
Aplikace matematiky

Karel Čulík
Syntactical definitions of program and flow diagram

Aplikace matematiky, Vol. 18 (1973), No. 4, 280–301

Persistent URL: http://dml.cz/dmlcz/103479

Terms of use:
© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103479
http://dml.cz

SVAZEK 18 (1973) A P L I K A C E M A T E M A T I K Y ČÍSLO 4

SYNTACTICAL DEFINITIONS OF PROGRAM

AND FLOW DIAGRAM

KAREL CULIK

(Received October 19, 1972)

Weak and strong definitions of the program and the flow diagram are introduced,

studied and compared using the branches of programs which correspond to the maxi­

mal pathes in flow diagrams. An algebraic characterization of flow diagrams is pre­

sented. The set of all possible branches is a regular event.

O. MOTIVATION OF PROBLEMS AND NOTATION

With respect to the execution of a program, which is considered as a finite se­

quence of commands, and with respect to the input data the unique sequence of com­

mands from the program is determined, which will be called a branch of the program.

In order to study all possible branches of a program it is sufficient to distinguish

two main sorts of commands: let Seq be the set of all possible sequential commands

which are characterized by the fact that within the program their right neighbouring

commands (if any) will be executed as the next ones, and let Dec be the set of all

possible decision commands characterized by a decision which command should be

executed as the next one.

To be more concrete (see [l]) let each sequential command be a string of the form:

(OA) f
(
"\x

u
x

2
,...,x

n
)=:x

0
,

where " f
(n)

" is a symbol of an n-ary operation (either basic with respect to the com­

puter under the consideration, or a composed one, which is determined by another

program, i.e. a subprogram, or a procedure call, or a macro-command; this is allowed

according to the sort of programming language we have in mind,) and x
t
 are proper

individual variables or symbolic addresses for i = 0, 1,...,«.

Further let START, STOP be the well known special commands which are called

the starting and the stopping command, respectively.

This paper was presented at the conference on Graph Theory, held in Stirin in May 1972.

280

Two types of decision command are distinguished: a branching command has

the form:

(0.2) Cu...^ux2,...,xn),

where "g{
la\ flfc]" is the symbol for an n-ary k-valued condition, which is a function

assigning one from the set of labels {a{, ..., ak} to an r.-tuple of objects, which the

computer is dealing with, and xt are proper variables again for i = 1,2, ..., n.

It is assumed that k = 2 and that " g ^ " is the symbol of an t?-ary relation in the

k-valued logic, i.e., Field g\n
k\ cz Obf (or even Field g\n

k\ = Obf, if no partial rela-

tions are admitted) where Obj is the set of all (basic) objects the computer is dealing

with, and further that the label at (which is a symbolic address as well, but distingui-

shed from the proper variables) corresponds to the truth value i if the k values are

{I, 2, ..., k}.Thus if I = true, 2 = false, < \\\ = < and Obj is the set of real numbers,

then < iath](x, y) is the function assigning the label b to the pair (3, 2), i.e. for x = 3,

y = 2, because it is false that 3 < 2, etc.

The second type of the decision command, called the unconditional jump, has

the form:

(0.3) a, where a is a label .

Now a labelled command is a pair <b, C> where b is a label and C a command.

To be quite exact (see [4]) let us assume that Lab, PVar are sets of labels and pro-

per variables, respectively, such that Labn PVar = 0; let SymbOpr, SymbRel

be the set of symbols of operations and relations in the Obj, respectively, ,and finally

let Sep = {, ; = : () [] < > START STOP} be the set of certain auxiliary symbols.

Then all commands are strings over the alphabet SymbOpr u SymbRel u Lab u

u PVar u Sep defined according to (0.1), (0.2) and (0.3). Therefore the set of all

commands Com over this alphabet is defined perfectly.

The execution of a command C from Com is defined in [1, 4] with respect to a given

state of storage er, which is a function from the set of functions (Obj u PVar u

u Com)Lab in a natural way. The new state o* = Co is determined by C =

— f{n)(x\-> • • •-> xn) = : xo °y t n e following requirement:

(0.4) <7*(x0) = fM(a(Xl), a(x2),..., <x(x„)),

a*(y) = cr(y) for each y e PVar such that y #= x0 ,

where, obviously, f (, ,) denotes an n-ary operation such that Doman f (n) c: Obj" and

Range f (, ,) cz Obj.

The decision commands do not change the state; they determine only the next

command which should be executed. This command depends on the given state if a

branching command is executed. It is not necessary to go in all details in the definition

of semantics here. It should be only stressed that all possible interpretations of symbols

of operations and relations may be taken into account.

281

1. REQUIREMENTS CONCERNING SYNTACTICAL DEFINITIONS OF PROGRAM

The main aim of a program is to determine the detailed prescription of the com-

puting process, which includes the information whether or not the intended com-

putation has been completed, or in other words, whether or not the computing

process has been interrupted before its completion for some reasons. Therefore the

following (weak) definition of program over {Com, Lab) should be accepted:

A finite ordered set, which we consider as a sequence P = (K(0), K(1), ..., K(N))

of labelled commands K(0 = <b(/), C(f)> where b(i) e Lab and C(i) e Com for i =

= 0, 1, ..., N, is called a program if the following requirements are satisfied:

(1.1) (i) C(0) = START and C(i) 4= START for all i = 1,2, ...,N;

(ii) there exists /, where 1 <; i g N, such that C(.° = STOP

(iii) there exists at least one labelled branch of the program P, which is de-

fined in (1.2);

(iv) b(0 # b(j) where i 4= j for each i,j = 0, 1, N.

A finite sequence LB = (K0, Ku ..., Kq) of labelled commands Kt = <bt-, C,>

where Kt- = K°"f) and 0 g j ; S Nfor each i = 0, 1, ..., a, is called a labelled branch

of the program P = (K(0), ..., K(/V)), if the following requirements are satisfied:

(1.2) (i) K 0 = K (0) ,

(ii) Kq = K(i) where 1 g i g N and C(0 = STOP;

(iii) if 0 ^ i <; g and Kf = K(h) where 0 :g h ^ N, then there occurs one of

the following three possibilities:

a) C(h) is a sequential or starting command, and then Ki+X = K(h+l);

b) C(h) is a branching command, i.e.

C(h) = g^,...,^!, ...,xM), and there exist j, 1 ^ j ^ k, and p,

1 S P S N, such that a- = b(/?) and then Ki+X = K(p);

c) C(h) is an unconditional jump, i.e. C(h) = a, and there exists p,

1 ^ p g N, such that a = b(p) and then Ki+l = K(p).

The four requirements (1-1 i —iv) need no special clarification. The requirement (i)

is a formal one, the requirement (ii) is necessary in order to have a possibility to find

whether or not the program was completed. The requirement (iii) avoids certain

programs which never can be completed, and the requirement (iv) follows naturally

if we admit the following interpretation of a labelled command <b, C>: the command

C is stored at the memory cell with the abstract address b.

Besides the main aim of a program the further requirements concerning programs

may be classified in the following three sorts:

(1.3) an interruption of the computing process (not caused by an error of the com-

puter itself) before its completion should be caused only by the fact that some

282

operations and relations are partial, i.e. they are defined only for some n-tuples

of objects;

(V4) the computing process, which would be infinite, should be excluded in advance

(when it is possible at all);

(1.5) there are no superfluous commands in the program, where a command is

called superfluous if it is never executed with respect to all possible inter-

pretations.

The requirement (1.3) is guaranteed by the following three requirements:

(1.1) (v) if C(i) = a, where 1 ^ i g N, then there exists;', 1 <; j ^ N, such that

b
(i)
 = a;

(vi) if C(0 = g[ai,...,flkr(*i, ..., xn)>
 w nere 1 <; i g N, then for each integer j,

1 ^ j <; k, there exists an index hj9 1 g hj ^ N, such that b(Hj) = a}- ;

(vii) either C(N) — STOP or C(N) is a decision command.

The requirement (V4) is guaranteed by the following requirement only partly:

(LI) (viii) there is no ordered set of decision commands {C (, l), C('2), ..., C (/ p)],

where p ^ 1 and 1 g /_. g N forj = 1, 2, ..., p, such that the following

assertion is true for each j (mod p):

II f C('7) = 0[al,...,ak](xi> •••> xn) t n e n there exists and index /?, 1 g /? <; k,
such that ah = b(/j + ,), and if C(ij) = a then a = b(ij+l).

Finally the requirement (1.5) is guaranteed by the following requirement:

(1.1) (ix) each labelled command of the program belongs to at least one of its

labelled branches.

The (strong) definition of program includes all nine requirements (l . l i —ix)

instead of the four requirements (l . l i — iv) in the (weak) definition above. Throughout

the paper, this definition of program is assumed.

Let LBrP be the set (which may be infinite) of all labelled branches of the program P

and let two programs P and Q be called LBr-equivalent if LBrP = LBrQ.

By any program P = (K(0), K(1), ...,KW) the finite system P = {Pu P2, ..., Pp)

of all subsequences Pf of P is determined uniquely by the following requirements:

(1.6) (i) each Pf e P contains at least one K(j) such that C(j) is either a sequential

or the starting command;

(ii) if K(J) e Pf, where Pf e P, and C(7) is either a sequential or the starling

command, then K(/+ 1} e Pt as well;

(iii) the length of each subsequence P, e P is the largest possible:

(iv) if K(/) e Ph where Pf e P, and C(j) is neither a sequential nor the starting
command, then K(i+1) <£ P-.

283

Now it remains to assume LBrP = LBrQ and then to prove N = M and to find

the permutation n which satisfies (1.7). If N + M then we may assume that there exists

a labelled command L(J<) e Q such that liJ) £ P (and similarly in the contrary case

if P — Q + 0) and by (VI ix) there exists a labelled branch LB e LBrQ which con-

tains L0). Therefore LB <£ LBrP and we obtained a contradiction LBrP =j= LBrQ.

Thus it must be N = M and, moreover, by the previous argument P and Q must be

set theoretically equal, i.e., there must exist a permutation n of integers {0, 1, ..., N}

such that (1.7 iv) is satisfied. With respect to this requirement and by the requirement

(IA i), which is fulfilled by P and Q, it follows that (1.7 iii) is satisfied, too.

Further let us assume that (1-7 i) is not satisfied, i.e., there exist Ph e P and K(l)e Ph

such that L(7r(/)) does not belong to any Q} e Q. According to (1.6) Ln(i)) must be

a decision command and therefore K(,) must be the last element of the subsequence

Ph (because by (1.7 iv) K(/) = L(7r(/))). By (1-1 ix) there exists at least one labelled

branch LB e LBrP which contains K(,). If K(0 = Ks then s > 0 and according to (1.6)

Ks„ t must be a sequential or the starting command. On the other hand the command

£(*(.» m u s t b e preceded in each branch from LBrQ by another decision command,

which means that LB $ LBrQ, and therefore LBr + LBrQ. Thus (1.7 i) must be valid.

Finally let us assume that (1.7 ii) is not satisfied, i.e. there exists a subsequence

(K,-,K /+1, ...,K / + r) e P, where K, = K(h), and an integer, t, 1 ^ t <; r such that

n(h + t) + n(h) + t. We may assume that n(h + t - \) = n(h) + t - 1 (i.e., t is

the smallest possible). Using (1.7 iv) K(h+t~l) = Ln(h+t~l) = Ln(h)+t~\ butK(h+t) =

= Ln(h+t) = Ln(h) + t. By (1.1 ix) there exists at least one branch LB in LBrp which

contains the two commands K(h+t~u = Ki + t_u Ki + t = K(/l+r), but no branch

in LBrQ can contain the two commands u(h+t~X) = Ls, Ls+1 = U(h+J), because

according to (1.6) the command Ls must be followed by jj(h+t~^+{ - £j-(*) + - ^

+ U(h+t). Thus LB$LBrQ and therefore LBrP + LBrQ, which is the required

contradiction proving that (1.7 ii) must be satisfied. Now the proof is complete.

If P = (K(0), ..., K(N)) is an arbitrary program then let Sp be the set of all integers/

such that K(J) is the first (or leading) member of a subsequence Ph e P (defined

by (1.6)) and such that 1 g j :g N (thus the subsequence with the leading member

K(0) is not taken into account and therefore \SP\ may be equal to zero). Further

let RP be the set of all integers j such that K(J) does not belong to any subsequence

Ph e P (thus |RP | may be equal to zero, too).

If ns, nR is an arbitrary permutation of 5P, RP respectively, then the following

permutation n of {0, 1,..., N} is determined uniquely as follows:

(1.8) (i) 71(0) = 0;

(ii) if j e SP then n(j) = ns(j);

(iii) if j e RP then n(j) = nR(j);

(iv) if fe{l,2, ...,N} - (SP u RP) then there exists the largest integer

/ e SP u {0} such that i < j and n(j) = n(i) + j — z\

285

Theorem 1.2. If P = (K(0), ..., K(A)) is an arbitrary program then each program

0 which is LBr-equivalent to P arises by reordering of P when a permutation n

is used, i.e., Q = (Kn(0), K*(1), ..., Kn(N)), where n is defined by (1.8) from the both

permutations ns, nR which are chosen arbitrarily. Thus there are (|SP|!). (|Pp(0

different programs Q, each of which is LBr-equivalent to P.

Proof follows easily from Theorem 1.1.

2. WEAKENING OF CONDITIONS

We intend to compare the weak and strong definition of the program.

Lemma 2.1. Let P be a weak program and let Q arise from P by ommitting all

labelled commands which are not contained in any labelled branch of P. Then

LBrQ = LBrP and the weak program Q satisfies the requirements (1.1 ix), (1.1 v),

(LI vii) and the following assumption analogous to, but weaker than, (1.1 vi):

(2.1) if C(f) = g[aj,...,flk](xi, •••, -V), where 1 ^ i ^ N, then there exist an integer j ,

1 ^ j <; k, and an index hp 1 <: h} <£ N such that b(hj) = a}.

Proof is obvious.

If C(i) = Ot
("j ak-]{xu -'->xn) i s a decision command of a weak program P =

= (K(0), ...,K(/V)) which satisfies (2.1) but, in general, not (1.1 vi), then the w-ary

relation in the k-valued logic g(
(k], required by an interpretation of P, cannot be

employed fully within P, and the same results will be obtained using another ti-ary

relation in the r-valued logic g^j, where r < k, which is defined as follows: let j l be

all integers such that 1 ^ j \ < j 2 < ••• < h = ^ a n d t n a t t h e r e e x i s t s a n index

ht, 1 ^ ht S N, which satisfies b(hi) = aJr Now let a new condition be defined:

(2-2) Sla^aj^aj^U''^ Xn) = d f ^ f a a , . . . , « f c] (^ l — Xn) ,

in every interpretation of the symbol of relation g(
(
n
k\. It is clear that g["r] is a partiali-

zation of g\"k] which is determined by the prescription of a smaller range

{ajx, aj2, ..., ajr} cz {au a2, ..., ak} (instead of the more usual prescription of a smal-

ler domain).

Lemma 2.2. Let P be a weak program which satisfies (1.1 ix), (1.1 v), (1.1 vii) and

(2.1), and Jet Q arise from P by replacing each condition, which does not satisfy

(1.1 vi), by its partialization defined in (2.2). Then Q satisfies (IT vi).

The p roo f is obvious.

It is easy to see that the requirement (1.1 viii) is independent of all the others.

286

Lemma 2.3. A weak program P satisfies (VI viii) if and only if each labelled

branch LB e LBrP satisfies the following requirement:

(2.3) if LB = (K0, Kj, ..., Kq) then there exists an integer j , 0 < j < g, such that

Kj = Kj + p, where p _ V and Kj + t is a decision command for each t =

= 1,2,..., p.

The p roof is obvious.

It remains an open problem whether or not to each weak program P, which satisfies

(VI vi), there exists a strong program Q such that the following assertion is valid:

(2.4) LBrQ = {LB: LB e LBrP and LB satisfies (2.3)}.

Lemma 2.4. A strong program P = (K(0), ..., K(N)) satisfies the following re-

quirements:

(2.5) if C (0 is a decision command, where 1 ^ i < N, then there exists a deci-

sion command C(h), 1 ^ h g N, such that h 4= / -F 1, Or/d /f C(0 =

= gfl[i,...,ak](xi, •••, *„), then there exists an index], 1 £j ^ k, such ffta/

fl7 = fe(iil), Or/d if C(0 = a, then a = b(/ + 1);

(Vlv*) is identical with (VI v), where in addition j 4= - /s required;

(l.lvi*) is identical with (\A vi), where i/1 addition hj 4= / is required.

The p roof is obvious.

3. FLOW DIAGRAM OF A PROGRAM

The flow-diagram of a (strong) program P = (K(0), ..., K(N)) is an oriented graph

FDP = <V, O, A, A> with labelled vertices and edges, which is defined as follows:

(3.1) (i) V= {b(0), b(1), ..., b(Ar)};

(ii) a) if C(0 is a sequential or the starting or the stopping command, then

A(b(0) = C (0 ;

b) ^ C (/) = g(^ flk](x„..., x„) then /(b (/)) = ^ (x , , ..., x„);

c) if C(0 = a then A(b(/)) = GOTO, where ''GOTO,' is a new symbol

(corresponding to i4go to" in programming languages) and 0 ^ / g N;

(hi) a) ifC (/) = STOP then there is no edge starting at b(0;

b) if C(/) 4= STOP is a sequential command or C(0 _ START then

there is a unique edge (b(,), b(' + 1)) starting at b(0;

c) if C(0 = gia\,...,ak-}{xi> ••-> xn) t n e n t n e r e a r e a s many edges starting

at b(0 as there are different labels ar viz. the edges (b (0, aj) for each

j = V2,...,k;

287

d) if C
{,)

 = a then there is the unique edge (b
{i
\ a) starting at b

(/)
, where

1 ^ ' S N, and there are no other edges in O than those defined above;

(iv) if C
(/
> = g[

a
°

lf
...

takl
(x

u
...

9
x

n
)

9
 where l ^ i ^ N, then A(b

U)
, a

3
) =

= {/?; h is an integer such that 1 5̂ h rg k and a
/?
 = a

;
} for each j =

= 1,2, ..., k and for each of the remaining edges (x, y) one defines

Л(x, y) =

According to (3.1 ii) the range of the labelling A of vertices of FD
P
 is the set con­

sisting of certain sequential commands of the form "/
(w)

(x
l 5

 ..., x
n
) = : x

0
", of sym­

bols of certain n-ary relations in the k-valued logic g(£)(xi, . -., xn), where xt is a proper

variable for i = 0, 1, ..., n, and of symbols START, STOP and GOTO.

According to (3.1 iv) the range of the labelling A of edges of FDP is the set con-

sisting of finite sets of integers. Only in the special case when the following condition

is satisfied:

(3.2) if C(0 = g[al...fak}(xu ..., xn), where 1 S i = lV, then a, 4= ah for j * h and

for all / h = 1,2, ..., k, where always k ^ 2,

the range of A is the set of particular integers only (i.e. no sets of integers are

necessary).

Without a loss of generality the requirement (3,2) will be accepted in the sequel.

This requirement only means that some new relations and symbols of relations are

introduced in advance. E.g. g\l]a^ is a binary relation only in the 2-valued logic

(although it arised from g\\^) which does not satisfy (3.2) and therefore one assumes

that a new symbol "h[^V," ^s available which satisfies (3.2) and which is defined as

follows: h[affc](x, y) = dfg[a.a.&](x> y)- Obviously a different relation is defined by
fcc«i](*' y) = ^{2a]bAx- y)> e t c- If fc = 2 and (3-2) is not satisfied, e.g. "<[*,<.](*, y)"

then it is clear that this degenerated decision command may be replaced by the un-

conditional jump "a". Therefore, if the requirement (3.2) is not satisfied then the

notion of unconditional jump is superfluous.

It is useful to call a vertex of FDP sequential vertex or a decision vertex, respectively

if its label (in the labelling A) is a sequential or a decision command.

Theorem 3.1. An oriented graph G = <V, O, A, A) which is isomorphic with res-

sped to the labellings A and A to a flow diagram of a program satisfying (3.2),

satisfies the following requirements (3.3) and (3.4):

(3.3) (i) there exists exactly one input vertex w e V; A(w) = START; there

exists exactly one edge (w, x) starting at w and A(w, x) = 1;

(ii) there exists at least one output vertex; if w e Vis an output vertex then

X(w) = STOP and there is no edge starting at w;

(iii) if w e V is an inner vertex and od(w) = 1 then either 2,(w) = GOTO

or l(w) is a sequential command and A(w, x) = 1 holds for the unique

edge (w, x) starting in w;

(iv) if w e V is an inner vertex and od(w) — k > \ then A(w) =

= gfy (x l9 ..., xM), where gfy is the symbol of a relation in the k-valued

logic and all k edges starting at w are labelled by integers 1, 2, ..., k

in the labelling A;

(viii) each cycle in G contains at least one sequential vertex and there are

no slings;

(ix) each vertex belongs at least to one (monotonic) path which starts

at the input vertex and terminates at an output vertex;

(3.4) if w e Vthen there exists at most one vertex v e Vsuch that (v, w) e g and either

A(v) = START or X(v) is a sequential vertex.

Proof. We need to prove that every flow diagram satisfies (3.3) and (3.4) if the

labels are considered as arbitary abstract symbols. Let us show it consecutively

(although not in all details):

(3.3) (i) follows from (1.1 i), (3.1 ii-a), (3.1 iii-b) and (3.1 iv);

(ii) follows from (1. t ii), (3.1 ii-a), (3.1 iii-a) and (3.1 iv);

(iii) follows from (3.1 iii-d), (3.1 iii-b), (3.1 ii-c), (3.1 ii-a) and (3,1 iv);

(iv) follows from (3.1 ii-b), (3.1 iii-c), (3.2) and (3.1 iv);

(viii) follows from (1.1 viii),

which also implies that there are no slings at the decision vertices (according to

(1.1 v*) and (1.1 vi*)); for the remaining inner vertices this follows by the definition

of the labelled branch (1.2) and from (3.1 ii-a) and (3.1 iii-b);

(3.3) (ix) follows from (LI ix);

(3.4) follows from the assertion (1.6 iv) which concerns the subsequences Ph e P.

Before showing the synthesis of a program for a prescribed flow diagram let us

describe a certain construction on a graph G = <V, O, A, A> which corresponds to the

construction of the finite system P'of subsequences of the program P (see the require-

ment (1.6)).

If G satisfies (3.3) and (3.4) then let G be the set of all subgraphs Gt = <Vf, gh Xh A,->

of G for / = 1,2,..., p, which are uniquely determined by the following requirements:

(3.5) (i) at least one vertex w e V,- satisfies the requirement that X(w) is either

a sequential command or the starting command;

(ii) if w e Vt and A(w) is either a sequential or the starting command then

there exists just one vertex ve V such that (w, v) e O and also ve Vf;

(iii) the number of vertices in V. is the largest possible;

(iv) if w e Vt and A(w) is neither a sequential nor the starting command, then

there exists no v e Vsuch that v e V,- and (w, v) e O;

(v) O. = V/2 n O; Xi(w) = X(w) for each we Vt and A,(w, v) = A(w, v) for

each (w, v) e O ,-.

289

Further, it is clear (by the definitions of non-labelled and operational branches)

that if Br
P
 = Br

Q
 then also OBr

P
 = OBr

Q
 for all programs P and Q. The converse

assertion is not valid, which is shown by Fig. 4 and 5 where flow diagrams of two

programs P
t
 and Q

{
 are shown such that OBr

P{
 = OBr

Py
 but BR

P{
 =}= Br

Qr
 More­

over it is immediately seen that P, and Q
{
 compute different functions, viz P

L
 com­

putes | x | and Q
{
 computes — I x i.

"START]

(x > <T)

'7 \2

x « : У -x= : У

[ІTOР]

1 START |

Fig. 4 Fig5

4. FLOW DIAGRAM AND ITS EXECUTION

The execution of a program requires the determination of the next state and of the

next command, i.e. which command should be executed as the next one (see Sect. 0).

The same may be determined also for an oriented graph G = <V, O, A, A> which

satisfies (3.3) independently of the requirement (3.4). The current state is changed

only by a sequential command which is the label in A of a vertex w, while the command

which should be executed next is that one by which the unique vertex v, such that

(w, v) e O, is labelled in A. If a decision command, which is the label of the vertex vv,

is considered and executed, then with respect to the current state its value is a truth

value i and therefore the unique vertex v is determined such that (vv, v) e O and

A(w, v) = i. Hence A(v) should be executed as the next command.

Construction (Linearization) 4.1. If an oriented graph G = <V, O, A, A> satisfies

(3.3) but does not satisfy (3.4), then an oriented graph G' = <V', O', A', A'} may be

constructed as follows: consecutively (in an arbitrary order) each vertex w e V is

considered such that if w
1?

 w
2
, ..., w

n
 e Vare all those vertices such that (w

1?
 w) e O

and A(vv
/
, w) is either a sequential or the starting command for each i = 1, 2, ..., w,

then n ^ 2; if w is the vertex under the consideration, then n — 1 new vertices

t
i9
 t

2
, ..., t

n
„

i
 are chosen and added to V, further the edge (w

h
 w) is omitted from O

and replaced by two new edges (w
h
 t

t
) and (t

h
 vv), which are added to O for i =

294

= 1, 2, ..., n — 1 (which may be done in n different ways); and finally one defines

;/(/;) = GOTO, A'(wi9 tt) = A(wi9 tt) and A'(ti9 w) = 1 for i = 1, 2, ..., n - 1, while

in all the remaining cases X and A remain unchanged.

Let us write BrG = BrG, (mod GOTO) if #BrG = #BrG ' where *BrG arises from

BrG as follows: each branch of BrG arises from a branch (D0, Dl9 ..., Dq) of BrG

by omitting all pairs Dj9 which contain "GOTO".

Theorem 4.2. If G satisfies (3.3) and G' arises from G by the construction 4A ,

then G' satisfies (3.3) and (3.4), BrG, = BrG (mod GOTO), and therefore OBrG, =

= OBrG. If G satisfies (3.3) then there exists G* which satisfies (3.3) and (4A),

BrG* = BrG (mod GOTO), and therefore OBrG* = OBrG, where:

(4.1) there is no vertex labelled by "GOTO".

Proof. The first part follows immediately by the construction 4A , because it is suf-

ficient to show it for the single vertex under the consideration. The second part

requires a converse construction to the construction 4.1, i.e., the omission of vertices

which are labelled by GOTO, which is defined easily.

Now it is clear that to each oriented graph G = <V, O, X, A>, which satisfies (3.3)

and (4.1), a program P may be constructed such that BrG = BrFDp (mod GOTO),

and therefore it is possible to define this graph G as a flow diagram without any respect

to the program as in Sect. 3. The omission of all unconditional jumps and the omis-

sion of (3.4) enables us to give the following definition of a flow diagram (being

a reformulation of (3.3)) which is clearer and more suitable for our purpose:

(4.2) (i) there exists exactly one input vertex;

(ii) there exists at least one output vertex;

(iii) each vertex belongs at least to one (monotonic) path which starts at the

input vertex and terminates at an output vertex;

(iv) each cycle contains at least one sequential vertex;

(4.3) by the labelling X of vertices the input vertex is labelled by "START", each

output vertex is labelled by "STOP", each sequential vertex is labelled by

an operational command, and each decision vertex vv with od (vv) = k g: 2 is

labelled by a decision command in the k-valued logic;

(4.4) by the labelling A of edges all k edges starting at the vertex vv such that od (vv) =

= k = 1 are labelled by k integers 1,2, ..., k;

where the particular requirement (4.2), (4.3) and (4.4) are classified according to the

graph structure <V, O> itself, the labelling X of vertices and the labelling A of edges,

respectively.

It should be mentioned that (4.3) says that the types o[commands uniquely cor-

respond to the types of vertices.

295

5. REGULAR LANGUAGES OF LABELLED BRANCHES

Let P = (K(0\ K(l\ ..., K(iV)), where K(0 = <b(/), C(,)> be a program and FDP =

= <V, O, A, A> its flow diagram. Let us define a new graph GP = <V, O, x) where x is

the following labelling of vertices in GP : x(b(l)) = K(,) for i = 0, 1, ...,N. Further

let us shift the labels of vertices on those edges which terminate at them, i.e., let us

define Gp = <V, O, x*> by the following requirement:

(5.1) x*(x, y) = dfx(y) for each (x, y) e O .

If we assume that every monotonic path (v0, v]9 ..., vq) in GP where v0, vq is the

input vertex and an output vertex, respectively, generates the labelled branch

(x(v0), x(v t) , . . . , x(vq)), then we may say that the same path in G*. generates the sequence

of labelled commands (x*(v0, vi), x*(v1? v2), ..., x*(vq_u vq)). If LBrGp and LBrG*p

are the sets of all sequences of labelled commands generated by GP and G*, respectively,

then it is clear that the following assertion is valid:

(5.2) LBrP = LBrGp = K(0)LBrG*p ,

where K(0)LBrG*p means the concatenation of K(0) with the set of strings in LBrG+p.

Theorem 5.1. LBrP is a regular language over the vocabulary of all commands

for each program P.

Proof. Using (5.2) it is sufficient to show that LBrG*pis a regular event, but this is

an immediate consequence of Theorem 3.4 of [2], because if x is the input vertex

of G*, X is the set of all output vertices in G* and G*[x, X\ denotes the set of all

labelled branches generated by all monotonic pathes (v0, vu ..., vq) such that v0 = x

and vq e X, then obviously G*[x, X\ = LBrG*p, and Theorem 3.4 of [2] says that

G^[x, X\ is a regular event. See also [5].

6. FLOW NETS

With respect to the following algebraic investigations it is convenient to modify

the concept of the flow diagram in an unessential but very useful way which consists

in omitting the input vertex. In order to avoid any confusion the new term "flow net"

will be used for this modified flow diagram.

A flow net without origin is an oriented graph G: = <V, O, A, A> with two labellings

X and A such that the following requirements (being similar to (4-2 — 4-4)) are satis-

fied:

296

(6.1) (i) there exists at least one output vertex;

(ii) there exists at least one vertex, called a possible origin, such that each

vertex belongs at least to one monotonic path which starts at the pos-

sible origin and terminates at an output vertex;

(iii) each cycle contains at least one sequential vertex, i.e., a vertex w such

that od (w) = 1;

(6.2) (i) w is an output vertex o X(w) = STOP;

(ii) w is a sequential vetex o X(w) is an operational command;

(iii) w is a decision vertex and od (w) — k o X(w) is a decision command

in the k-valued logic;

(6.3) = (4.4)

If a possible origin v e V is distinguished then <V, O, v, X, A> is called a flow net

with the origin v. Obviously the origin should replace the input vertex of the flow

diagram.

Lemma 6.1. There is a one-to-one correspondence between flow diagrams G and

those flow nets G* with origin which arise from G by omitting the input vertex

and the unique edge starting at it. The vertex at which the omitted edge terminates

is the chosen origin. In addition BrG = \JSTART, 1] BRG*, where BrG and BrG* are

considered as sets of strings.

The p r o o f fol lows from the de f in i t ions .

It should be mentioned that it is not possible to omit also the output vertices

and to distinguish the last vertices in general, because a vertex which is connected

by an edge with an output vertex may be a decision vertex, and therefore it can

happen that sometimes it should be the last vertex, but sometimes not.

Lemma 6.2. If G = \V, O, X, A> is a flow net and x e V, then its subgraph Gx =

= <Vv, Ox, Xx, Ax> defined by the requirement (6.4) is a flow net again with the pos-

sible origin x where:

(6.4) Jet Vx, QX be the set of all vertices and edges, respectively, which belong

at least to one monotonic path in G which starts at x and terminates at an out-

put vertex of G; Xx = df X\Vx and A x = df A \ Q x .

The p roo f is obv ious .

Let us define a binary relation > in the set of all nets Gx where x e V and G =

= <V, O, v, X, A> is a flow net, and simultaneously in the set Vitself, as follows:

(6.5) Gx >Gyo dfy e Vv and Gx ~ Gy o df(Gx > Gv) & (Gy > Gx) .

297

Theorem 6.3. The binary relation >- is a quasi-ordering relation, i.e., it is re-

flexive and transitive, and therefore the binary relation ~ is an equivalence relation.

Proof. According to (6-4) x e Vx and therefore by (65) Gx > Gx for each x e V,

which proves the reflexivity of >-. Further if Gx > Gy and Gy >• Gz then by (6.5)

y e Vx and z e Vy. Using (6.4) one sees that y e Vx implies Vy cz Vx, and z e Vy implies

Vz cz Vy. Therefore Vz c Vx is true and z e Vx which means by (6.5) that Gx > Gz,

i.e., the transitivity of > is proved. The equivalence of ~ follows by well known

theorems.

Let V = {Vj, V2? •••> ^M} ^e t n e set of all equivalence classes defined in V with

respect to the equivalence relation ~ . Then V is a decomposition of V, i.e., the fol-

lowing requirements are satisfied:

(6.6) V) =4= 0; V/ n Vy = 0 where i #= j for all i,j = 1, 2, ..., M; M ^ 1 and
M

U V = V
i= 1

Further let G = <V, Q} be the factor graph of G defined as follows:

(6.7) (Vf, Vy) G £ <=>df there are vieVi and VJEVJ such that (vf, vy) e O for all

i,j = 1,2, ..., M,

and finally let G,- = < Vh Q{) be defined for i = 1, 2, ..., M as follows:

(6.8) O,- = O n V.2.

Lemma 6.4. If G = <V, O> is a finite oriented graph having at least two vertices

which satisfies (6.1), then its factor graph G is a finite oriented graph having at least

two vertices such that the following requirements are satisfied:

(6.9) (i) there exists exactly one input vertex in G;

(ii) there are no cycles in G;

(iii) there are no slings in G;

(iv) G is connected;

and each of the subgraphs G/ is a finite oriented graph such that:

(6.10) (i) G; is strongly connected;

(ii) each cycle in Gt contains at least one vertex w such that od (w) = 1;

(iii) there are no slings in Gt;

(iv) if Vi contains an output vertex then \Vt\ = 1.

Proof. First of all let us prove (6.10). (i) follows directly by (6.5); (ii) and (iii)

follow by the definition (6.8) and by the assumptions (6.1) concerning G. If Vt contains

an output vertex then (iv) follows by (i).

298

Now let us prove (6.9). By (6.1 ii) it follows that in G there exists exactly one input

vertex, i.e., (6.9 i) is satisfied, and for this vertex (6.9 iv) is also satisfied. According

to (6.5) each two vertices of G which belong to the same cycle must be equivalent,

which proves that G defined by (6.7) cannot contain any cycle, i.e., (6.9 ii) is satisfied.

In G there are no slings, because this is excluded by (6-1 iii) for the decision vertices,

and by (ii) for the sequential ones. Therefore (6.7) cannot cause a sling, which means

that (6.9 iii) is satisfied.

Finally, M ^ 2 follows by (6.10 iv) and (6.9 ii and iii).

Construction 6.5. An arbitrary flow net without origin G = (V, O, X, A> may be

constructed as follows:

a) one takes as the base an arbitrary finite oriented graph H = <W, cr> which has

at least two vetrices and satisfies (6.9);

b) if \w\ = M and S, i :g S < M is the number of the output vertices of H,

then one takes M finite oriented graphs G; = <V;, O;>, 1 ^ i ^ M such that (6.6) is

satisfied, each of them satisfies (6-10 i-iii), and, in addition, there are at least S

of them such that |V;| = 1;

c) one chooses a one-to-one mapping cp such that Domain cp = W and Range

cp = {Gt, ..., Gm}, and if w e Wis an output vertex in G then G; = (p(w) satisfies the

requirement |V;| = 1;
M M

d) now one defines V = \J Vi and besides the edges from (J O; which must belong
r = i i = i

to Q there are the following further edges which should belong to O as well; for each

pair (w, w*) e cr one takes (p(w) = G;, (p(w*) = Gy and then one finds a pair vh Vj

such that v; G V;, Vj e V,- and the vertex v; is not the only sequential vertex on a cycle

in G;; now one puts (v;, Vj) e O; after defining O in this way one may, but need not,

stop, i.e., one may go on adding further edges in the following way: if (v;, v.) e Q

then one may take an arbitrary vertex v* G V; and v* e Vj such that v* is not the

only sequential vertex on a cycle in <V, O>, and defines O* = O u {(vf, ^*)}; this

construction may be repeated until the requirement (v*, v*) <£ O is satisfied;

e) the two labellings X and A are chosen arbitrarily but they must satisfy (6.2)

and (6.3), respectively.

Proof of co r r ec tne s s . We need to prove that the graph G = <V O> determined

by a) —d) satisfies (6-1), because the other part of the assertion that each graph

of this type may be constructed in this way, follows immediately by Lemma 6.4.

First of all it follows from (6.9) that there must exist at least one output vertex

(because the graph IT is finite, e.g. by Theorem 2.1 of [3]), and therefore S ^ 1 and

299

after the choice in a) the choice in b) may be done; then also the choice in c) is

possible and it remains to consider the determination of Q.

If G
f
 is an arbitrary graph which satisfies (6.10) then either |V,| = 1, which means

that i\ such that V,- = {v,} can not be the only sequential vertex which belongs to

a cycle in Gn and therefore vt may (and must) be always taken in the step d), or | V
f
| >

> 1 and the following possibilities must be distinguished: if all the vertices in V{ are

sequential, then there always exists the required vertex because |V,-| > 1; if there

exists at least one decision vertex in Qt then such a vertex may be taken as v
(
- in any

case. Thus we have proved that also the step d) may be done and, if necessary, may be

repeated many times.

At last let us prove that G = <V, O> satisfies (6.1):

(i) in H there exists at least one output vertex w e Wand by c) one obtains cp(w) =

= Gi such that | V\ = 1. Therefore from d), where O is determined definitely, it follows

that vt e V, where V,- = {v,} must be an output vertex in G;

(ii) in H there exists (by (6.9 i)) exactly one input vertex w e W and there exists

(by (6.9)) v eVi = (p(w); therefore, one immediately sees that v is a possible origin in G,

because if v* is an arbitrary other vertex in G then v* e Vj = (p(w*) for some w* e W,

and therefore there is a monotonic path which starts at w, contains w* and terminates

at an output vertex w** of H (see Theorem 2.1 [3]). With respect to the requirement

(6-10 i) and to the construction step d) it is clear that there exists a monotonic path

in G which starts at v, contains v*, and terminates at an output vertex of G;

(iii) follows immediately by (6.10 ii) and by the construction step d).

References

[1] Čulík X.: Claѕѕifiсationѕ of programming thеoriеѕ and languagеѕ, Information Proсеѕѕing

Maсhinеѕ 17 (in print) .

[2] Culik K: Somе notеѕ on finitе ѕtatе languagеѕ and еvеntѕ rеprеѕеntеd by finitе automata

uѕing labеllеd graphѕ, Čaѕ. pro p ѕt. mat. 86 (1961), 43 — 55.

[3] Ćulik K: Сombinatorial problеmѕ in thе thеory of сomplеxity of algoгithmiс nеtѕ without

сyсlеѕ for ѕimplе сomputеrѕ, Apliкaсе mat. (16 (1971), 188 — 202.

[4l Čulík K: Algorithmization of algеbraѕ and rеlational ѕtruсturеѕ, Сommеntationеѕ Mathеma-

tiсaе Univеrѕitatiѕ Сaгolinaе 13, 3 (1972), 457—477.

[5] Engeler E.: Algorithmiс Approximationѕ, Journal of Сomputеr and Syѕtеm Sсiеnсеѕ 5 (1971),

67-82.

300

S O Ll Һ Г П

SYNTAKTICKÉ DEFINICE PROGRAMU
A BLOKOVÉHO DIAGRAMU

KAREL ČULÍК

Program je definován syntakticky jako uspořádaná, konečná množina značkova-
ných příkazů, což jsou jisté řetězy nad konečnou abecedou. Značkovanou větví
programu se nazývá konečná posloupnost jeho značkovaných příkazů, která udává
možné pořadí příkazů v n jakém dokončeném výpočtu. V silné definici programu
je připojena řada syntaktických požadavkû, motivovaných výpočetním procesem.
Blokový diagram programu se zavádí jako orientovaný graf s ohodnocenými uzly
i hranami a předkládá se algoritmus syntézy programu k danému blokovému dia-
granш. Neznačkovaná a operační větev se zavádí pro programy i blokové diagramy
a uvádí se nutné a postačující podmínky, kdy dva programy mají tutéž množinu
všech značkovaných nebo neznačkovaných v tví, která je vždy regulární událostí.
Přehled o všech možných blokových diagramech je získán aígebraicky pomocí grafové
faktorizace, kde faktor — graf je souvislý a acyklický graf s jediným vstupním uzlem,
zatím co příslušné podgrafy jsou siln souvislé.

Aшho/s address: Prof. Dr. Karel Čulík, Dr.Sc, Výzkumný ústаv mаtеmаtických stгojû,

Lužná 9, 160 00 Prаhа 6 - Vokovicе.

301

