
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

1993

Syntactic Segmentation and Labeling of Digitized Pages from Syntactic Segmentation and Labeling of Digitized Pages from

Technical Journals Technical Journals

Mukkai Krishnamoorthy
Rensselaer Polytechnic Institute

George Nagy
Rensselaer Polytechnic Institute, nagy@ecse.rpi.edu

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Mahesh Viswanathan
IBM Pennant Systems, Boulder, CO

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

 Part of the Computer Sciences Commons

Krishnamoorthy, Mukkai; Nagy, George; Seth, Sharad C.; and Viswanathan, Mahesh, "Syntactic

Segmentation and Labeling of Digitized Pages from Technical Journals" (1993). CSE Journal Articles. 30.

https://digitalcommons.unl.edu/csearticles/30

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csearticles/30?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACIIONS ON PATTERN ANALYSIS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND MACHINE INTELLIGENCE, VOL. 15, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 , JULY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1Y93 737

Syntactic Segmentation and Labeling of
Digitized Pages from Technical Journals

Mukkai Krishnamoorthy, George Nagy, Senior Member, IEEE, Sharad

Seth, Senior Member, IEEE, and Mahesh Viswanathan, Member, IEEE

Abstract- Alternating horizontal and vertical projection pro-
files are extracted from nested sub-blocks of scanned page im-
ages of technical documents. The thresholded profile strings
are parsed using the compiler utilities Lex and Yacc. The sig-
nificant document components are demarcated and identified
by the recursive application of block grammars. Backtracking
for error recovery and branch and bound for maximum-area
labeling are implemented with Unix Shell programs. Results of
the segmentation and labeling process are stored in a labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X-Y tree. It is shown that families of technical documents
that share the same layout conventions can be readily analyzed.
More than 20 types of document entities can be identified in
sample pages from the IBM Journal of Research and Development
and IEEE TRANSACTIONS ON PAITERN ANALYSIS AND MACHINE
INTELLIGENCE. Potential applications include preprocessors for
optical character recognition, document archival, and digital
reprographics.

I. INTRODUCTION

HIS PAPER demonstrates a specific solution to a general T problem in pattern recognition: simultaneous segmenta-

tion and classification (a.k.a. scene analysis). Most of the

published research has concentrated on isolating individual

objects and then identifying them according to shape or

texture features and possibly back-tracking to an alternative

segmentation if the identification is not successful. Spatial

relations between objects, when they are considered at all, are

introduced at later stages. It is now becoming clear that this

approach to the analysis of complex scenes is prone to failure.

Segmentation and classification must be performed in tandem

or, at least, very closely interwoven. Although we have not

discovered the universal solution, for relatively well-structured

document images, we have developed robust data structures

and algorithms that may also provide a point of departure for

more complex vision tasks.

Our specific objective is to extract the spatial structure of

a digitized printed page from a technical article, as shown in

Manuscript received December 2, 1990; revised September 6, 1992. This
work was supported by U.S. West Advanced Technologies Sponsored Re-
search Program, the University of Nebraska-Lincoln Center for Communica-
tion and Information Science (CCIS) and the U S . Department of Education
College Library Technology and Cooperation Grants Program. Recommended
for acceptance by Editor-in-Chief A. K. Jain.

M. Krishnamoorthy is with the Department of Computer Science, Rensse-
laer Polytechnic Institute, Troy, NY 12180.

G. Nagy is with the Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.

S. Seth is with the Computer Science and Engineering Department, Uni-
versity of Nebraska-Lincoln, Lincoln, NE 68588.

M. Viswanathan is with IBM Pennant Systems, Boulder, CO 80301.
IEEE Log Number 9208435.

Fig. 1. Among intended applications are those where key entry

or optical character recognition (OCR) fail to capture impor-

tant format-related aspects of the document and those where

key entry is uneconomical and OCR is beyond the state of the

art zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[26]. We are also studying other applications where layout

analysis can be used for preprocessing documents for OCR.

With the advent of high-resolution, low-cost scanners and

high-capacity storage devices, digitized document analysis has

attracted many researchers from both universities and indus-

trial laboratories. Applications include the selection of encod-

ing methods for document archival, retrieval, high-quality fac-

simile, and digital reprographics as well as preprocessors for

OCR. Diverse methods have been applied to postal addresses,

business correspondence, newspapers, technical journals, re-

pair manuals, maps, and engineering drawings. The methods

are documented in the proceedings of specialized conferences

on document image analysis [4], [SI, [1S], [23], and pattern

recognition [2] as well as in recent special issues of technical

journals [lo], [24], [2S]. Published bibliographies on the topic

include [7] and [11].

Aside from the methodology, the goal of all of these

projects differs from ours inasmuch as they do not attempt

to differentiate a large number (several dozen) of categories

of textual information solely on the basis of publication-

specific layout information. We are not aware of any other

formal system that allows detailed hierarchical description of

the structure of families of technical documents in a form

that is suitable for recursive segmentation and labeling of the

significant components of a document image.

From a theoretical point of view, we present two comple-

mentary ideas. The first is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-Y tree data structure, which

transforms a 2-D image analysis problem into a hierarchy of

quasi-independent 1-D (string) problems. (Successive string-

analysis problems are quasi-independent in the sense that the

results of analyzing a predecessor string can be neatly and

concisely encapsulated as a priori knowledge for the analysis

of its successors.) The X-Y tree is a nested decomposition of

blocks into blocks. At each level, the decomposition is induced

by partitions only in one direction (horizontal or vertical), but

a block may have an arbitrary number of children. The leaves

of X-Y tree decompositions represent only an asymptotically

vanishing fraction of all possible decompositions of rectangles

into rectangles [121, but such decompositions represent almost

all technical page structures of interest (if only because other

types of layouts are difficult to obtain with both current and

classical page-composition tools).

0162-8828/93$03.00 0 1993 IEEE

doi: 0.1109/34.221173

738 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Kiepner

K. bhirl
!A. J. Warnecke

ohn M. Baker

H.-C. W. Huanq
M. Muralumi
i&e.

IEEE TRANSACTIONS ON PA7TERN ANALYSIS AND MACHINE INTELLIGENCE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 15, NO. 7, JULY 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-

__ . _ _ -
kabrication Process for Josephson Integrated Circuits:

__ __ - __.______ - 1 $1 *"LI"L" ,I - I I M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. * WL11 -NU 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe Yrrnr I= _-
Fig. 1. S-Y tree for a title page from the IBA4 Journal of Research and Development. The tree represents a logical segmentation.

The second idea is the combination of a conventional

syntactic formulation (and existing Unix compiler tools) with a

branch-and-bound search algorithm. All legal decompositions

of a block in a specified direction are prescribed by means of

a context-free grammar applied to a string extracted from the

block. Parsing the string effectively segments it into labeled

substrings that specify both the partitioning of the block and

the label of each partition. If, at any stage, a string is found in-

valid (i.e., it cannot be parsed with the assigned grammar), then

the algorithm backtracks to an alternative grammar (if avail-

able) for a labeled predecessor-block higher up in the tree. The

parsing stages will be described in detail in the next section.

Since both the X-Y tree and the document processing ap-

plications have been presented previously [9], [161, [HI-[22],
[28]-[30], the emphasis here is on the formulation of the

multistage syntactic analysis, which will be described in detail.

As an alternative or adjunct to the method described here for

document analysis, the use of knowledge bases and expert

systems has also been suggested by us and others [6], [14],
~ 7 1 , [321.

11. METHOD

The essence of our approach is to transform a 2-D segmen-

tation and labeling problem into a tree-structured set of 1-D
segmentation and labeling problems. A block is segmented into

sub-blocks by parsing its profile string, say, in the horizontal

direction. Each sub-block then engenders a vertical profile

string that can be similarly parsed for vertical segmentation.

The segmentation process may be carried out recursively to

any desired depth with alternating horizontal and vertical

subdivisions. The parameters (i.e., the grammar) of the parse

depend on the label of the block to which it was applied. The

process terminates at leaf nodes, which are characterized by

having labels for which no grammars are available.

The algorithm attempts to correct segmentation and labeling

errors by backtracking to alternative grammars whenever a

profile string cannot be parsed. Among partially labeled X-Y
trees, it chooses the one whose labeled leaf blocks cover the

largest area.

The preprocessing required by this method is simple and

will be described first. Then, we will discuss the manner in

which a 1-D string is generated from a block and explain the

parsing process for recursively segmenting a single block and

labeling the resulting sub-blocks. We modify this simple tree

expansion by incorporating 1) backtracking for recovery from

errors and 2) a branch-and-bound strategy to find the largest

area of the root block that can be labeled.

A. Preprocessing

Each page is converted to digital form by scanning it

horizontally at a sampling rate sufficient to preserve all sig- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7

739 KRISHNAMOORTHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: SYNTACTIC SEGMENTATION AND LABELING OF PAGES

TABLE I
NOISE FILTERING RESULTS

Noise
Erased. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

nificant white spaces. Since the entire zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX - Y tree approach is

extremely sensitive to skew, in our experimental work, each

page is aligned on the scanner bed with extreme care. In a

production system, this would be impossible, but excellent

skew-correction methods are available.

There are two alternatives for accommodating specks of

noise due to fiber flaws in the stock, imperfect reproduction,

or digitization. Such noise does not bother human readers but

complicates automated analysis. The first method is to make

the grammars sufficiently robust to ignore such noise. This

is quite feasible but tedious. The approach we have chosen

instead is to remove all specks smaller than a given size in

a preliminary pass (for which we use either a connected-

components algorithm or transition segmentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[161).
We studied the effect of such a preprocessing filter on one

IBM nontitle page obtained by photocopying and scanning.

Table I presents the result obtained on noise filtering the

page. The page originally had 171 dots by manual count

(dots are dots on i’s and j’s, periods, and decimal points).

Filtering with a 1 x 1 window left all of the dots intact but

removed 30 noise specks. Increasing the filter size to 2 x 2

eliminated 34 dots (mostly decimal points and dots on i’s and

j’s with periods left intact). The 4 x 4 window eliminated all

of the dots. Clearly, noise specks taper off to just six using

the 5 x 5 window. Experiments on the CD-ROM database,

photocopied and scanned pages, and synthesized (typeset using

the troff formatter) and scanned pages yielded similar results.

Of course, the number of noise specks is higher on photocopied

pages. The size threshold therefore can be quite generous.

Loss of a few periods or dots on the i’s and j’s does not

affect the layout analysis. Our conclusion is that speckle noise

cannot be filtered out by purely local means without degrading

the legibility of the page. Therefore, after the analysis is

completed, all of the specks are restored before any document

component is presented for human inspection or OCR.

Block Segmentation and Labeling

Each block is segmented into sub-blocks by extracting a

profile string and parsing it with a context-free grammar. The

parse divides the string into a sequence of labeled substrings,

each of which corresponds to one dimension of a sub-block.

Each block is processed either horizontally or vertically. For

the sake of concreteness, in the following description, we will

assume that the block is segmented by parsing the thresholded

horizontal profile of the block.

The horizontal profile of a block of m rows and n columns

of pixels consists of the m row sums of the array [l] . The

thresholded horizontal profile is the binary string of length m
obtained by replacing each element of the horizontal profile by

1 if its value exceeds the threshold and by 0 otherwise. With a

threshold of 1/2, the thresholded profile string will have zeroes

only for rows of pixels that are completely white. The program

that generates the binary profile needs to scan each row only

until the first black pixel is encountered.

Although, in principle, a single context-free grammar can

be constructed for parsing a profile string, in practice, it is

easier to divide the process into four separate stages. The

nonterminal symbols of each stage are the terminals of the

following stage. The parameters of the analysis (which are

called a block grammar) depend on the label assigned to the

block by the parse at the level above it. The grammar for the

root block is called a page grammar.
All of the block grammars, regardless of the level or label

of the block being analyzed, contain a number of similar

productions. These constructs can be readily parametrized. The

seemingly eccentric notation used below for the parametriza-

tion was chosen to avoid bias towards the label of the block,

the direction of segmentation, and the level of segmentation.

Stage 1 4 t o m Generation: The first stage, which is writ-

ten in C, simply counts the lengths of the all-one and all-zero

substrings (which are called atoms) in the profile and assigns

them to equivalence classes according to their length. For

instance, black strings of ranges of length [30-40], [41-45],
and [46-701 may be assigned to three classes p , q, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT . In

subsequent stages, atoms of type p or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq may be considered

candidates for lines of text, whereas atoms of type q or T may

be candidates for title lines. The ambiguity of the nonterminal

symbol q is removed in subsequent stages.

Stage 2 4 o l e c u l e Generation: The second stage (a lex
program [13]) assigns the atoms into groups of contigu-

ous atoms called molecules, according to a set of regular

expressions based on permissible sequences of atoms. For

example, an alternating sequence of black atoms corresponding

to candidate title lines and white atoms corresponding to

candidate intertitle line spaces will be tentatively labeled as

title. The number of repetitions in the sequence (which is

called valence) is taken into account; for instance, title may

be restricted to no more than three title lines.
Stage 3 4 a b e l i n g : The third stage (a yacc parser with

single-token lookahead for context-free grammars [SI) assigns

permanent (entity) labels to each molecule according to the

permissible sequences (precedence) and number (cardinality)
of molecules in each class of entity. For instance, a page may

contain multiple instances of some entity (such as a column

or a paragraph) but only a single author block, and the author

block must be above the title block. The precedence constraint

allows the third stage to disambiguate entities even if their

corresponding molecules appear similar because they are set

in the same font and have the same number of text lines. If a

parse according to the given grammar cannot be constructed,

yacc reports failure.

Stage 4 4 e r g e r : After the third stage, the string has been

segmented and labeled. It is possible, however, that some

entities of the same type (such as paragraphs of text) were

unnecessarily separated in the second stage because of wide

separation that might indicate a change in entity type. The

fourth stage just merges contiguous entities of the same type. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

740 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Stage 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ 1{40-501

IEEE TRANSACTIONS ON P A T E R N ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 7, JULY 1993

Stage 2
A -, r I (rP){'-"h

Gary Stroebel

I *
es in a Packet Netwoi :I 11 -

Stage 3
Title-page -+ W A AUTHOR W A T TITLE

W A - + w
AUTHOR + A
W A T + w
TITLE + T
W-TB + w
ABSTRACT -+ B
W B X + w
TEXT - . x

W-TB ABSTRACT W B X TEXT

Fig. 2. Simplified example of a block grammar. In Stage 1, runs of ones or zeros are condensed into atoms. In Stage 2, atoms are grouped into molecules.
In Stage 3, molecules are interpreted as document entities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The net result of the profile parsing process described above

is to convert a string of 1's and 0's (the terminal symbols) into

a legal sequence of labeled substrings (nonterminals) or report

failure. Each of the substrings defines a labeled block whose

profile in the orthogonal direction must be extracted and parsed

at the next (lower) level of analysis.

is the top margin, and W A T is the white space between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AUTHOR and TITLE. White spaces are not explicitly stored in

the X-Y tree and are therefore not shown in the last column of

the top part of Fig. 2. The first production of this stage ensures

the correct top-to-bottom order of entities for this publication.

In this example, Stage 4 is not illustrated.

A simplified example of a block grammar for a two-column

title page is shown in Fig. 2. The top part shows a fragment of

the page on the left and its interpretation by successive stages

of the block grammar (shown at the bottom) on the right. The

runs of one's and zero's in the horizontal profile are shown by

vertical bars; the thicker bars correspond to runs of 1's (i.e.,

black atoms). These are grouped into four black (p, q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT , s) and

four white (P, Q, R, S) atoms in Stage 1, according to their

length. For example, black runs of between 55 and 70 pixels

are called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. In Stage 2, atoms are grouped into molecules, e.g.,

the molecule T is formed by combining from one to three s
black atoms separated by (an appropriate number of) the P
white atoms (see grammar in Fig. 2). In Stage 3, molecules

are labeled as layout entities, such as TITLE. In Fig. 2, W-A

Nested Block Grammars

The four-stage analysis described in the previous section is

based essentially on a single context-free block grammar. In

this section, we will extend the analysis to be able to segment

and label a document page consisting of a set of nested blocks.

We start with the definition of a block grammar g L as a

context-free grammar described by the standard four-tuple:

g L = (~ N I VT, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp)
where

VN set of nonterminal symbols

VT set of terminal symbols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S start nonterminal

P set of productions for a context-free grammar.

KRISHNAMOORTHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: SYNTACTIC SEGMENTATION AND LABELING OF PAGES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA74 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A block grammar interprets a given block as a particular entity

represented by the label zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. For example, a page may be parsed

according to a block grammar for a title page or a nontitle
page (i.e., an intermediate page or a last page) of a technical

journal article. At the sub-block level, block grammars may be

written for an abstract, a column of regular text, a reference
entry, etc. During the parsing of a block, a unique label

is associated with each sub-block; the correctness of the

interpretation at the block level hinges on the verification that

all its sub-blocks are correctly labeled. In a block grammar, the

sub-block labels are represented by the nonterminal symbols.

Blocks that are assigned terminal symbols for which no
grammars are provided cannot be further segmented and are

assumed to be correctly labeled. Only the nonterminal blocks

with labels for which grammars are provided need to be

further verified for correctness of label assignments. Thus,

the nonterminal symbols of a block grammar provide the link

between processing a block and its sub-blocks. We associate

a block grammar with each nonterminal symbol that may be

equated with the start symbol of that grammar.

The parsing of nested blocks according to a set of block

grammars (one for each label assignable to a nonterminal

block) can be carried out using a standard AND search. The

search strategy could either be depth first or breadth first.

Neither traversal order is intrinsically superior in terms of

performance. For a successful parse, the two algorithms would

take essentially the same time, but in case of a failure, one

or the other may give an early indication depending on the

location of the failing block.

There are two noteworthy features of this search strategy.

1) AND Search Tree: The solution may be described by a

search tree identical in structure to the hierarchy of blocks.

A boolean value representing the outcome of parsing its

corresponding block is associated with each node of the tree.

Since the parsing of a block can fail due to the failure of any

of its nested blocks (at any depth), it is easily seen that each

node value in the search tree is determined by AND-ing the

node values of its children.

2) Independent Parsing: A block is segmented and labeled

completely before any of its sub-blocks. The parsing is ten-

tative in that it can be invalidated by subsequent parsing of

a segmented sub-block. However, after a block is parsed, all

its sub-blocks that are assigned a “nonterminal” label can be

parsed independently; there is no interaction between their

parsing processes.

It is certainly possible to postulate more complex interac-

tions between processing of blocks than that represented by

independent parsing. For example, the outcome of parsing

a sub-block may be used to determine further segmentation

and labeling of a block. Independent parsing, however, may

be more easily adapted to parallel processing than competing

schemes. After a block has been segmented and labeled, it

spawns a new parsing process for each of its sub-blocks that

requires further analysis.

Multiple Interpretations

In technical documents, the occurrence of the same logical

entity in different forms is all too common. The text may be set

in one or in two columns, on different pages (or different parts

of the same page), paragraphs may be flush with the left margin

or indented, the first lines of paragraphs may be left justified

or indented, etc. To accommodate multiple interpretations of

a block with the same label, a publication-specific entity

grammar is defined for each label that can be assigned to a

block in the segmentation of a page. The entity grammar GL
for label L is defined as a list of block grammars { g L } , where

each list element g L represents a distinct interpretation.

The parsing algorithm based on AND search must be mod-

ified for entity grammars. The basic change is the action

taken when a failure occurs: Instead of reporting a failure

to higher levels, the algorithm must try another interpretation

for the block if it is available. For a block at any level of

segmentation, the algorithm attempts the applicable grammars

in the list one by one until one of them succeeds in segmenting

the block into sub-blocks. At this point, each sub-block is

processed recursively with the complementary direction of

segmentation. The strategy is to expand each node into a

sequence of nodes representing the available alternatives for

the block corresponding to that node and repeating this at each

subsequent node until the whole page is processed, that is, the

search can be described as an AND-OR tree.

Incomplete Interpretation4 Branch-and-Bound Algorithm

Thus far, we have been discussing exact algorithms for

multiple interpretations (i.e., when there is more than one

grammar for any block). Either all the blocks are segmented

and labeled, or no blocks are labeled. On the other hand, we

may want to obtain the best labeling possible with the available

entity grammars, even if the labeling is not complete. The best

labeling is defined here as that with the maximum cumulative

area of the labeled blocks. This may be an acceptable objective

function in situations where the designer of the syntactic model

has either an incomplete or incorrect understanding of the

details of the page layout.

The algorithm SEGLABEL (see Fig. 3) is a branch-and-

bound method to achieve this goal. It avoids trying an al-

ternative grammar unless it can increase the total labeled

area. This algorithm is similar to the AND-OR search described

earlier, except that the AND nodes are replaced by SUM, the

OR nodes are replaced by the MAX operation, and a bound

check is added to avoid trying alternatives wherever possible.

The algorithm avoids processing a sub-block if the maximum

labeled area cannot be increased over the current bound even

with a complete segmentation and labeling of the sub-block.

SEGLABEL uses the following four parameters:

the top-level block to be parsed (A)
the direction in which the profile of A is generated (D)
the entity grammar GL(A) , where L (A) is the label sought

the lowerbound, indicating the currently labeled area of a

SEGLABEL (A , D, GL(A) , lowerbound).
The input parameters are as follows:

A block to be parsed

D

for A

block (by the most successful interpretation).

direction in which the profile of A is generated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

742 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON PATIERN ANALYSIS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND MACHINE INTELLIGENCE, VOL. 15, NO. 7, JULY 1993

begin
if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(GL(A) is empty) then {A is a leaf block) return zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(area,);
Extract profile of A in the direction D;
while (CL(,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# empty do

begin
EO: Parse profile of A according to first(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGL(,)) using Lex and Yacc;

i f (parsing not successful) then {do nothing; lowerbound is valid)
else { Let A, be a sub-block assigned to the nonterminal L(A.))

{Parsing results in segmentation and tentative labeling of block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA)

begin
ma2 - area,; [maz is an upper bound on labeled area of A by GL(A))
for each Ai do

begin
subblock_lowerbound - maximum(0, lowerbound - (maz - area,,));
boundr, - SEGLABEL(A;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-D, GL(A%), subblocllowerbound);
mat - maz - (area,, - boundr,); {subtract area not labeled)
if (maz < lowerbound) then exit {Sor Imp);

El:

E2:
end [for loop);

if (maz > lowerbound) then lowerbound + maz;
end {else clause);

GL(A) - rest (GL(A)) ;
end {while loop);

return(1owerbound);
end {SEGLABEL).

Fig. 3. SEGLABEL algorithm.

GL(A) entity grammar for the label L (A) to be as-
signed to A

lowerbound area of A labeled by most successful previous

interpretation of A.

The output parameters are as follows: The functional value of

SEGLABEL is the maximum area of A successfully labeled

by G L (A) or a previous interpretation of A. (See Fig. 3 for the

main program of the SEGLABEL algorithm.)

The algorithm is called in the main program as follows:

area + SEGLABEL(page - block, D, G ~ (~ ~ ~ ~ - b l ~ ~ k) , 0).

When SEGLABEL has finished the search for the best

solution for a block, the value of lowerbound is returned

as the functional value of SEGLABEL. In the initial call to

SEGLABEL, lowerbound is zero.

At statement EO of SEGLABEL, we try to label and segment

the current block A with the next alternative block grammar

for label L(A) . The variable max is an upper bound on the

labeled area of A under the current interpretation. Initially, its

value is set to the total area of A, but as SEGLABEL is applied

to each sub-block of A in statement El , the value of max is

decreased by the area of the sub-block that is not labeled. The

recursive call in statement E l leads to a depth-first traversal

of the sub-blocks of A. The value of subblocklowerbound,
which is computed in the previous statement, is used in the

call at E l . This value can be computed from the parent block’s

lowerbound value by assuming that G L (A) is able to label

everything outside of the current block Ai, that is, an area

equal to (muz - ureaA,). Each time max is updated, a check

is made in statement E2 to see if the updated value of max is

at or below the area of A labeled by a previous interpretation

of A. If so, it is not necessary to process the remaining sub-

blocks of A, and an early exit from the for loop occurs. After

the for loop, if max is still greater than lowerbound, this can

be only because the current interpretation of A has been able

to label a larger area than any of the previous interpretations.

Hence, the value of lowerbound must be modified accordingly.

Example

Consider the following entity grammars:

H 1 G t e x t - b l o c k = (g t e z t - b l o c k . a , gtext-b1ock.b)

It is not hard to find prob-
lems for document and-
ysis to solve, or systems
designed to address the
problems.

Look at the stacks of pa-

Department
Administration
Arts
Engineering
Sciences

inevitably by different
computers and software.
Some include both for-
matted text and labels
a s well as handwritten
entries. The documents
come in different sizes,

Paper Used for 1991
1000 tons.

10 tons.
500 tons.
200 tons.

per documents around the
workplace. Some may be
computer generated -

from small business cards
to large engineering draw-
ings. Many of the busi-

nesses use imaging sys-
tems to store pictures of
the paper and to make re-
t r i e d more efficient.

Future document analysis
systems will be able

Useful
10%
70%
50%
30%

to recognize types of doc-
uments and enable ex-
tractions of documents.

DOC-PAGE 1

Fig. 4. Three-column text block with imbedded table and an accidental
alignment of white spaces.

v 2 Gcompos i te -b lock = (gcomposi te-b1ock.a ,

v 2 G t a b l e = (g t a b l e)

H 3 G c o l u m n = (g c o l u m n)

$’composite-6lock.b)

where V and H denote the direction in which the block profile

is extracted, and the numbers denote the block level. These

entity grammars are used to parse a sample document, which is

a three-column, all-text text block of a technical article shown

in Fig. 4. The first cut or direction of analysis will be horizontal

in an attempt to extract the three-column table in its entirety.

The example grammar shows that there are two alternate

ways of parsing the text-block horizontally using the grammars

will call composite blocks. A composite block can be a

three-column object (gcompos i te -b lock .a) , a two-column object

(gcomposz te-b lock .b) , Or a table (g t a b l e) . Each column can
then be further subdivided by Gcolumn into paragraphs. The

paragraphs are the monolithic (terminal) blocks for this entity

grammar. We make two assumptions about the grammars used

here: a) The grammar gtex t -b lock ,b expects a larger white space

between the top composite-block and the following table than

depicted in Fig. 4; b) the grammar gcolumn does not accept a

footer as part of a column.

The execution of this branch-and-bound algorithm is sum-

marized in Fig. 5. Grammar gtez t -b lock .a is applied first

yielding three composite blocks. The first composite-block

yields three columns at the next level. Each column is, in turn,

parsed into paragraphs. The total labeled area of this composite

block is 45%. (From here on, all the area percentages refer to

the fraction of the text-block area. White entities are ignored in

this example.) The next composite block is then parsed. This

block is labeled “table” due to the width of its intercolumn

white spaces. The total area of this composite block is 30%.

(Further analysis of the table block is avoided since “table”

is a terminal symbol.)

Next, the third composite block is parsed into three columns,

and then, each column is processed. The column grammar

fails to parse the third column because of the footer. Hence,

the labeled area for composite block is 14% and 89% for the

whole text block. It should be noted that Qcomposite-b1ock.b is

applied in an attempt to obtain a larger labeled area for the

gtext-block.a and gtex t -b lock .b . Each yields child objects We

KRISHNAMOORTHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: SYNTACTIC SEGMENTATION AND LABELING OF PAGES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA743

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0 %)

Text-Column Text-Column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFl Fl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Unprocessed

(35%)

(b)

Fig. 5. (a) Labeled document from execution of the SEGLABEL algorithm
for the document shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 by the gcompos , te -b lock zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ; (b) result of

applying Qcompos t t e - b 1 ock b .

third composite block (which has a maximum labelable area

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25%), but it fails to parse the block because there are three

columns of text. Fig. 5(a) illustrates the labeling that results

at this stage.

At this point, the processing is back at the text-block level

with the lowerbound value for the block set at 89% due to the

first interpretation. Grammar g t e z t - b l o c k . b parses the block into

two composite blocks, incorrectly merging the first composite

block and the table. The grammar gcompos i te -b lock .a fails on
the first composite block because the word “administration”

in the table decreases the gutter width between the first two

columns to below the permissible value for the grammar.

Next, gcomposz te -b~ock .b is tried, and it finds two columns due
to the fortuitous alignment of white (gutter) space between

the second and third columns of the top text block and

the table. However, grammar gcolvmn fails to parse the left

column (40%) due to misalignment of text lines. Now, even

if the second column (35%) and composite block (25%) were

correctly parsed, the maximum labeled area would be only

60%. Since this is less than the current lowerbound of 89%,

the search tree is “pruned,” and SEGLABEL returns without

any further analysis. Fig. 5(b) illustrates the labeling attempts

made at this stage. The value returned to the original call is

89%, representing the area labeled by grammar Qtezt-b1ock.a.

Adequacy of Context-Free Grammars for Technical Documents

Algorithm SEGLABEL searches for a solution based on

the results of profile parsing. Although our implementation

is restricted to context-free grammars, from a theoretical

point of view, the following question regarding a syntactic

model for profile parsing is of some interest. Where in the

Chomsky hierarchy can the class of profile strings of technical

documents be placed?

For simplicity, we will limit our discussion to profile strings

generated by text blocks. Further, we assume that the analysis

is to be carried out entirely in terms of the binary profile

strings.

There is a trivial answer to the question that we will

disregard; regular grammars should suffice in all cases since,

for a given scanner resolution, the binary strings have a fixed

finite bound. In general, the bound is sufficiently large in

practice to rule out effective use of the finiteness of the domain

(of possible binary strings) in analysis. The answer is also

unsatisfactory since it relies heavily on the specifics of the

scanner technology. Although any syntactic analysis based on
profile strings must deal with scanner resolution, we prefer

that the technology-dependence of the analysis be limited to

the lowest level of processing, i.e., formation of atoms as

described earlier.

Repetition of entities is a very common feature of document

layouts: repeated letters, words, lines, paragraphs, columns,

etc. The resulting effect on the binary profile string is generally

an alternating sequence of blocks of one’s and zero’s in which

the lengths of one blocks are approximately equal; similarly,

the lengths of zero blocks are also approximately equal but,

usually, different from the lengths of one blocks. Ideally, the

grammar should be able to recognize strings in which the block

lengths are identical. The language to be recognized may be

expressed as {(lnOm)klnJm,n,k > 0}, which is context-

sensitive. Thus, context-free grammars are not sufficient for

document analysis.

This establishes the need for a mechanism that can keep

arbitrarily large counts and match them to augment syntactic

analysis. The next question is whether there are other aspects

of document analysis that are not captured by such augmenta-

tion. Indeed, can we say that a counting mechanism is all that is

necessary to augment a finite state machine (regular grammar)

for document analysis? We have not yet been able to come

up with a good example of a document feature that cannot be

handled by the augmented finite state machine mechanism.

We are not the only researchers to use context-free grammar

(augmented with counting mechanism to handle limited forms

of context sensitivity) for syntactic pattern recognition. Tanaka

[27] points out that almost all researchers use context-free

grammar in their syntactic pattern recognition studies. The

reasons that he gives are as follows: First, a context-sensitive

grammar is hard to treat. Second, parsers and error-correcting

parsers for a context-sensitive language are very complicated

and costly.

111. EXPERIMENTAL RESULTS

Syntactic Segmentation

Twenty-one photocopied pages of the IBM Journal of Re-
search and Development (from 1979-1984 issues; see Fig. 1)

were scanned on a MicroTek flatbed scanner at 300 dotslin.

744 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON PA7TERN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 7, JULY 1993

TXT TXT COL TXT COL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPTL TXT COL
I L TXT COL PAR -

~ I i 1 1

I ' I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. n R - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- E B A _. - FTR-COI

Fig. 6. Automatically constructed and labeled tree for the example shown in Fig. 1. For clarity, only the labels and node identities of nonwhite
nested blocks are shown.

(Earlier results using a single grammar at each level on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIBM
Journal pages synthesized using TROFF were reported in

[28] .) Multiple block grammars were written for the 20-odd

entities (such as, header, author, footer, footnotes, abstract,
paragraphs, and references) that occur in the Research Con-

tributions section of the journal. Each page was separately

processed in the manner described down to the paragraph

level. As discussed in the last section, Fig. 2 shows the

results of the first three stages of analysis for only the root

block of another page (in this case, Stage 4 is vacuous). The

final segmentation and labeling results for a sample page are

displayed in Fig. 6. All 21 pages were eventually processed

completely and correctly after modifications to the grammars

in the course of the experiment.

To reduce the time necessary to develop grammars, we sim-

plified the specification of the relatively restricted grammatical

constructs needed for block analysis. The simplification con-

sists of a tabular method of describing page components that

avoids the need for familiarity with X - Y trees, programming

languages, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlex and yacc. The table includes information

about the following parameters: direction of cut; the ranges

of atom lengths, valences, and cardinality; the type (black

or white) of atoms; the logical label of the node itself and

of its preceding and succeeding nodes; and the number of

possible succeeding nodes. Programs were written to translate

the parameter table to C, lex, and yacc code. We repeated

the experiments reported above using these parameter tables
instead of the hand-coded grammars. All 21 pages were

processed correctly, with the single exception of a table
being incorrectly identified as a text paragraph. All subsequent

experiments were conducted using parameter-table grammars.

A total of 39 block grammars were developed on a training

set of 20 title and nontitle pages of articles from the IEEE

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE.

The entities recognized were similar to those listed above for

the IBM Journal, and the number of grammars per entity

ranged from one to four. These pages were also processed

correctly most of the time.

To determine the performance of the method on test data,

six title and six nontitle pages were chosen at random from

each of the IBM Journal and IEEE PAMI. The test-document

characteristics in terms of the total number of blocks and

the number of leaf-level blocks at various levels of the X -
Y tree are shown in Table 11. The IBM Journal pages were

T

KRISHNAMOORTHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: SYNTACTIC SEGMENTATION A N D LABELING OF PAGES

Number Applied (min sec) Labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~~~~~ 

1 69 24:18 69 T A  Fr B K C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 12 4:14 100 None 1 

745 

TABLE I1 
TEST DOCUMENT CHARACTERISTICS 

TABLE I11 
SLCLABEL PERFORMANCL 

I Test Doc. I # Gram. I Time [ % Area 1 Missed Labelst 1 

+ T ~ Title, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA - Author, Fr - Footer, B - Abstract, K - Keywords, 

C - Copyright, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS - Section-title, Fin Formula, and Fg - Figure. 

all scanned on the MicroTek scanner, but some of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE- 
PAMI pages were obtained from the IEEE Compact Disk 

publication-image database. These pages were deskewed using 

an experimental program obtained from Olivetti, Italy. The 

results on IEEE PAMI are shown in Table 111 (the results 

on the IBM Journal are comparable). The algorithm failed 

completely only on one page from the CD database (Test 

Document 6 in the table), which had a high residual skew. 

When this page was scanned with careful alignment (Test 

Document 6*), it was processed correctly. The errors made 

by the program could easily be avoided by modifying the 

parameter tables, but several cycles of design and testing 

(on successive batches of previously unseen pages) may be 

required to achieve acceptable performance. 

All of the grammars were precompiled; even so, processing 

on a Sun 3/60 takes more than 3 min for each new page 

(Table 111). The bulk of this time (>70%) is taken by recursive 

profile extraction and related disk access. The use of Unix 

shell scripts instead of direct coding also contributed to 

excessive inputloutput time. Optimized compilation of all our 

C programs improved the performance by 50%. 

Considerable additional analysis of these experiments, in- 

cluding detailed examination of the errors and run-time char- 

acteristics, may be obtained from [29]. 

X -  Y- Tree Sta tistics 

There are many different X - Y  trees that can be associated 

with a technical page. The syntactic approach described in 

this paper extracts a logical X - Y  tree whose blocks coincide 

with the entities (title, paragraphs, etc) that are meaningful 

TABLE IV 
COMPARISON OF X-’r TREE STATISTICS 

Transition-cut Level Syntactic 

# Nodes Node Area # Nodes Node Areas 

4018560 
2 10 3980713 3278 1882817 
3 9 2709645 3514 1132516 
4 260 6754 ~ ~ 

to the reader. Usually, the logical X - Y  tree of a page is 

unique. In a transition-cut X - Y  tree, a “cut” (imaginary line 

marking beginning and end of segment) is placed at each 0- 

1 and 1-0 transition in the projection profile with the blocks 

corresponding to each run of 1’s and 0’s forming a node in the 

X - Y  tree. Hence, the segmentation of a page of text results 

in a set of lines, which are further divided into words (by 

vertical segmentation), and then into characters and character 

fragments. Here, the segmentation process stops only after 

all the block nodes around which imaginary boxes can be 

drawn are extracted. Such segmentation may be carried out 

in a preprocessing step to OCR, e.g., to deskew the scanned 

image [3].  
The transition-cut X - Y  tree is defined in the same way 

for any page and carries little information about typesetting 

conventions that are generic or specific to a given publication. 

As such, it provides a good point of reference to the level 

of abstraction achieved by a logical X - Y  tree, as illustrated 

in Table IV for a page from the IBM Journal. Level 0 in 

the table corresponds to the whole page. At level 1, seven 

significant blocks are extracted in the syntactic approach, 

whereas the transition-cut method finds 46 gray nodes. At 

higher tree levels, even larger discrepancies in the number 

of nodes are found according to the two schemes [31].’ A 
bottom-up analysis can be carried out using the leaf-block of 

the transition-cut X - Y  tree. It is clear from the table that as a 

graphic entity, the storage overhead of a logical X - Y  tree is 

minimal compared with the size of the page image. 

Data Compression 

The objective of this experiment was to ascertain the loss of 

compression in storing a page compressed as a whole versus 

compressed block by block. A sample of 65 pages from the 

IBM Journal and PAMI were compressed using the CCITT 

Group 4 scheme. The average compression achieved for entire 

pages was 10.9:l compared with 9:l for the blocks. These 

results show that there is little loss incurred in storing a page 

compressed at the block level. Thus, after page analysis, we 

could store individual objects (labeled by syntactic analysis), 

as might be desirable in certain applications. 

IV. CONCLUSION 

We have demonstrated that on printed pages, image seg- 

mentation and labeling can be successfully combined. The 

’ One of the major advantages of the syntactic approach is that page analysis 
can be terminated at any predetermined level with a complete understanding 
of page layout up to that point. In the transition-cut method, the page must 
be completely processed before any useful information can be derived from 
its S-1. tree. 



746 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACllONS ON P A m R N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 7, JULY 1993 

X-Y tree representation allows recursive transformations from 

the 2-D domain to a set of string-parsing problems. Analysis 

of the strings by syntactic techniques decomposes the page 

image into nested blocks labeled according to their functional 

role. 

The method differs from conventional syntactic approaches 

because the grammars themselves form a hierarchy. The labels 

obtained from the analysis at one level determine the grammars 

to be applied at the next level. Furthermore, the string data 

to which the child grammars are applied themselves depend 

on the results of the analysis at the previous level; they can 

be extracted from the page image only after the string at the 

level above has been segmented. Further, low-level grammars 

for paragraphs, lines, and footers could be reused across many 

different publications. 

The provision of multiple grammars for some or all labels 

provides the opportunity for backtracking to correct mistakes. 

The resulting algorithm is similar to those used for searching 

AND-OR trees. If a page can be parsed correctly at all levels, 

then it is accepted; otherwise, it is rejected. In some applica- 

tions, however, it is desirable to obtain the largest fraction of 

the page that can be labeled. This can be done efficiently with 

a branch-and-bound version of the above algorithm. 

In order to incorporate our methods into practical systems, 

two key issues must be resolved: acceleration of the de- 

velopment of block grammars for different publications and 

reduction of the time required to process a page. We believe 

the performance can be improved substantially since very little 

attempt was made in the current implementation to optimize 

timings. However, some automation in the specification of 

grammars is essential if the proposed method is to find 

widespread use. To further reduce the time necessary to 
develop new grammars, we are now attempting to specify page 

layout in the form familiar to page editors and printers and 

develop the programs necessary for translating this form into 

the current tabular form. We are also examining the possibility 

of obtaining additional grammars from page-formatter and 

photo-composer macros for specific styles. This should lead to 

consistent analysis of an entire article (and, perhaps, eventually 

an entire journal) instead of only an isolated page. 

As the number and generality of the grammars available to 

the system grows, a larger fraction of pages from new types 

of publications should be parsed correctly. The underlying 

assumption here is that pages accepted by the system are 

correctly parsed even if the parameters fall near the bounds 

of their permissible range, i.e., that the system tends to fail 

before it yields an incorrect interpretation. The ranges can then 

be reset, provided that they do not change the interpretation. 

This is a simple form of learning. 

With regard to increased throughput, we are comparing dif- 

ferent architectures, including signal-processing application- 

specific chips and array processors for speeding up profile 

extraction. Once that bottleneck is eliminated, we will consider 

streamlining the lex and yacc processors, or even recoding 

their function, to speed up parsing. Another avenue open to us 

is porting the analysis tools to a loosely coupled multiprocessor 

system where each processor would be responsible for the 

analysis of a particular node. 

V. ACKNOWLEDGMENT 

The authors acknowledge the contributions to the project 

of Professors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Stoddard (now at Tandem Computers), T. 
Spencer, and M. Ancona and former and current students A. 
Bonebrake, A. Burkle, M. Choi, K. Damour, N. Ferraiuolo, J. 
Kanai, J. Li, M. Maculotti, N. Shirali, M. Thomas, and J. Yu. 

VI. REFERENCES 

R. Ascher, G. Koppelman, M. Miller, G. Nagy, and G. Shelton Jr, “An 
interactive system for reading unformatted printed text,” IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATrans. 
Comput., vol. C-20, no. 12, pp. 1527-1543, Dec. 1971. 
E. Backer and E. S .  Gelsema, Eds., in Proc. Int. Conf Patt. Recogn. 
(The Hague), Sept. 1992. 
H. S. Baird, “The skew angle of printed documents,” in Advance Print- 
ing Symp. Summaries, SPSE’s 40th Ann. Conf Symp. Hybrid Imaging 
Syst., May 1987, pp. 21-24. 
H. S. Baird, H. Bunke, and K. Yamamoto, Eds., Structured Image 
Analysis. 
D. P. D’Amato, W. E. Blanz, B. E. Dom, and S. N. Srihari, Eds., 
in Proc. SPIE (Int Soc. Opt. Engr.)-Uachine vision Applications 
Character Recogn. Ind. Inspection (San Jose, CA), Feb. 10-12, 1992, 
vol. 1661. 
A. Dengel and G. Barth, “ANASTASIL A hybrid knowledge-based 
system for document layout analysis,” in Proc. l l t h  Int. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConf 
Artificial Zntell. (Detroit), Aug. 1989, pp. 1249-1254. 
F. Jenkins and J. Kanai, “A keyword-indexed bibliography of character 
recognition and document analysis,” Inform. Sci. Res. Inst., Univ. 
Nevada, Las Vegas, Mar. 4, 1992. 
S. C. Johnson, “Yacc: Yet another compiler-compiler,” Comp. Sci. Tech. 
Rep. 32, Bell Laboratories, Murray Hill, NJ, 1975. 
J. Kanai, “Text line extraction using character prototypes,” in Preproc. 
ZAPR Workshop Structural Syntactic Patt. Recogn. (Murray Hill, NJ), 
June 1990, pp. 182-191. 
R. Kasturi and L. O’Gorman, Eds., Machine KsionApplications, vol. 5 ,  
no. 3 (special issue on Document Image Analysis Techniques), Summer 
1992. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-, “Document image analysis: A bibliography,” in Machine Vi ion 
Applications, vol. 5, no. 3 (special issue on Document Image Analysis 
Techniques), pp. 231-243, Summer 1992. 
D. Klarner and S. Magliveras, “The number of tilings of a block with 
blocks,” Euro. J .  Combinatorics, vol. 9, pp. 317-330, 1988. 
M. E. Lesk, “Lex-A lexical analyzer generator,” Comp. Sci. Tech. Rep. 
39, Bell Lab., Murray Hill, NJ, 1975. 
S. Liebowitz, M. Lipshutz, and C. Weir, “Document structure inter- 
pretation by integrating multiple knowledge sources,” in Proc. Symp. 
Document Anal. Znform. Retrieval, Mar. 1992, pp. 58-76. 
G. Lorette (Ed.), in Proc. First Int. Conf Document Anal. Recogn. 
(Rennes, France), Oct. 1991. 
G. Nagy and S. Seth, “Hierarchical representation of optically scanned 
documents,” in Proc. 7th Int. Conf Patt. Recogn. (Montreal, Canada), 

G. Nagy, S. Seth, and S. D. Stoddard, “Document analysis with an 
expert system,” in Pattern Recognition in Practice II (E. S. Gelsema 
and L. Kanal, Eds.). 
G. Nagy, J. Kanai, M. S. Krishnamoorthy, M. Thomas, and M. 
Viswanathan, “Two complementary techniques for digitized document 
analysis,” in Proc. ACM Conf Document Processing Syst. (Santa Fe), 
Dec. 1988, pp. 169-176. 
G. Nagy, “Document analysis and optical character recognition,” in 
Progress in Image Analysis and Processing (V. Cantoni, L. P. Cordella, 
S. Levialdi, and G. Sanniti di Baja, Eds.). Singapore: World Scientific, 

G. Nagy and M. Viswanathan, “Dual representation of segmented 
technical documents,” in Proc. First Int. Conf Document Anal. Recogn. 
(Rennes, France), Oct. 1991, pp. 141-151. 
G. Nagy, “Towards a structured-document-image utility,” in Structured 
ImageAnalysis (H. S. Baird, H. Bunke, and K. Yamamoto, Eds.). New 
York: Springer Verlag, 1992, pp. 54-69. 
G. Nagy, S. Seth, and M. Viswanathan, “A prototype image analysis 
system for technical journals,” Computer, vol. 25, no. 7 (special issue 
on Document Image Analysis Systems), pp. 10-22, July 1992. 
T. A. Nartker (Editor), in Proc. Symp. Document Anal. Inform. Retrieval 
(Inform. Sci. Res. Inst., Univ. Nevada, Las Vegas), Mar. 1992. 
L. O’Gorman and R. Kasturi (Eds.), Computer, vol. 25, no. 7 (special 
issue on Document Image Analysis Systems), July 1992. 

New York: Springer Verlag, 1992. 

1984, pp. 347-349. 

New York: Elsevier Science, 1986. 

1990, pp. 511-529. 

T 



KRISHNAMOORTHY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: SYNTACTlC SEGMENTATION AND LABELING OF PAGES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA747 

T. Pavlidis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Mori (Eds.), Proc. fEEE, vol. 80, no. 7 (special issue 
on Optical Character Recognition), July 1992. 
S. V. Rice, J. Kanai, and T. A. Nartker, “A report on the accuracy of 
OCR Devices,” Inform. Sci. Res. Inst., Univ. Nevada, Las Vegas, Mar. 
4, 1992. 
E. Tanaka, “Theoretical aspects of syntactic pattern recognition,” in 
Memo. Graduate Sch. Sci. Technol. (Kobe Univ.), 1992, pp. 111-126, 

M. Viswanathan and M. S. Krishnamoorthy, “A syntactic approach to 
document segmentation,” in Structural Pattern Analysis (R. Mohr, T. 
Pavlidis, and A. Sanfeliu, Eds). Singapore: World Scientific, 1989, pp. 

M. Viswanathan, “A syntactic approach to document segmentation and 
labeling,” Ph.D. thesis, Dept. Elect., Comput. Syst. Eng., Rensselaer 
Polytechnic Inst., Dec. 1990. 
M. Viswanathan, “Analysis of scanned documents--A syntactic ap- 
proach,’’ in Structured Image Analysis (H. S. Baird, H. Bunke, and K. 
Yamamoto, Eds.). 
M. Viswanathan and G. Nagy, “Characteristics of digitized images of 
technical articles,” in Proc. fnt. Soc. Opt. Eng. (SPfE)--Muchine Vision 
Applications Character Recogn. Ind. Applications, 1992, pp. 6-17, vol. 
1661. 
J .  Yu, “Document analysis using x-y tree and rule-based system,” 
Master’s thesis, Dept. Elect. Comput. Syst. Eng., Rensselaer Polytechnic 
Inst., Troy, NY, Dec. 1986. 

vol. IO-A. 

197-215. 

New York: Springer Verlag, 1992, pp. 115-136. 

he has been an Associi 
research interests are in 

Mukkai Krishnamoorthy received the B.E. degree 
(with honors) from Madras University in 1969 and 
the M.Tech. degree in electrical engineering and the 
Ph.D. degree in computer science in 1971 and 1976, 
respectively, from the Indian Institute of Technol- 
ogy, Kanpur, India. 

From 1976 to 1979, he was an Assistant Professor 
of Computer Science at the Indian Institute of 
Technology, Kanpur. From 1979 to 1985, he was an 
Assistant Professor of Computer Science at Rensse- 
laer Polytechnic Institute, Troy, NY, and since 1985, 

jte Professor of Computer Science at Rensselaer. His 
the design and analysis of combinatorial and algebraic 

Professor of Computer Engineering at Rensselaer Polytechnic Institute. He 
has held visiting appointments at the Stanford Research Institute, Cornell, the 
University of Montreal, the National Scientific Research Institute of Quebec, 
the University of Genoa and the Italian National Research Council in Naples 
and Genoa, AT&T Bell Laboratories, IBM Almaden, McGill University, and 
the Institute for Information Science Research at the University of Nevada. In 
addition to document image analysis and character recognition, his interests 
include solid modeling, finite-precision spatial computation, and computer 
vision. 

Sharad Seth (SM’82) received the B.Eng. degree 
from the University of Jabalpur, India, the M.Tech. 
degree in electrical engineering from the Indian 
Institute of Technology, Kanpur, and the Ph.D. 
degree in electrical engineering from the University 
of Illinois, Urbana-Champaign. 

He is a professor in the Computer Science and En- 
gineering Department at the University of Nebraska- 
Lincoln. Besides document analysis, his research 
has been in testing and testable design of micro- 
electronic circuits. 

Dr. Seth serves on the editorial board of the Journal ofElectronic Testing: 
Theory and Applications (JE’ITA). He is a member of the IEEE Computer 
Society, ACM, and the VLSI Society of India. 

Mahesh Viswanathan (M’90) received the B.Sc. 
degree in physics from Loyola College, Madras, 
India, in 1980 and the B.E. degree in electrical 
engineering from the Indian Institute of Science, 
Bangalore, India, in 1984. He received the M.S. 
degree in electrical engineering from San Diego 
State University, San Diego, CA, in 1986 with a 
thesis entitled “Matrix Quantization of Homomor- 
phically Processed Images” and received the Ph.D. 
degree in computer and systems engineering from 
Rensselaer Polvtechnic Institute. Trov, NY. in 1990 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, I .  

algorithms and programming environments. with a thesis entitled “A Syntactic Approach to Document Segmentation and 
Labeling.” 

He is currently an Advisory Staff Programmer with IBM Pennant Systems, 
Boulder, CO. His research interests include printing and document analysis. 

George Nagy (SM’72) received the B.Eng. and 
M.Eng. degrees from McGill University, and the 
Ph.D. in electrical engineering from Cornell Uni- 
versity in 1962 (on neural networks). 

For the next ten years, he conducted research on 

various aspects of pattern recognition and OCR at 
the IBM T. J. Watson Research Center, Yorktown 
Heights, NY. From 1972 to 1985, he was Professor 
of Computer Science at the University of Nebraska- 
Lincoln, and worked on remote sensing applications, 
geographic information systems, computational ge- 

ometry, and human-computer computer interfaces. Since 1985, he has been 


	Syntactic Segmentation and Labeling of Digitized Pages from Technical Journals
	

	Syntactic segmentation and labeling of digitized pages from technical journals - Pattern Analysis and Machine Intelligence, IEEE Transactions on

