of the first three stages of analysis for only the root 

block of another page (in this case, Stage 4 is vacuous). The 

final segmentation and labeling results for a sample page are 

displayed in Fig. 6. All 21 pages were eventually processed 

completely and correctly after modifications to the grammars 

in the course of the experiment. 

To reduce the time necessary to develop grammars, we sim- 

plified the specification of the relatively restricted grammatical 

constructs needed for block analysis. The simplification con- 

sists of a tabular method of describing page components that 

avoids the need for familiarity with X - Y  trees, programming 

languages, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlex and yacc. The table includes information 

about the following parameters: direction of cut; the ranges 

of atom lengths, valences, and cardinality; the type (black 

or white) of atoms; the logical label of the node itself and 

of its preceding and succeeding nodes; and the number of 

possible succeeding nodes. Programs were written to translate 

the parameter table to C,  lex, and yacc code. We repeated 

the experiments reported above using these parameter tables 
instead of the hand-coded grammars. All 21 pages were 

processed correctly, with the single exception of a table 
being incorrectly identified as a text paragraph. All subsequent 

experiments were conducted using parameter-table grammars. 

A total of 39 block grammars were developed on a training 

set of 20 title and nontitle pages of articles from the IEEE 

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 

The entities recognized were similar to those listed above for 

the IBM Journal, and the number of grammars per entity 

ranged from one to four. These pages were also processed 

correctly most of the time. 

To determine the performance of the method on test data, 

six title and six nontitle pages were chosen at random from 

each of the IBM Journal and IEEE PAMI. The test-document 

characteristics in terms of the total number of blocks and 

the number of leaf-level blocks at various levels of the X -  
Y tree are shown in Table 11. The IBM Journal pages were 

T 



KRISHNAMOORTHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: SYNTACTIC SEGMENTATION A N D  LABELING OF PAGES 

Number Applied (min sec) Labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~~~~~ 

1 69 24:18 69 T A  Fr B K C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 12 4:14 100 None 1 
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TABLE I1 
TEST DOCUMENT CHARACTERISTICS 

TABLE I11 
SLCLABEL PERFORMANCL 

I Test Doc. I # Gram. I Time [ % Area 1 Missed Labelst 1 

+ T ~ Title, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA - Author, Fr - Footer, B - Abstract, K - Keywords, 

C - Copyright, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS - Section-title, Fin Formula, and Fg - Figure. 

all scanned on the MicroTek scanner, but some of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE- 
PAMI pages were obtained from the IEEE Compact Disk 

publication-image database. These pages were deskewed using 

an experimental program obtained from Olivetti, Italy. The 

results on IEEE PAMI are shown in Table 111 (the results 

on the IBM Journal are comparable). The algorithm failed 

completely only on one page from the CD database (Test 

Document 6 in the table), which had a high residual skew. 

When this page was scanned with careful alignment (Test 

Document 6*), it was processed correctly. The errors made 

by the program could easily be avoided by modifying the 

parameter tables, but several cycles of design and testing 

(on successive batches of previously unseen pages) may be 

required to achieve acceptable performance. 

All of the grammars were precompiled; even so, processing 

on a Sun 3/60 takes more than 3 min for each new page 

(Table 111). The bulk of this time (>70%) is taken by recursive 

profile extraction and related disk access. The use of Unix 

shell scripts instead of direct coding also contributed to 

excessive inputloutput time. Optimized compilation of all our 

C programs improved the performance by 50%. 

Considerable additional analysis of these experiments, in- 

cluding detailed examination of the errors and run-time char- 

acteristics, may be obtained from [29]. 

X -  Y- Tree Sta tistics 

There are many different X - Y  trees that can be associated 

with a technical page. The syntactic approach described in 

this paper extracts a logical X - Y  tree whose blocks coincide 

with the entities (title, paragraphs, etc) that are meaningful 

TABLE IV 
COMPARISON OF X-’r TREE STATISTICS 

Transition-cut Level Syntactic 

# Nodes Node Area # Nodes Node Areas 

4018560 
2 10 3980713 3278 1882817 
3 9 2709645 3514 1132516 
4 260 6754 ~ ~ 

to the reader. Usually, the logical X - Y  tree of a page is 

unique. In a transition-cut X - Y  tree, a “cut” (imaginary line 

marking beginning and end of segment) is placed at each 0- 

1 and 1-0 transition in the projection profile with the blocks 

corresponding to each run of 1’s and 0’s forming a node in the 

X - Y  tree. Hence, the segmentation of a page of text results 

in a set of lines, which are further divided into words (by 

vertical segmentation), and then into characters and character 

fragments. Here, the segmentation process stops only after 

all the block nodes around which imaginary boxes can be 

drawn are extracted. Such segmentation may be carried out 

in a preprocessing step to OCR, e.g., to deskew the scanned 

image [3].  
The transition-cut X - Y  tree is defined in the same way 

for any page and carries little information about typesetting 

conventions that are generic or specific to a given publication. 

As such, it provides a good point of reference to the level 

of abstraction achieved by a logical X - Y  tree, as illustrated 

in Table IV for a page from the IBM Journal. Level 0 in 

the table corresponds to the whole page. At level 1, seven 

significant blocks are extracted in the syntactic approach, 

whereas the transition-cut method finds 46 gray nodes. At 

higher tree levels, even larger discrepancies in the number 

of nodes are found according to the two schemes [31].’ A 
bottom-up analysis can be carried out using the leaf-block of 

the transition-cut X - Y  tree. It is clear from the table that as a 

graphic entity, the storage overhead of a logical X - Y  tree is 

minimal compared with the size of the page image. 

Data Compression 

The objective of this experiment was to ascertain the loss of 

compression in storing a page compressed as a whole versus 

compressed block by block. A sample of 65 pages from the 

IBM Journal and PAMI were compressed using the CCITT 

Group 4 scheme. The average compression achieved for entire 

pages was 10.9:l compared with 9:l for the blocks. These 

results show that there is little loss incurred in storing a page 

compressed at the block level. Thus, after page analysis, we 

could store individual objects (labeled by syntactic analysis), 

as might be desirable in certain applications. 

IV. CONCLUSION 

We have demonstrated that on printed pages, image seg- 

mentation and labeling can be successfully combined. The 

’ One of the major advantages of the syntactic approach is that page analysis 
can be terminated at any predetermined level with a complete understanding 
of page layout up to that point. In the transition-cut method, the page must 
be completely processed before any useful information can be derived from 
its S-1. tree. 
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X-Y tree representation allows recursive transformations from 

the 2-D domain to a set of string-parsing problems. Analysis 

of the strings by syntactic techniques decomposes the page 

image into nested blocks labeled according to their functional 

role. 

The method differs from conventional syntactic approaches 

because the grammars themselves form a hierarchy. The labels 

obtained from the analysis at one level determine the grammars 

to be applied at the next level. Furthermore, the string data 

to which the child grammars are applied themselves depend 

on the results of the analysis at the previous level; they can 

be extracted from the page image only after the string at the 

level above has been segmented. Further, low-level grammars 

for paragraphs, lines, and footers could be reused across many 

different publications. 

The provision of multiple grammars for some or all labels 

provides the opportunity for backtracking to correct mistakes. 

The resulting algorithm is similar to those used for searching 

AND-OR trees. If a page can be parsed correctly at all levels, 

then it is accepted; otherwise, it is rejected. In some applica- 

tions, however, it is desirable to obtain the largest fraction of 

the page that can be labeled. This can be done efficiently with 

a branch-and-bound version of the above algorithm. 

In order to incorporate our methods into practical systems, 

two key issues must be resolved: acceleration of the de- 

velopment of block grammars for different publications and 

reduction of the time required to process a page. We believe 

the performance can be improved substantially since very little 

attempt was made in the current implementation to optimize 

timings. However, some automation in the specification of 

grammars is essential if the proposed method is to find 

widespread use. To further reduce the time necessary to 
develop new grammars, we are now attempting to specify page 

layout in the form familiar to page editors and printers and 

develop the programs necessary for translating this form into 

the current tabular form. We are also examining the possibility 

of obtaining additional grammars from page-formatter and 

photo-composer macros for specific styles. This should lead to 

consistent analysis of an entire article (and, perhaps, eventually 

an entire journal) instead of only an isolated page. 

As the number and generality of the grammars available to 

the system grows, a larger fraction of pages from new types 

of publications should be parsed correctly. The underlying 

assumption here is that pages accepted by the system are 

correctly parsed even if the parameters fall near the bounds 

of their permissible range, i.e., that the system tends to fail 

before it yields an incorrect interpretation. The ranges can then 

be reset, provided that they do not change the interpretation. 

This is a simple form of learning. 

With regard to increased throughput, we are comparing dif- 

ferent architectures, including signal-processing application- 

specific chips and array processors for speeding up profile 

extraction. Once that bottleneck is eliminated, we will consider 

streamlining the lex and yacc processors, or even recoding 

their function, to speed up parsing. Another avenue open to us 

is porting the analysis tools to a loosely coupled multiprocessor 

system where each processor would be responsible for the 

analysis of a particular node. 
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