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SVAZEK  18 (1973)  A P L I K A C E  M A T E M A T I K Y  ČÍSLO 4 

SYNTACTICAL  DEFINITIONS  OF  PROGRAM 

AND  FLOW  DIAGRAM 

KAREL  CULIK 

(Received  October  19, 1972) 

Weak  and  strong  definitions  of  the  program  and  the  flow  diagram  are  introduced, 

studied  and  compared  using  the  branches  of  programs  which  correspond  to  the  maxi­

mal  pathes  in  flow  diagrams.  An  algebraic  characterization  of  flow  diagrams  is  pre­

sented. The set  of  all  possible  branches  is  a  regular  event. 

O.  MOTIVATION  OF  PROBLEMS  AND  NOTATION 

With  respect  to  the  execution  of  a  program,  which  is  considered  as  a  finite  se­

quence  of  commands, and  with  respect  to  the  input  data  the  unique  sequence  of  com­

mands  from  the program  is determined, which  will  be called  a branch of the program. 

In  order  to  study  all  possible  branches  of  a  program  it  is  sufficient  to  distinguish 

two  main  sorts  of  commands:  let Seq  be  the  set  of  all  possible sequential commands 

which  are  characterized  by  the  fact  that  within  the  program  their  right  neighbouring 

commands  (if  any)  will  be  executed  as  the  next  ones,  and  let Dec  be  the  set  of  all 

possible decision commands  characterized  by  a  decision  which  command  should  be 

executed  as  the  next  one. 

To  be  more  concrete (see  [ l])  let  each  sequential  command  be  a  string  of  the  form: 

(OA) f
(
"\x

u
x

2
,...,x

n
)=:x

0
, 

where  " f
( n )

"  is  a  symbol  of  an n-ary  operation  (either  basic  with  respect  to  the com­

puter  under  the  consideration,  or  a  composed  one,  which  is  determined  by  another 

program,  i.e. a subprogram,  or a procedure call, or  a macro-command; this  is  allowed 

according  to  the  sort  of  programming  language  we  have  in  mind,) and x
t
  are  proper 

individual  variables  or  symbolic  addresses  for i  =  0,  1,...,«. 

Further  let START, STOP  be  the  well  known  special  commands  which  are  called 

the starting  and  the stopping command,  respectively. 

This paper was  presented at the conference on Graph Theory,  held in Stirin in  May  1972. 
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Two types of decision command are distinguished: a branching command has 

the form: 

(0.2) Cu...^ux2,...,xn), 

where "g{
la\ flfc]" is the symbol for an n-ary k-valued condition, which is a function 

assigning one from the set of labels {a{, ..., ak} to an r.-tuple of objects, which the 

computer is dealing with, and xt are proper variables again for i = 1,2, ..., n. 

It is assumed that k = 2 and that " g ^ " is the symbol of an t?-ary relation in the 

k-valued logic, i.e., Field g\n
k\ cz Obf (or even Field g\n

k\ = Obf, if no partial rela-

tions are admitted) where Obj is the set of all (basic) objects the computer is dealing 

with, and further that the label at (which is a symbolic address as well, but distingui-

shed from the proper variables) corresponds to the truth value i if the k values are 

{I, 2, ..., k}.Thus if I = true, 2 = false, < \\\ = < and Obj is the set of real numbers, 

then < iath](x, y) is the function assigning the label b to the pair (3, 2), i.e. for x = 3, 

y = 2, because it is false that 3 < 2, etc. 

The second type of the decision command, called the unconditional jump, has 

the form: 

(0.3) a, where a is a label . 

Now a labelled command is a pair <b, C> where b is a label and C a command. 

To be quite exact (see [4]) let us assume that Lab, PVar are sets of labels and pro-

per variables, respectively, such that Labn PVar = 0; let SymbOpr, SymbRel 

be the set of symbols of operations and relations in the Obj, respectively, ,and finally 

let Sep = {, ; = : () [] < > START STOP} be the set of certain auxiliary symbols. 

Then all commands are strings over the alphabet SymbOpr u SymbRel u Lab u 

u PVar u Sep defined according to (0.1), (0.2) and (0.3). Therefore the set of all 

commands Com over this alphabet is defined perfectly. 

The execution of a command C from Com is defined in [1, 4] with respect to a given 

state of storage er, which is a function from the set of functions (Obj u PVar u 

u Com)Lab in a natural way. The new state o* = Co is determined by C = 

— f{n)(x\-> • • •-> xn) = : xo °y t n e following requirement: 

(0.4) <7*(x0) = fM(a(Xl), a(x2),..., <x(x„)), 

a*(y) = cr(y) for each y e PVar such that y #= x0 , 

where, obviously, f ( , , ) denotes an n-ary operation such that Doman f ( n ) c: Obj" and 

Range f ( , , ) cz Obj. 

The decision commands do not change the state; they determine only the next 

command which should be executed. This command depends on the given state if a 

branching command is executed. It is not necessary to go in all details in the definition 

of semantics here. It should be only stressed that all possible interpretations of symbols 

of operations and relations may be taken into account. 
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1. REQUIREMENTS CONCERNING SYNTACTICAL DEFINITIONS OF PROGRAM 

The main aim of a program is to determine the detailed prescription of the com-

puting process, which includes the information whether or not the intended com-

putation has been completed, or in other words, whether or not the computing 

process has been interrupted before its completion for some reasons. Therefore the 

following (weak) definition of program over {Com, Lab) should be accepted: 

A finite ordered set, which we consider as a sequence P = (K(0), K(1), ..., K(N)) 

of labelled commands K(0 = <b(/), C(f)> where b(i) e Lab and C(i) e Com for i = 

= 0, 1, ..., N, is called a program if the following requirements are satisfied: 

(1.1) (i) C(0) = START and C(i) 4= START for all i = 1,2, ...,N; 

(ii) there exists /, where 1 <; i g N, such that C(.° = STOP 

(iii) there exists at least one labelled branch of the program P, which is de-

fined in (1.2); 

(iv) b(0 # b(j) where i 4= j for each i,j = 0, 1, N. 

A finite sequence LB = (K0, Ku ..., Kq) of labelled commands Kt = <bt-, C,> 

where Kt- = K°"f) and 0 g j ; S Nfor each i = 0, 1, ..., a, is called a labelled branch 

of the program P = (K(0), ..., K(/V)), if the following requirements are satisfied: 

(1.2) ( i ) K 0 = K ( 0 ) , 

(ii) Kq = K(i) where 1 g i g N and C(0 = STOP; 

(iii) if 0 ^ i <; g and Kf = K(h) where 0 :g h ^ N, then there occurs one of 

the following three possibilities: 

a) C(h) is a sequential or starting command, and then Ki+X = K(h+l); 

b) C(h) is a branching command, i.e. 

C(h) = g^,...,^!, ...,xM), and there exist j, 1 ^ j ^ k, and p, 

1 S P S N, such that a- = b(/?) and then Ki+X = K(p); 

c) C(h) is an unconditional jump, i.e. C(h) = a, and there exists p, 

1 ^ p g N, such that a = b(p) and then Ki+l = K(p). 

The four requirements (1-1 i —iv) need no special clarification. The requirement (i) 

is a formal one, the requirement (ii) is necessary in order to have a possibility to find 

whether or not the program was completed. The requirement (iii) avoids certain 

programs which never can be completed, and the requirement (iv) follows naturally 

if we admit the following interpretation of a labelled command <b, C>: the command 

C is stored at the memory cell with the abstract address b. 

Besides the main aim of a program the further requirements concerning programs 

may be classified in the following three sorts: 

(1.3) an interruption of the computing process (not caused by an error of the com-

puter itself) before its completion should be caused only by the fact that some 
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operations and relations are partial, i.e. they are defined only for some n-tuples 

of objects; 

(V4) the computing process, which would be infinite, should be excluded in advance 

(when it is possible at all); 

(1.5) there are no superfluous commands in the program, where a command is 

called superfluous if it is never executed with respect to all possible inter-

pretations. 

The requirement (1.3) is guaranteed by the following three requirements: 

(1.1) (v) if C(i) = a, where 1 ^ i g N, then there exists;', 1 <; j ^ N, such that 

b
(i)
 = a; 

(vi) if C(0 = g[ai,...,flkr(*i, ..., xn)>
 w nere 1 <; i g N, then for each integer j, 

1 ^ j <; k, there exists an index hj9 1 g hj ^ N, such that b(Hj) = a}- ; 

(vii) either C(N) — STOP or C(N) is a decision command. 

The requirement (V4) is guaranteed by the following requirement only partly: 

(LI) (viii) there is no ordered set of decision commands {C ( , l ), C('2), ..., C ( / p )], 

where p ^ 1 and 1 g /_. g N forj = 1, 2, ..., p, such that the following 

assertion is true for each j (mod p): 

II f C('7) = 0[al,...,ak](xi> •••> xn) t n e n there exists and index /?, 1 g /? <; k, 
such that ah = b(/j + ,), and if C(ij) = a then a = b(ij+l). 

Finally the requirement (1.5) is guaranteed by the following requirement: 

(1.1) (ix) each labelled command of the program belongs to at least one of its 

labelled branches. 

The (strong) definition of program includes all nine requirements (l . l i —ix) 

instead of the four requirements ( l . l i — iv) in the (weak) definition above. Throughout 

the paper, this definition of program is assumed. 

Let LBrP be the set (which may be infinite) of all labelled branches of the program P 

and let two programs P and Q be called LBr-equivalent if LBrP = LBrQ. 

By any program P = (K(0), K(1), ...,KW) the finite system P = {Pu P2, ..., Pp) 

of all subsequences Pf of P is determined uniquely by the following requirements: 

(1.6) (i) each Pf e P contains at least one K(j) such that C(j) is either a sequential 

or the starting command; 

(ii) if K(J) e Pf, where Pf e P, and C(7) is either a sequential or the starling 

command, then K(/+ 1} e Pt as well; 

(iii) the length of each subsequence P, e P is the largest possible: 

(iv) if K(/) e Ph where Pf e P, and C(j) is neither a sequential nor the starting 
command, then K(i+1) <£ P-. 
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Now it remains to assume LBrP = LBrQ and then to prove N = M and to find 

the permutation n which satisfies (1.7). If N + M then we may assume that there exists 

a labelled command L(J<) e Q such that liJ) £ P (and similarly in the contrary case 

if P — Q + 0) and by (VI ix) there exists a labelled branch LB e LBrQ which con-

tains L0). Therefore LB <£ LBrP and we obtained a contradiction LBrP =j= LBrQ. 

Thus it must be N = M and, moreover, by the previous argument P and Q must be 

set theoretically equal, i.e., there must exist a permutation n of integers {0, 1, ..., N} 

such that (1.7 iv) is satisfied. With respect to this requirement and by the requirement 

(IA i), which is fulfilled by P and Q, it follows that (1.7 iii) is satisfied, too. 

Further let us assume that (1-7 i) is not satisfied, i.e., there exist Ph e P and K(l)e Ph 

such that L(7r(/)) does not belong to any Q} e Q. According to (1.6) Ln(i)) must be 

a decision command and therefore K(,) must be the last element of the subsequence 

Ph (because by (1.7 iv) K(/) = L(7r(/))). By (1-1 ix) there exists at least one labelled 

branch LB e LBrP which contains K(,). If K(0 = Ks then s > 0 and according to (1.6) 

Ks„ t must be a sequential or the starting command. On the other hand the command 

£(*(.» m u s t b e preceded in each branch from LBrQ by another decision command, 

which means that LB $ LBrQ, and therefore LBr + LBrQ. Thus (1.7 i) must be valid. 

Finally let us assume that (1.7 ii) is not satisfied, i.e. there exists a subsequence 

(K,-,K /+1, ...,K / + r ) e P, where K, = K(h), and an integer, t, 1 ^ t <; r such that 

n(h + t) + n(h) + t. We may assume that n(h + t - \) = n(h) + t - 1 (i.e., t is 

the smallest possible). Using (1.7 iv) K(h+t~l) = Ln(h+t~l) = Ln(h)+t~\ butK(h+t) = 

= Ln(h+t) = Ln(h) + t. By (1.1 ix) there exists at least one branch LB in LBrp which 

contains the two commands K(h+t~u = Ki + t_u Ki + t = K(/l+r), but no branch 

in LBrQ can contain the two commands u(h+t~X) = Ls, Ls+1 = U(h+J), because 

according to (1.6) the command Ls must be followed by jj(h+t~^+{ - £j-(*) + - ^ 

+ U(h+t). Thus LB$LBrQ and therefore LBrP + LBrQ, which is the required 

contradiction proving that (1.7 ii) must be satisfied. Now the proof is complete. 

If P = (K(0), ..., K(N)) is an arbitrary program then let Sp be the set of all integers/ 

such that K(J) is the first (or leading) member of a subsequence Ph e P (defined 

by (1.6)) and such that 1 g j :g N (thus the subsequence with the leading member 

K(0) is not taken into account and therefore \SP\ may be equal to zero). Further 

let RP be the set of all integers j such that K(J) does not belong to any subsequence 

Ph e P (thus |RP | may be equal to zero, too). 

If ns, nR is an arbitrary permutation of 5P, RP respectively, then the following 

permutation n of {0, 1,..., N} is determined uniquely as follows: 

(1.8) (i) 71(0) = 0; 

(ii) if j e SP then n(j) = ns(j); 

(iii) if j e RP then n(j) = nR(j); 

(iv) if fe{l,2, ...,N} - (SP u RP) then there exists the largest integer 

/ e SP u {0} such that i < j and n(j) = n(i) + j — z\ 
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Theorem 1.2. If P = (K(0), ..., K(A)) is an arbitrary program then each program 

0 which is LBr-equivalent to P arises by reordering of P when a permutation n 

is used, i.e., Q = (Kn(0), K*(1), ..., Kn(N)), where n is defined by (1.8) from the both 

permutations ns, nR which are chosen arbitrarily. Thus there are (|SP|!). (|Pp(0 

different programs Q, each of which is LBr-equivalent to P. 

Proof follows easily from Theorem 1.1. 

2. WEAKENING OF CONDITIONS 

We intend to compare the weak and strong definition of the program. 

Lemma 2.1. Let P be a weak program and let Q arise from P by ommitting all 

labelled commands which are not contained in any labelled branch of P. Then 

LBrQ = LBrP and the weak program Q satisfies the requirements (1.1 ix), (1.1 v), 

(LI vii) and the following assumption analogous to, but weaker than, (1.1 vi): 

(2.1) if C(f) = g[aj,...,flk](xi, •••, -V), where 1 ^ i ^ N, then there exist an integer j , 

1 ^ j <; k, and an index hp 1 <: h} <£ N such that b(hj) = a}. 

Proof is obvious. 

If C(i) = Ot
("j ak-]{xu -'->xn) i s a decision command of a weak program P = 

= (K(0), ...,K( /V)) which satisfies (2.1) but, in general, not (1.1 vi), then the w-ary 

relation in the k-valued logic g(
(k], required by an interpretation of P, cannot be 

employed fully within P, and the same results will be obtained using another ti-ary 

relation in the r-valued logic g^j, where r < k, which is defined as follows: let j l be 

all integers such that 1 ^ j \ < j 2 < ••• < h = ^ a n d t n a t t h e r e e x i s t s a n index 

ht, 1 ^ ht S N, which satisfies b(hi) = aJr Now let a new condition be defined: 

(2-2) Sla^aj^aj^U''^ Xn) = d f ^ f a a , . . . , « f c ] ( ^ l — Xn) , 

in every interpretation of the symbol of relation g(
(
n
k\. It is clear that g["r] is a partiali-

zation of g\"k] which is determined by the prescription of a smaller range 

{ajx, aj2, ..., ajr} cz {au a2, ..., ak} (instead of the more usual prescription of a smal-

ler domain). 

Lemma 2.2. Let P be a weak program which satisfies (1.1 ix), (1.1 v), (1.1 vii) and 

(2.1), and Jet Q arise from P by replacing each condition, which does not satisfy 

(1.1 vi), by its partialization defined in (2.2). Then Q satisfies (IT vi). 

The p roo f is obvious. 

It is easy to see that the requirement (1.1 viii) is independent of all the others. 
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Lemma 2.3. A weak program P satisfies (VI viii) if and only if each labelled 

branch LB e LBrP satisfies the following requirement: 

(2.3) if LB = (K0, Kj, ..., Kq) then there exists an integer j , 0 < j < g, such that 

Kj = Kj + p, where p _ V and Kj + t is a decision command for each t = 

= 1,2,..., p. 

The p roof is obvious. 

It remains an open problem whether or not to each weak program P, which satisfies 

(VI vi), there exists a strong program Q such that the following assertion is valid: 

(2.4) LBrQ = {LB: LB e LBrP and LB satisfies (2.3)}. 

Lemma 2.4. A strong program P = (K(0), ..., K(N)) satisfies the following re-

quirements: 

(2.5) if C ( 0 is a decision command, where 1 ^ i < N, then there exists a deci-

sion command C(h), 1 ^ h g N, such that h 4= / -F 1, Or/d /f C(0 = 

= gfl[i,...,ak](xi, •••, *„), then there exists an index], 1 £j ^ k, such ffta/ 

fl7 = fe(iil), Or/d if C(0 = a, then a = b(/ + 1); 

(Vlv*) is identical with (VI v), where in addition j 4= - /s required; 

(l.lvi*) is identical with (\A vi), where i/1 addition hj 4= / is required. 

The p roof is obvious. 

3. FLOW DIAGRAM OF A PROGRAM 

The flow-diagram of a (strong) program P = (K(0), ..., K(N)) is an oriented graph 

FDP = <V, O, A, A> with labelled vertices and edges, which is defined as follows: 

(3.1) (i) V= {b(0), b(1), ..., b(Ar)}; 

(ii) a) if C(0 is a sequential or the starting or the stopping command, then 

A(b(0) = C ( 0 ; 

b) ^ C ( / ) = g(^ flk](x„..., x„) then /(b ( / )) = ^ ( x , , ..., x„); 

c) if C(0 = a then A(b(/)) = GOTO, where ''GOTO,' is a new symbol 

(corresponding to i4go to" in programming languages) and 0 ^ / g N; 

(hi) a) ifC ( / ) = STOP then there is no edge starting at b(0; 

b) if C(/) 4= STOP is a sequential command or C(0 _ START then 

there is a unique edge (b(,), b(' + 1)) starting at b(0; 

c) if C(0 = gia\,...,ak-}{xi> ••-> xn) t n e n t n e r e a r e a s many edges starting 

at b(0 as there are different labels ar viz. the edges (b (0, aj) for each 

j = V2,...,k; 
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d)  if  C
{,)

  =  a  then  there  is  the unique edge (b
{i
\  a)  starting at  b

(/)
,  where 

1  ^  '  S  N, and there are no other edges  in O  than  those defined above; 

(iv)  if  C
(/
>  =  g[

a
°

lf
...

takl
(x

u
...

9
x

n
)

9
  where  l  ^  i  ^  N,  then  A(b

U)
,  a

3
)  = 

=  {/?;  h  is  an  integer  such  that  1  5̂  h  rg  k  and  a
/?
  =  a

;
}  for  each  j  = 

=  1,2,  ...,  k  and  for  each  of  the  remaining  edges  (x,  y)  one  defines 

Л(x,  y)  = 

According  to  (3.1  ii)  the  range  of  the  labelling  A of  vertices  of  FD
P
  is  the  set  con­

sisting  of  certain  sequential  commands  of  the form  "/
( w )

(x
l 5

  ..., x
n
)  = : x

0
",  of  sym­

bols of certain  n-ary relations  in the k-valued  logic g(£)(xi, . -., xn), where xt is a proper 

variable for i = 0, 1, ..., n, and of symbols START, STOP and GOTO. 

According to (3.1 iv) the range of the labelling A of edges of FDP is the set con-

sisting of finite sets of integers. Only in the special case when the following condition 

is satisfied: 

(3.2) if C(0 = g[al...fak}(xu ..., xn), where 1 S i = lV, then a, 4= ah for j * h and 

for all / h = 1,2, ..., k, where always k ^ 2, 

the range of A is the set of particular integers only (i.e. no sets of integers are 

necessary). 

Without a loss of generality the requirement (3,2) will be accepted in the sequel. 

This requirement only means that some new relations and symbols of relations are 

introduced in advance. E.g. g\l]a^ is a binary relation only in the 2-valued logic 

(although it arised from g\\^) which does not satisfy (3.2) and therefore one assumes 

that a new symbol "h[^V," ^s available which satisfies (3.2) and which is defined as 

follows: h[affc](x, y) = dfg[a.a.&](x> y)- Obviously a different relation is defined by 
fcc«i](*' y) = ^{2a]bAx- y)> e t c- If fc = 2 and (3-2) is not satisfied, e.g. "<[*,<.](*, y)" 

then it is clear that this degenerated decision command may be replaced by the un-

conditional jump "a". Therefore, if the requirement (3.2) is not satisfied then the 

notion of unconditional jump is superfluous. 

It is useful to call a vertex of FDP sequential vertex or a decision vertex, respectively 

if its label (in the labelling A) is a sequential or a decision command. 

Theorem 3.1. An oriented graph G = <V, O, A, A) which is isomorphic with res-

sped to the labellings A and A to a flow diagram of a program satisfying (3.2), 

satisfies the following requirements (3.3) and (3.4): 

(3.3) (i) there exists exactly one input vertex w e V; A(w) = START; there 

exists exactly one edge (w, x) starting at w and A(w, x) = 1; 

(ii) there exists at least one output vertex; if w e Vis an output vertex then 

X(w) = STOP and there is no edge starting at w; 

(iii) if w e V is an inner vertex and od(w) = 1 then either 2,(w) = GOTO 

or l(w) is a sequential command and A(w, x) = 1 holds for the unique 

edge (w, x) starting in w; 



(iv) if w e V is an inner vertex and od(w) — k > \ then A(w) = 

= gfy (x l9 ..., xM), where gfy is the symbol of a relation in the k-valued 

logic and all k edges starting at w are labelled by integers 1, 2, ..., k 

in the labelling A; 

(viii) each cycle in G contains at least one sequential vertex and there are 

no slings; 

(ix) each vertex belongs at least to one (monotonic) path which starts 

at the input vertex and terminates at an output vertex; 

(3.4) if w e Vthen there exists at most one vertex v e Vsuch that (v, w) e g and either 

A(v) = START or X(v) is a sequential vertex. 

Proof. We need to prove that every flow diagram satisfies (3.3) and (3.4) if the 

labels are considered as arbitary abstract symbols. Let us show it consecutively 

(although not in all details): 

(3.3) (i) follows from (1.1 i), (3.1 ii-a), (3.1 iii-b) and (3.1 iv); 

(ii) follows from (1. t ii), (3.1 ii-a), (3.1 iii-a) and (3.1 iv); 

(iii) follows from (3.1 iii-d), (3.1 iii-b), (3.1 ii-c), (3.1 ii-a) and (3,1 iv); 

(iv) follows from (3.1 ii-b), (3.1 iii-c), (3.2) and (3.1 iv); 

(viii) follows from (1.1 viii), 

which also implies that there are no slings at the decision vertices (according to 

(1.1 v*) and (1.1 vi*)); for the remaining inner vertices this follows by the definition 

of the labelled branch (1.2) and from (3.1 ii-a) and (3.1 iii-b); 

(3.3) (ix) follows from (LI ix); 

(3.4) follows from the assertion (1.6 iv) which concerns the subsequences Ph e P. 

Before showing the synthesis of a program for a prescribed flow diagram let us 

describe a certain construction on a graph G = <V, O, A, A> which corresponds to the 

construction of the finite system P'of subsequences of the program P (see the require-

ment (1.6)). 

If G satisfies (3.3) and (3.4) then let G be the set of all subgraphs Gt = <Vf, gh Xh A,-> 

of G for / = 1,2,..., p, which are uniquely determined by the following requirements: 

(3.5) (i) at least one vertex w e V,- satisfies the requirement that X(w) is either 

a sequential command or the starting command; 

(ii) if w e Vt and A(w) is either a sequential or the starting command then 

there exists just one vertex ve V such that (w, v) e O and also ve Vf; 

(iii) the number of vertices in V. is the largest possible; 

(iv) if w e Vt and A(w) is neither a sequential nor the starting command, then 

there exists no v e Vsuch that v e V,- and (w, v) e O; 

(v) O. = V/2 n O; Xi(w) = X(w) for each we Vt and A,(w, v) = A(w, v) for 

each (w, v) e O ,-. 
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Further,  it  is  clear  (by  the  definitions  of  non-labelled  and  operational  branches) 

that  if Br
P
  = Br

Q
  then  also OBr

P
  = OBr

Q
  for  all  programs P  and Q.  The  converse 

assertion  is  not  valid,  which  is  shown  by  Fig.  4  and  5  where  flow  diagrams  of  two 

programs P
t
  and Q

{
  are  shown  such  that OBr

P{
  = OBr

Py
  but BR

P{
  =}= Br

Qr
  More­

over  it  is  immediately  seen  that P,  and Q
{
  compute  different  functions,  viz P

L
  com­

putes  | x  |  and Q
{
  computes  — I  x  i. 

"START] 

( x > <T) 

'7 \2 

x  «  :  У  -x=  :  У 

[ІTOР] 

1 START  | 

Fig. 4  Fig5 

4.  FLOW  DIAGRAM  AND  ITS  EXECUTION 

The  execution  of  a  program  requires  the  determination of  the  next  state  and  of  the 

next  command, i.e.  which  command  should  be  executed  as  the  next  one  (see  Sect. 0). 

The  same  may  be  determined  also  for  an  oriented  graph G  =  <V, O,  A, A>  which 

satisfies  (3.3)  independently  of  the  requirement  (3.4).  The  current  state  is  changed 

only  by  a sequential  command which  is  the label  in A of  a vertex  w, while the command 

which  should  be  executed  next  is  that  one  by  which  the  unique  vertex v,  such  that 

(w, v) e O,  is  labelled  in  A.  If  a  decision  command,  which  is  the  label  of  the vertex  vv, 

is  considered  and  executed,  then  with  respect  to  the  current  state  its  value  is  a  truth 

value  i  and  therefore  the  unique  vertex v  is  determined  such  that  (vv, v) e O  and 

A(w, v)  = i. Hence A(v) should  be executed  as  the next command. 

Construction  (Linearization) 4.1.  If  an  oriented  graph G  =  <V, O,  A, A>  satisfies 

(3.3)  but  does  not  satisfy  (3.4),  then  an  oriented  graph G'  =  <V', O', A', A'}  may  be 

constructed  as  follows:  consecutively  (in  an  arbitrary  order)  each  vertex  w e V  is 

considered  such  that  if  w
1?

  w
2
,  ..., w

n
 e Vare  all  those  vertices  such  that  (w

1?
  w) e O 

and  A(vv
/
, w)  is  either  a  sequential  or  the  starting  command  for  each i  =  1, 2,  ..., w, 

then n  ^  2;  if  w  is  the  vertex  under  the  consideration,  then n —  1  new  vertices 

t
i9
 t

2
,  ..., t

n
„

i
  are  chosen  and  added  to V, further  the  edge (w

h
  w)  is  omitted  from O 

and  replaced  by  two  new  edges (w
h
 t

t
)  and (t

h
  vv),  which  are  added  to O  for  i  = 
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= 1, 2, ..., n — 1 (which may be done in n different ways); and finally one defines 

;/(/;) = GOTO, A'(wi9 tt) = A(wi9 tt) and A'(ti9 w) = 1 for i = 1, 2, ..., n - 1, while 

in all the remaining cases X and A remain unchanged. 

Let us write BrG = BrG, (mod GOTO) if #BrG = #BrG ' where *BrG arises from 

BrG as follows: each branch of BrG arises from a branch (D0, Dl9 ..., Dq) of BrG 

by omitting all pairs Dj9 which contain "GOTO". 

Theorem 4.2. If G satisfies (3.3) and G' arises from G by the construction 4A , 

then G' satisfies (3.3) and (3.4), BrG, = BrG (mod GOTO), and therefore OBrG, = 

= OBrG. If G satisfies (3.3) then there exists G* which satisfies (3.3) and (4A), 

BrG* = BrG (mod GOTO), and therefore OBrG* = OBrG, where: 

(4.1) there is no vertex labelled by "GOTO". 

Proof. The first part follows immediately by the construction 4A , because it is suf-

ficient to show it for the single vertex under the consideration. The second part 

requires a converse construction to the construction 4.1, i.e., the omission of vertices 

which are labelled by GOTO, which is defined easily. 

Now it is clear that to each oriented graph G = <V, O, X, A>, which satisfies (3.3) 

and (4.1), a program P may be constructed such that BrG = BrFDp (mod GOTO), 

and therefore it is possible to define this graph G as a flow diagram without any respect 

to the program as in Sect. 3. The omission of all unconditional jumps and the omis-

sion of (3.4) enables us to give the following definition of a flow diagram (being 

a reformulation of (3.3)) which is clearer and more suitable for our purpose: 

(4.2) (i) there exists exactly one input vertex; 

(ii) there exists at least one output vertex; 

(iii) each vertex belongs at least to one (monotonic) path which starts at the 

input vertex and terminates at an output vertex; 

(iv) each cycle contains at least one sequential vertex; 

(4.3) by the labelling X of vertices the input vertex is labelled by "START", each 

output vertex is labelled by "STOP", each sequential vertex is labelled by 

an operational command, and each decision vertex vv with od (vv) = k g: 2 is 

labelled by a decision command in the k-valued logic; 

(4.4) by the labelling A of edges all k edges starting at the vertex vv such that od (vv) = 

= k = 1 are labelled by k integers 1,2, ..., k; 

where the particular requirement (4.2), (4.3) and (4.4) are classified according to the 

graph structure <V, O> itself, the labelling X of vertices and the labelling A of edges, 

respectively. 

It should be mentioned that (4.3) says that the types o[ commands uniquely cor-

respond to the types of vertices. 
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5. REGULAR LANGUAGES OF LABELLED BRANCHES 

Let P = (K(0\ K(l\ ..., K(iV)), where K(0 = <b(/), C(,)> be a program and FDP = 

= <V, O, A, A> its flow diagram. Let us define a new graph GP = <V, O, x) where x is 

the following labelling of vertices in GP : x(b(l)) = K(,) for i = 0, 1, ...,N. Further 

let us shift the labels of vertices on those edges which terminate at them, i.e., let us 

define Gp = <V, O, x*> by the following requirement: 

(5.1) x*(x, y) = dfx(y) for each (x, y) e O . 

If we assume that every monotonic path (v0, v]9 ..., vq) in GP where v0, vq is the 

input vertex and an output vertex, respectively, generates the labelled branch 

(x(v0), x(v t) , . . . , x(vq)), then we may say that the same path in G*. generates the sequence 

of labelled commands (x*(v0, vi), x*(v1? v2), ..., x*(vq_u vq)). If LBrGp and LBrG*p 

are the sets of all sequences of labelled commands generated by GP and G*, respectively, 

then it is clear that the following assertion is valid: 

(5.2) LBrP = LBrGp = K(0)LBrG*p , 

where K(0)LBrG*p means the concatenation of K(0) with the set of strings in LBrG+p. 

Theorem 5.1. LBrP is a regular language over the vocabulary of all commands 

for each program P. 

Proof. Using (5.2) it is sufficient to show that LBrG*pis a regular event, but this is 

an immediate consequence of Theorem 3.4 of [2], because if x is the input vertex 

of G*, X is the set of all output vertices in G* and G*[x, X\ denotes the set of all 

labelled branches generated by all monotonic pathes (v0, vu ..., vq) such that v0 = x 

and vq e X, then obviously G*[x, X\ = LBrG*p, and Theorem 3.4 of [2] says that 

G^[x, X\ is a regular event. See also [5]. 

6. FLOW NETS 

With respect to the following algebraic investigations it is convenient to modify 

the concept of the flow diagram in an unessential but very useful way which consists 

in omitting the input vertex. In order to avoid any confusion the new term "flow net" 

will be used for this modified flow diagram. 

A flow net without origin is an oriented graph G: = <V, O, A, A> with two labellings 

X and A such that the following requirements (being similar to (4-2 — 4-4)) are satis-

fied: 
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(6.1) (i) there exists at least one output vertex; 

(ii) there exists at least one vertex, called a possible origin, such that each 

vertex belongs at least to one monotonic path which starts at the pos-

sible origin and terminates at an output vertex; 

(iii) each cycle contains at least one sequential vertex, i.e., a vertex w such 

that od (w) = 1; 

(6.2) (i) w is an output vertex o X(w) = STOP; 

(ii) w is a sequential vetex o X(w) is an operational command; 

(iii) w is a decision vertex and od (w) — k o X(w) is a decision command 

in the k-valued logic; 

(6.3) = (4.4) 

If a possible origin v e V is distinguished then <V, O, v, X, A> is called a flow net 

with the origin v. Obviously the origin should replace the input vertex of the flow 

diagram. 

Lemma 6.1. There is a one-to-one correspondence between flow diagrams G and 

those flow nets G* with origin which arise from G by omitting the input vertex 

and the unique edge starting at it. The vertex at which the omitted edge terminates 

is the chosen origin. In addition BrG = \JSTART, 1] BRG*, where BrG and BrG* are 

considered as sets of strings. 

The p r o o f fol lows from the de f in i t ions . 

It should be mentioned that it is not possible to omit also the output vertices 

and to distinguish the last vertices in general, because a vertex which is connected 

by an edge with an output vertex may be a decision vertex, and therefore it can 

happen that sometimes it should be the last vertex, but sometimes not. 

Lemma 6.2. If G = \V, O, X, A> is a flow net and x e V, then its subgraph Gx = 

= <Vv, Ox, Xx, Ax> defined by the requirement (6.4) is a flow net again with the pos-

sible origin x where: 

(6.4) Jet Vx, QX be the set of all vertices and edges, respectively, which belong 

at least to one monotonic path in G which starts at x and terminates at an out-

put vertex of G; Xx = df X\Vx and A x = df A \ Q x . 

The p roo f is obv ious . 

Let us define a binary relation > in the set of all nets Gx where x e V and G = 

= <V, O, v, X, A> is a flow net, and simultaneously in the set Vitself, as follows: 

(6.5) Gx >Gyo dfy e Vv and Gx ~ Gy o df(Gx > Gv) & (Gy > Gx) . 
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Theorem 6.3. The binary relation >- is a quasi-ordering relation, i.e., it is re-

flexive and transitive, and therefore the binary relation ~ is an equivalence relation. 

Proof. According to (6-4) x e Vx and therefore by (65) Gx > Gx for each x e V, 

which proves the reflexivity of >-. Further if Gx > Gy and Gy >• Gz then by (6.5) 

y e Vx and z e Vy. Using (6.4) one sees that y e Vx implies Vy cz Vx, and z e Vy implies 

Vz cz Vy. Therefore Vz c Vx is true and z e Vx which means by (6.5) that Gx > Gz, 

i.e., the transitivity of > is proved. The equivalence of ~ follows by well known 

theorems. 

Let V = {Vj, V2? •••> ^M} ^e t n e set of all equivalence classes defined in V with 

respect to the equivalence relation ~ . Then V is a decomposition of V, i.e., the fol-

lowing requirements are satisfied: 

(6.6) V) =4= 0; V/ n Vy = 0 where i #= j for all i,j = 1, 2, ..., M; M ^ 1 and 
M 

U V = V 
i= 1 

Further let G = <V, Q} be the factor graph of G defined as follows: 

(6.7) (Vf, Vy) G £ <=>df there are vieVi and VJEVJ such that (vf, vy) e O for all 

i,j = 1,2, ..., M, 

and finally let G,- = < Vh Q{) be defined for i = 1, 2, ..., M as follows: 

(6.8) O,- = O n V.2. 

Lemma 6.4. If G = <V, O> is a finite oriented graph having at least two vertices 

which satisfies (6.1), then its factor graph G is a finite oriented graph having at least 

two vertices such that the following requirements are satisfied: 

(6.9) (i) there exists exactly one input vertex in G; 

(ii) there are no cycles in G; 

(iii) there are no slings in G; 

(iv) G is connected; 

and each of the subgraphs G/ is a finite oriented graph such that: 

(6.10) (i) G; is strongly connected; 

(ii) each cycle in Gt contains at least one vertex w such that od (w) = 1; 

(iii) there are no slings in Gt; 

(iv) if Vi contains an output vertex then \Vt\ = 1. 

Proof. First of all let us prove (6.10). (i) follows directly by (6.5); (ii) and (iii) 

follow by the definition (6.8) and by the assumptions (6.1) concerning G. If Vt contains 

an output vertex then (iv) follows by (i). 
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Now let us prove (6.9). By (6.1 ii) it follows that in G there exists exactly one input 

vertex, i.e., (6.9 i) is satisfied, and for this vertex (6.9 iv) is also satisfied. According 

to (6.5) each two vertices of G which belong to the same cycle must be equivalent, 

which proves that G defined by (6.7) cannot contain any cycle, i.e., (6.9 ii) is satisfied. 

In G there are no slings, because this is excluded by (6-1 iii) for the decision vertices, 

and by (ii) for the sequential ones. Therefore (6.7) cannot cause a sling, which means 

that (6.9 iii) is satisfied. 

Finally, M ^ 2 follows by (6.10 iv) and (6.9 ii and iii). 

Construction 6.5. An arbitrary flow net without origin G = (V, O, X, A> may be 

constructed as follows: 

a) one takes as the base an arbitrary finite oriented graph H = <W, cr> which has 

at least two vetrices and satisfies (6.9); 

b) if \w\ = M and S, i :g S < M is the number of the output vertices of H, 

then one takes M finite oriented graphs G; = <V;, O;>, 1 ^ i ^ M such that (6.6) is 

satisfied, each of them satisfies (6-10 i-iii), and, in addition, there are at least S 

of them such that |V;| = 1; 

c) one chooses a one-to-one mapping cp such that Domain cp = W and Range 

cp = {Gt, ..., Gm}, and if w e Wis an output vertex in G then G; = (p(w) satisfies the 

requirement |V;| = 1; 
M M 

d) now one defines V = \J Vi and besides the edges from (J O; which must belong 
r = i i = i 

to Q there are the following further edges which should belong to O as well; for each 

pair (w, w*) e cr one takes (p(w) = G;, (p(w*) = Gy and then one finds a pair vh Vj 

such that v; G V;, Vj e V,- and the vertex v; is not the only sequential vertex on a cycle 

in G;; now one puts (v;, Vj) e O; after defining O in this way one may, but need not, 

stop, i.e., one may go on adding further edges in the following way: if (v;, v.) e Q 

then one may take an arbitrary vertex v* G V; and v* e Vj such that v* is not the 

only sequential vertex on a cycle in <V, O>, and defines O* = O u {(vf, ^*)}; this 

construction may be repeated until the requirement (v*, v*) <£ O is satisfied; 

e) the two labellings X and A are chosen arbitrarily but they must satisfy (6.2) 

and (6.3), respectively. 

Proof of co r r ec tne s s . We need to prove that the graph G = <V O> determined 

by a) —d) satisfies (6-1), because the other part of the assertion that each graph 

of this type may be constructed in this way, follows immediately by Lemma 6.4. 

First of all it follows from (6.9) that there must exist at least one output vertex 

(because the graph IT is finite, e.g. by Theorem 2.1 of [3]), and therefore S ^ 1 and 
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after  the  choice  in  a)  the  choice  in  b)  may  be  done;  then  also  the  choice  in  c)  is 

possible  and  it  remains to consider the determination of  Q. 

If  G
f
  is  an  arbitrary  graph  which  satisfies  (6.10)  then  either  |V,|  =  1, which  means 

that  i\  such  that  V,-  =  {v,}  can  not  be  the  only  sequential  vertex  which  belongs  to 

a  cycle  in  Gn  and  therefore  vt  may (and must) be always  taken in the step d), or  | V
f
|  > 

>  1 and  the following  possibilities  must  be  distinguished:  if  all  the vertices  in  V{  are 

sequential,  then  there  always  exists  the  required  vertex  because  |V,-|  >  1;  if  there 

exists  at  least  one  decision  vertex  in  Qt  then  such  a  vertex  may  be  taken  as  v
(
-  in  any 

case. Thus we have  proved  that  also  the step d) may  be done and, if necessary,  may  be 

repeated  many  times. 

At  last  let  us  prove  that  G =  <V,  O>  satisfies  (6.1): 

(i)  in  H  there exists  at  least  one output vertex  w e  Wand  by  c) one obtains  cp(w)  = 

=  Gi  such  that  | V\  =  1. Therefore from  d), where O  is determined definitely,  it  follows 

that  vt  e  V, where V,-  =  {v,}  must  be an output vertex  in G; 

(ii)  in  H  there  exists  (by  (6.9 i))  exactly  one  input  vertex  w e  W and  there  exists 

(by (6.9)) v eVi  =  (p(w); therefore, one immediately sees  that  v is a possible  origin in G, 

because  if  v*  is  an  arbitrary  other vertex  in  G then  v* e  Vj  =  (p(w*)  for  some  w* e W, 

and therefore there is a monotonic  path which  starts  at w, contains  w* and  terminates 

at  an  output vertex  w**  of  H  (see  Theorem 2.1  [3]). With  respect  to  the requirement 

(6-10 i)  and  to  the  construction  step  d)  it  is  clear  that  there  exists  a  monotonic path 

in  G which  starts at  v, contains v*, and terminates at an output vertex  of G; 

(iii)  follows  immediately by  (6.10  ii) and by  the construction step d). 
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S  O Ll Һ  Г П 

SYNTAKTICKÉ  DEFINICE  PROGRAMU 
A  BLOKOVÉHO  DIAGRAMU 

KAREL  ČULÍК 

Program  je  definován  syntakticky  jako  uspořádaná,  konečná  množina  značkova-
ných  příkazů,  což  jsou  jisté  řetězy  nad  konečnou  abecedou.  Značkovanou  větví 
programu  se  nazývá  konečná  posloupnost  jeho  značkovaných  příkazů,  která  udává 
možné  pořadí  příkazů  v  n  jakém  dokončeném  výpočtu.  V  silné  definici  programu 
je  připojena  řada  syntaktických požadavkû, motivovaných  výpočetním  procesem. 
Blokový  diagram  programu  se  zavádí  jako  orientovaný  graf  s  ohodnocenými  uzly 
i  hranami  a  předkládá  se  algoritmus  syntézy  programu  k  danému  blokovému  dia-
granш.  Neznačkovaná a  operační větev  se  zavádí  pro  programy  i  blokové  diagramy 
a  uvádí  se  nutné  a  postačující  podmínky,  kdy  dva  programy  mají  tutéž  množinu 
všech  značkovaných  nebo  neznačkovaných  v  tví,  která  je  vždy  regulární  událostí. 
Přehled  o všech  možných  blokových  diagramech je  získán  aígebraicky  pomocí  grafové 
faktorizace,  kde  faktor  — graf je  souvislý  a  acyklický  graf  s jediným  vstupním  uzlem, 
zatím  co příslušné  podgrafy  jsou  siln  souvislé. 

Aшho/s  address:  Prof.  Dr.  Karel  Čulík,  Dr.Sc,  Výzkumný ústаv  mаtеmаtických  stгojû, 

Lužná 9, 160 00  Prаhа  6 -  Vokovicе. 
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