Aplikace matematiky

Karel Culik
Syntactical definitions of program and flow diagram

Aplikace matematiky, Vol. 18 (1973), No. 4, 280-301

Persistent URL: http://dml.cz/dmlcz/103479

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103479
http://dml.cz

SVAZEK 18 (1973) APLIKACE MATEMATIKY ClsLo 4

SYNTACTICAL DEFINITIONS OF PROGRAM
AND FLOW DIAGRAM

Karer CuLik

(Received October 19, 1972)

Weak and strong definitions of the program and the flow diagram are introduced,
studied and compared using the branches of programs which correspond to the maxi-
mal pathes in flow diagrams. An algebraic characterization of flow diagrams is pre-
sented. The set of all possible branches is a regular event.

O. MOTIVATION OF PROBLEMS AND NOTATION

With respect to the execution of a program, which is considered as a finite se-
quence of commands, and with respect to the input data the unique sequence of com-
mands from the program is determined, which will be called a branch of the program.
In order to study all possible branches of a program it is sufficient to distinguish
two main sorts of commands: let Seq be the set of all possible sequential commands
which are characterized by the fact that within the program their right neighbouring
commands (if any) will be executed as the next ones, and let Dec be the set of all
possible decision commands characterized by a decision which command should be
executed as the next one.

To be more concrete (see [1]) let each sequential command be a string of the form:
(0.1 SO xy, x50 o x,) =10,

where ™" is a symbol of an n-ary operation (either basic with respect to the com-
puter under the consideration, or a composed one, which is determined by another
program, i.e. a subprogram, or a procedure call, or a macro-command; this is allowed
according to the sort of programming language we have in mind.) and x; are proper
individual variables or symbolic addresses for i = 0, 1, ..., n.

Further let START, STOP be the well known special commands which are called
the starting and the stopping command, respectively.

This paper was presented at the conference on Graph Theory, held in Stitin in May 1972.

280

Two types of decision command are distinguished: a branching command has
the form:

(0.2) Il oo ad(X1s Xy oo X,)

E:f _____ w18 the symbol for an n-ary k-valued condition, which is a function

assigning one from the set of labels {a,, ..., a,} to an n-tuple of objects, which the
computer is dealing with, and x; are proper variables again for i = 1,2,..., n.
It is assumed that k = 2 and that g&‘{ is the symbol of an n-ary relation in the
k-valued logic, i.e., Field g{i) = Obj" (or even Field g{i) = Obj", if no partial rela-
tions are admitted) where Obj is the set of all (basic) objects the computer is dealing
with, and further that the label a; (which is a symbolic address as well, but distingui-
shed from the proper variables) corresponds to the truth value i if the k values are
11,2, ..., k}. Thusif I = true, 2 = false, < :Q = < and Obj is the set of real numbers,
then <, ,4(x. v) is the function assigning the label b to the pair (3, 2), i.e. for x = 3,
y = 2, because it is false that 3 < 2, etc.

The second type of the decision command, called the unconditional jump, has
the form:

where *'g

(0.3) a, where a is a label .

Now a labelled command is a pair (b, C) where b is a label and C a command.

To be quite exact (see [4]) let us assume that Lab, PVar are sets of labels and pro-
per variables, respectively, such that Labn PVar = 0; let SymbOpr, SymbRel
be the sct of symbols of operations and relations in the Obj, respectively, and finally
let Sep = {,: =:()[] <> START STOP} be the set of certain auxiliary symbols.
Then ail commands are strings over the alphabet SymbOpr u SymbRel U Lab U
VU PVar u Sep defined according to (0.1), (0.2) and (0.3). Therefore the set of all
commands Com over this alphabet is defined perfectly.

The execution of a command C from Com is defined in [I s 4] with respect to a given
state of storage ¢, which is a function from the set of functions (Obj u PVar u

v Com)™ in a natural way. The new state ¢* = Co is determined by C =
= f"(x,, ..., x,) =: X, by the following requirement:
(04) G*(XO) = Af(m(a'(xl) H G(XZ)’ s U('\-n)) ’

o*(y) = a(y) foreach y e PVarsuch that y + x,,

where, obviously, f denotes an n-ary operation such that Doman f™ < 0bj* and
Range /™ < Obj.

The decision commands do not change the state; they determine only the next
command which should be executed. This command depends on the given state if a
branching command is executed. It is not necessary to go in all details in the definition
of semantics here. [t should be only stressed that all possible interpretations of symbols
of operations and relations may be taken into account.

281

1. REQUIREMENTS CONCERNING SYNTACTICAL DEFINITIONS OF PROGRAM

The main aim of a program is to determine the detailed prescription of the com-
puting process, which includes the information whether or not the intended com-
putation has been completed, or in other words, whether or not the computing
process has been interrupted before its completion for some reasons. Therefore the
following (weak) definition of program over {Com, Lab) should be accepted:

A finite ordered set, which we consider as a sequence P = (KO K, .. K®™)
of labelled commands K9 = (b® C% where b’ e Lab and C ¢ Com for i =
=0, 1,...,N,iscalled a program if the following requirements are satisfied:

(1.1y (i) C = START and C + START forall i = 1,2,....N:
(i) there exists i, where I < i £ N, such that " = STOP
(iii) there exists at least one labelled branch of the program P, which is de-
fined in (1.2);
(iv) b + bU) where i = j foreachi,j =0, 1. ... N.

A finite sequence LB = (Ko, Ky, ..., K,) of labelled commands K; = <(b,, C;»
where K; = KY? and 0 < j; £ Nforeach i = 0,1, ..., g.is called a labelled branch
of the program P = (K(‘”, -y K™Y, if the following requirements are satisfied:

(1.2) (i) Ky = K,
(i) K, = K where | < i = N and C'h = STOP;
(i) if 0 < i < gand K; = K® where 0 </ £ N, then there occurs one of
the following three possibilities:

a) C™ is a sequential or starting command, and then K, = K**1;

b) C™ is a branching command, i.e.
CW =g {xi .., x,), and there exist j, | £j <k, and p,
1 £ p £ N, such that a; = b and then Ky, = K75

¢) C™ is an unconditional jemp, ie. C" = a, and there exists p,
| € p < N, such that ¢ = b® and then K, = K@,

The four requirements (1-1 i—1v) need no special clarification. The requirement {i)
is a formal one, the requirement (ii) is necessary in order to have a possibility to find
whether or not the program was completed. The requirement (iii) avoids certain
programs which never can be completed, and the requirement (iv) follows naturally
if we admit the following interpretation of a labelled command {b, C): the command
C is stored at the memory cell with the abstract address b.

Besides the main aim of a program the further requirements concerning programs
may be classified in the following three sorts:

(1.3) an interruption of the computing process (not caused by an error of the com-
puter itself) before its completion should be caused only by the fact that some

282

operations and relations are partial, i.e. they are defined only for some n-tuples
of objects;

(1.4) the computing process, which would be infinite, should be excluded in advance
(when it is possible at all);

(1.5) there are no superfluous commands in the program, where a command is
called superfluous if it is never executed with respect to all possible inter-
pretations.

The requirement (1.3) is guaranteed by the following three requirements:

(1.1y (v) if C = a, where 1 £ i < N, then there exists j, | £ j £ N, such that
b — g
(vi) if € = g{? i{x1. .. x,), where 1 < i < N, then for each integer /.
1 < j < k, there exists an index h;, I < h; < N, such that o™ = a; :
(vii) either C™ = STOP or CV js a decision command.

The requirement (1.4) is guaranteed by the following requirement only partly:

(1.1) (viii) there is no ordered set of decision commands {C{"), Ct», ... CCr',
where p =z land 1 £ i, < Nforj=1,2,..., p, such that the following
assertion is true for each j (mod p):

if CU” = g{» (xy, ..., x,) then there exists and index h, | < h < &,

such that a, = b7+ and if C = g then g = p'+V),

Finally the requirement (1.5) is guaranteed by the following requirement:

(1.1) (ix) each labelled command of the program belongs to at least one of its
labelled branches.

The (strong) definition of program includes all nine requirements (1.1 i—ix)
instead of the four requirements (1.1 i —iv) in the (weak) definition above. Throughout
the paper, this definition of program is assumed.

Let LBr, be the set (which may be infinite) of all labelled branches of the program P
and let two programs P and Q be called LBr-equivalent if LBr, = LBr,,.

By any program P = (K@, K", ... K™) the finite system P = {P,, P,...., P,
of all subsequences P; of P is determined uniquely by the following requirements:

(1.6) (i) each P, P contains at Jeast one KV’ such that C% is either a sequential
or the starting command;
(ii) if K¢ P,, where P;e P, and CY is cither a sequential or the starting
command, then KY" " e P, as well;
(iii) the length of each subsequence P; € P is the largest possible:
(iv) if KY e P, where P; e P, and CY is neither a sequential nor the starting
command, then KU & P,

In addition, the fact that the program P is an ordered set implies

(1.6) (v} P, P; =0fori=+jwherei,j=12..,p.

Theorem 1.1. Two (strong) programs P = (K@, ..., K™)) and Q = (LY, .., ™)
are LBr-equivalent if and only if N = M and if there exists a permutation n
of integers {0, 1, ..., N} such that the following requirements are satisfied:

(1.7) (i) K2 e Py, where P, e P if and only if " € Q;, where Q; € 0;
(i) if (KiuKivys oo Kiyy) e P and K; = K® then n(h + j) = n(h) + j for
eachj =1,2,...,r;
(iii) (0) = 0;
(iv) K = LD foreachi = 0,1,...,N .

Proof. Let N = M and let = be a permutation satisfying (1.7). We want to prove
LBrp = LBry and therefore, first of all, let us take an arbitrary labelled branch
LB = (K¢, Ky, ..., K,) € LBrp. We need to prove LBe LBr, i.e. that LB satisfies
(1.2) with respect to Q.

According to (1.7 iv) K; = L9 where 0 < j; £ N for each i =0, 1,..., N, and
it remains to verify (1.2 i—iii).

By (1.21) with respect to P it holds K, = K@, by (1.7 iv) K = I®? and there-
fore from (1.7 iii) it follows K, = L® which proves (1.2 i) with respect to Q.

By (1.2ii) K, = K'?, where | <i <N and C” = STOP, and using (1'7iv)
K® = 17 we get K, = L™? such that (1.2 ii) with respect to Q is satisfied.

If0<i<gqgand K, = K®, then again by (1.7iv) one has K; = L™ If C™ is
a sequential or the starting command then K, , = K®*U_In this case K e P, where
P, e Pfor some index s, and by (1.6 i) also K** " ¢ P Further by (17 ii) n(h + 1) =
= n(h) + | and therefore using (1.7 iv) again one has K;,, = L™+ which is the
possibility a) in (1.2 iii) with respect to Q.

If C™ is a decision command then K;,; = K, where K satisfies either b)
or ¢) of (1.2iii) with respect to P, then by (1.7 iv) K® = [which means that
either b) or ¢) of (1.2 iii) is also satisfied with respect to Q.

Thus we have proved LBe LBry, and therefore LBrp < LBr,. The remaining
inclusion LBr, < LBrp will follow from the previous part of the proof for the per-
mutation 7~ ' provided it is shown that also n™* satisfies (1.7). This is immediately
clear for (i), (iii) and (iv). Thus let us show it for (ii). Let us assume that (L ;, L;, , ,...,
L;,,) e Q and L, = 7. Then according to (1.7 i) and (1.7 iv) there is precisely one
(KW KW+ K@) e P, where h = n™'(s). According to (1.7 i) for z it is true
that n(h + 1) = n(h) + ¢ for ¢ = 1,2,..., r, and according to the defining require-
ment (1.6) Ly, = L*""fort = 1,2,..., 5 ie., n(h) = s and n(h + 1) = s + ¢ for
t=1,2,...rnThenh +t=n"nlh+) =rn""s+t)and h + 1 = 77 !(s) + 1,
ie,n a +1) = n"'(s) + tforeach t = 1,2, ..., r, which is the requirement (1.7 ii)
for 1. Consequently, LBry < LBrp is proved.

284

Now it remains to assume LBrp, = LBr, and then to prove N = M and to find
the permutation 7 which satisfies (1.7). If N = M then we may assume that there exists
a labelled command I’ € Q such that I/ ¢ P (and similarly in the contrary case
if P — Q = 0)and by (I.1 ix) there exists a labelled branch LB e LBr, which con-
tains [, Therefore LB ¢ LBrp» and we obtained a contradiction LBr, + LBry.

Thus it must be N = M and, moreover, by the previous argument P and Q must be
set theoretically equal, i.c., there must exist a permutation n of integers {0, I, ..., N}
such that (1.7 iv) is satisfied. With respect to this requirement and by the requirement
(1.1 1), which is fulfilled by P and Q, it follows that (1.7 iii) is satisfied, too.

Further let us assume that (1-7 i) is not satisfied, i.e., there exist P, € P and K" P,
such that ") does not belong to any Q;e Q. According to (1.6) L™ must be
a decision command and therefore K must be the last element of the subsequence
P, (because by (1.7iv) KV = L) By (1-1ix) there exists at least one labelled
branch LB e LBr, which contains K. If K" = K then s > 0 and according to (1.6)
K., must be a sequential or the starting command. On the other hand the command
L7 must be preceded in each branch from LBr, by another decision command,
which means that LB ¢ LBry, and therefore LBr # LBr,. Thus (1.7 i) must be valid.

Finally let us assume that (1.7 ii) is not satisfied, i.e. there exists a subsequence
(KioKiyqs oo Kiy,) e P, where K; = K®, and an integer, 1, | <t < r such that
n(h + t) + n(h) + t. We may assume that n(h + t — 1) = n(h) + 1 — 1 (i.e., t is
the smallest possible). Using (1.7 iv) K@ 71 = [rdFr=t o prioti=t e gt o -
L= M o e By (1.1ix) there exists at least one branch LB in LBr, which
contains the two commands K®**~V =g, . K, =K% 9 but no branch
in LBry can contain the two commands """ = [L = [F*"" because
according to (1.6) the command L, must be followed by [D+l — prio+re 4
+ [FBF0 Thys LB ¢ LBry and therefore LBr, + LBry. which is the required
contradiction proving that (1.7 i) must be satisfied. Now the proof is complete.

IfP = (K, ..., K™Y is an arbitrary program then let S, be the set of all integers j
such that KY is the first (or leading) member of a subsequence P, e P (defined
by (1.6)) and such that I < j < N (thus the subsequence with the leading member
K® is not taken into account and therefore ISP’ may be cqual to zero). Further
_let R, be the set of all integers j such that KY’ does not belong to any subsequence
‘ P, e P (thus iRP| may be equal to zero, too).

If ng, my is an arbitrary permutation of Sp, R, respectively, then the following
permutation 7 of {0, 1, ..., N} is determined uniquely as follows:

(1.8) (i) #(0) = 0;
(i) if j e Sp then () = ng(j);
(iii) if j e Rp then n(j) = mg(j);
(i) if je{l,2,...N} — (Sp U Rp) then there exists the largest integer
i €Sp U {0} suchthati < jand n(j) = (i) + j — i.

285

Theorem 1.2. If P = (K, ..., K™} is an arbitrary program then each program
Q which is LBr-equivalent to P arises by reordering of P when a permutation n
is used, i.e., Q = (K™® K=" K"(N)), where 7 is defined by (].8) from the both
permutations ng, mg which are chosen arbitrarily. Thus there are (ISpll). (IRPI!)
different programs Q, each of which is LBr-equivalent to P.

Proof follows easily from Theorem 1.1.

2. WEAKENING OF CONDITIONS
We intend to compare the weak and strong definition of the program.

Lemma 2.1, Let P be a weak program and let Q arise from P by ommitting all
labelled commands which are not contained in any labelled branch of P. Then
LBry = LBrp and the weak program Q satisfies the requirements (1.1 ix), (f.1v),
(1.1 vii) and the following assumption analogous to, but weaker than, (1.1 vi):

(2.1) if €V = g{2 Xy, X,), where | £ i £ N, then there exist an integer j,
| £j < k,andanindex h;, 1 < h; £ N such that pth) = a;.

IA

Proof is obvious.

If €9 = g{m xy,...,x,) is a decision command of a weak program P =
= (K@, ..., K"™) which satisfies (2.1) but, in general, not (1.1 vi), then the n-ary

relation in the k-valued logic gﬂ';, required by an interpretation of P, cannot be

employed fully within P, and the same results will be obtained using another n-ary

relation in the r-valued logic g{y), where r < k, which is defined as follows: let j; be

all integers such that 1 < j, < j, < ... <j, = k and that there exists an index

hi, 1 £ h; £ N, which satisfies b = a;. Now let a new condition be defined:
~ (

(2‘2) g;z}‘,ah,...,ujr](xl’ s Xn) = dfg[zr,az uk](xl’ e Xp) s

in every interpretation of the symbol of relation g{y). It is clear that §{}) is a partiali-

zation of qz;f}) which is determined by the prescription of a smaller range
() Y (ins ot 4 smal.
{aj,a;,....a;} < {a,, a,, ..., a} (instead of the more usual prescription of a smal

ler domain).

Lemma 2.2. Let P be a weak program which satisfies (1.1 ix), (1.1 v), (1.1 vii) and
(2.1), and let Q arise from P by replacing each condition, which does not satisfy
(1.1 vi), by its partialization defined in(2.2). Then Q satisfies (1.1 vi).

The proof is obvious.

[t is easy to see that the requirement (1.1 viii) is independent of all the others.

286

Lemma 2.3. A weak program P satisfies (1.1 viil) if and only if each labelled
branch LB e LBrp satisfies the following requirement:

(23) if LB = (K. Ky, ..., K,) then there exists an integer j, 0 < j < g, such that
K; =K;,,, where p 2 1, and K;,, is a decision command for each t =

=1,2,..,p.
The proof is obvious.

It remains an open problem whether or not to each weak program P, which satisfies
(1.1 vi), there exists a strong program Q such that the following assertion is valid:

2.4) LBr, = {LB; LB e LBr, and LB satisfies (2.3)}.
Q /5

Lemma 2.4. A strong program P = (K©, ... K™ satisfies the following re-
quirements:

(2.5) if C'Vis a decision command, where 1 < i < N, then there exists a deci-
sion command C®, 1 £ h <N, such that h i+, and if C =

= g® aq(x1, .. x,), then there exists an index j, | £ j < k, such that

a; = bt Y and if C'V = a, then a = b1
(1.1v*) is identical with (1.1 v), where in addition j % i is required,
(1.1vi*) is identical with (1.1 vi), where in addition h; = i is required.

The proof is obvious,

3. FLOW DIAGRAM OF A PROGRAM

The flow-diagram of a (strong) program P = (K'°’, ..., K™) is an orjented graph
FDp = (V, 0, 4, A) with labelled vertices and edges, which is defined as follows:

(3.1) (i) V={p b p™;
(if) a) if CVis a sequential or the starting or the stopping command, then
by = ¢,
B) I COV = gff) o) then 2(664) = gifix,.)
c) if € = a then A(b'?) = GOTO, where “GOTO™ is a new symbol
(corresponding to ““go to™ in programming languages)and 0 £ i < N
(iii) a) if C'” = STOP then there is no edge starting at b(?;
b) if C'” + STOP is a sequential command or ¢ = START then
there is a unique edge (b'", b+) starting at b'";
¢) it CV =g (xy ..., x,) then there are as many edges starting
at b'") as there are different labels a;. viz. the edges (b'"), a;) for each
J=12 ...k

il

287

d) if C'” = q then there is the unique edge (b'", a) starting at b'”, where

I =i £ N, and there are no other edges in p than those defined above;

(iv) it €7 =g (x,...x,), where | <i<N, then A(b", a)) =

= {h; his an integer such that 1 £ i < k and g, = aj} for each j =

=1,2,....,k and for each of the remaining edges (x, y) one defines
A(x, y) = {1}.

According to (3.1 i) the range of the labelling A of vertices of F D, is the set con-
sisting of certain sequential commands of the form “f™(x,, ..., x,) =: x,”, of sym-
bols of certain n-ary refations in the k-valued logic gf}:{(xl, .- X,), where x; is a proper
variable for i = 0, 1, ..., n, and of symbols START, STOP and GOTO.

According to (3.1 iv) the range of the labelling A of edges of FDp is the set con-
sisting of finite sets of integers. Only in the special case when the following condition
is satisfied:

(32) if €2 = g{2 .o(x1. ... x,), where | < i £ N, then a; # a, for j + i and

[at,....
forall j,h = 1,2,..., k, where always k = 2,

the range of A is the set of particular integers only (i.e. no sets of integers are
necessary).

Without a loss of generality the requirement (3.2) will be accepted in the sequel.
This requirement only means that some new relations and symbols of relations are
introduced in advance. E.g. g{2) ,; is a binary relation only in the 2-valued logic
(although it arised from g{3)) which does not satisfy (3.2) and therefore one assumes
that a new symbol *“h{2), " is available which satisfies (3.2) and which is defined as
follows: h{2y(x, y) = aegie) 5(x. ¥). Obviously a different relation is defined by
k2%, ¥) = acgiZh afx, ¥), ete. If k = 2 and (3-2) is not satisfied, e.g. “{(,q(x. ¥)”
then it is clear that this degenerated decision command may be replaced by the un-
conditional jump “a”. Therefore, if the requirement (3.2) is not satisfied then the
notion of unconditional jump is superfluous.

It is useful to call a vertex of FD, sequential vertex or a decision vertex, respectively
if its label (in the labelling },) is a sequential or a decision command.

Theorem 3.1. An oriented graph G = {V, 9, 4, A> which is isomorphic with res-
spect to the labellings A and A to a flow diagram of a program satisfying (3.2},
satisfies the following requirements (3.3) and (3.4):

(3.3) (i) there exists exactly one input vertex we V; Aw) = START; there
exists exactly one edge (w, x) starting at w and A(w, x) = 1;
(ii) there exists at least one output vertex; if we Vis an output vertex then
A(w) = STOP and there is no edge starting at w;
(iii) if weV is an inner vertex and od(w) = 1 then either Aw) = GOTO
or A(w) is a sequential command and A(w, x) = 1 holds for the unique
edge (w, x) starting in w;

288

(iv) if weV is an inner vertex and od(w)=k > 1 then Aw)=
= in; (X1 oeen X,), Where q‘&; is the symbol of a relation in the k-valued
logic and all k edges starting at w are labelled by integers 1,2, ..., k
in the labelling A;

(viii) each cyele in G contains at least one sequential vertex and there are

no slings;

(ix) each vertex belongs at least to one (monotonic) path which starts
al the input vertex and terminates at an output vertex;

(3.4) if we Vihen ihere exists at most one vertex ve Vsuch that (v, w) € ¢ and either
vy = START or J(v) is a sequential verfex.

Proof. We need to prove that every flow diagram satisfies (3.3) and (3.4) if the
labels are considered as arbitary abstract symbols. Let us show it consecutively
(although not in all details):

(3.3) (i) follows from (1.1 i), (3.1 ii-a), (3.1 iii-b) and (3.1 iv);
(ii) follows from (1.1 i), (3.1 ii-a), (3.1 iii-a) and (3.1 iv);
(iii) follows from (3.1 iii-d), (3.1 iii—b), (3.1 ii-c), (3.1 ii-a) and (3.1 iV);
(iv) follows from (3.1 ii-b), (3.1 iii-c), (3.2) and (3.1 iv);
(viii) follows from (1.1 viii),

which also implies that there are no slings at the decision vertices (according to
(1.1 v*) and (1.1 vi*)); for the remaining inner vertices this follows by the definition
of the labelled branch (1.2) and from (3.1 ii-a) and (3.1 iii-b):

(3.3) (ix) foliows from (1.1 ix);
(3.4) follows from the assertion (1.6 iv) which concerns the subsequences P, e P.

Before showing the synthesis of a program for a prescribed flow diagram let us
describe a certain construction on a graph G = (V, ¢, 2, A which corresponds to the
construction of the finite system P'of subsequences of the program P (see the require-
ment (1.6)).

If G satisfies (3.3) and (3.4) then let G be the set of all subgraphs G; = <V}, 0;, 2. A4,
of G for i = 1,2, ..., p, which are uniquely determined by the following requirements:

(3.5) (i) at least one vertex we V; satisfies the requirement that A{w) is either

a scquential command or the starting command;

(ii) if we V; and A(w) is either a sequential or the starting command then
there exists just one vertex ve V such that (w,)€ and also ve V;;

(iii) the number of vertices in V; is the largest possible;

(iv) if weV, and)L(w) is neither a sequential nor the starting command, then
there exists no v e Vsuch that v e ¥, and (w, v) € ¢;

(v) 0; = V7 0 o; A(w) = A(w) for each we V, and A,(w, v) = A(w, v) for
each (w, v) € g;. ‘

289

Lemma 3.2. The subgraphs G, of G defined by (3.5) satisfy the following require-
ments:

(3.6) (i) G,isasimple path, the length of which is at least one;
(il) the output vertex in G, is either a decision vertex or it is labelled by the
stopping command,;
(i) if we Vand l(w) is either a sequential command or START, then there
exists G; such that w e Vj;

(ivy pztandV,nV,=0fori* jandeachi,j=1,2,..., p.

Proof. The assertion (3.6 i) follows from (3.51), (3.5ii) and from (3.3). The as-
sertion (3.6 1i) follows from (3.5 iii). The assertion (3.6 iii) follows from the defini-
tion of G. Finally, let us assume V; n V; + @ and V; + V, for some i + j; and let
(V.15 Dn2s s Ung,) be the path G, for h = i, j, i.e. there exist v, , = v; , for some
1 £r=<g, 1 £s = q;such that r and s are the smallest possible, which means
that {v; ;. ... v,) V{040 vy} = 0. IF r < g;, then Xv;,) is either a se-
quential or the starting command. If, in addition, r = s = 1, then by (3.3), (3.3 iii)
and (3.51i) it must be V; = V,, which contradicts our assumption. If r =1 < s
then V; does not satisfy (3.5 iii), which is a contradiction again. Finally if | < r, L <
then (3.4) cannot be valid which is the required contradiction which completes the
proof.

Algorithm 3.3. (Synthesis of a program). If a graph G = {V, 0, 4, A) satisfying

(3.3) and (3.4) is prescribed then a program P such that FD, is isomorphic to G
may be constructed as follows:

1) One takes the set G of G defined by (3.5) and for each G, € G one chooses such
ordering of its verticesv; ;€ V; forj = 1,2, ..., q; that (05,15 Ui2s oo a Vg p,) s @ simple
P
path of all of them, where i = 1,2,..., p. Further let V, . =V UV, and let
i=1
(Vpsts Opyyozneems z;pﬂyqpﬂ) be an arbitrary ordering of V,,,. Let us assume that
the vertex vy 4 is the input vertex of G.

2) The following ordering of all vertices from V may be chosen:

(3.7) (0115 oo D1 g D215+ ooy Vagus oo Opits oes Upig s Upit 1y oo Dyt gy) -
pH1

Further if{V' =% q; =N+ 1 then N + | different labels may be chosen arbitra-
=1

rily. If the labels are denoted by b, b, bW then their ordering with respect
to their upperscripts is determined by the following one-to-one mapping ¢:

(3.8) o(v;;) =b" where h=yq, +q,+,..+q;1+J (40=0) for each
Isispandl £j =<y,

290

3) The required commands of the program are now defined uniquely as follows:
if ve Vand Av) = GOTO then one takes the unique vertex w e Vsuch that (v, w) e ¢
and defines a pew function Y(v) = @{w); if ve V and Av) = gi)(xy..... x,) then
(with respect 10 (3.2)) for each j, 1 £ j < k, there is a unique vertex w; e V such
that (v, w_i)eg and A(v, wj) = j, and one defines the new function W(v) =
= Gimenoten. oo X1+ o X,). 111 all other cases of ve V one defines () = iv).

4) The required program P = (KO, ..., K™} is defined by determining K" =
= {o(v; ;). Y(v; ;)> where h is defined by (3.8) for each i j.

The proof of correctness. Let FDp = V', 0", A, A’> be the flow diagram
of the program P. It is sufficient to prove that the one-to-one mapping ¢ is an iso-
morphism of G onto FD,. If we recall that there is a one-to-one correspondence
between the finite system P of P defined by (1.6) and the set G of G defined by (3.6),
then with respect to (3.1 ii) one easily recogniscs that ¢ preserves the labelling of ver-
tices. It remains to consider consecutively all four possible cases a), b), ¢) and d)
of (3.1 iii) which concern the edges of FD, and to show that the main requirement
of isomorphism: if (x, v) € ¢ then (@(x), ¢(y)) € ¢'. is satisfied. Finally, with respect
to (3.1 iv) one immediately sees that also the labelling of edges is preserved by ¢.

Theorem 3.4. Each program Q such that FD is isomorphic to FDp, where P
is a prescribed program, may be received as follows: using a one-to-one mapping t
each label b of P is replaced by ©(b) every time it appears in P and then areordering
from Theorem 1.2 is carried out. '

Proof. The first part follows from Theorem 3.1 and the second from Theorem 1.2,

A (non-labelled) branch of a program P is a sequence B = (Dy. D,..... D)
which arises of a labelled branch LB = (K,, K, ..., K,) € LBr as follows:

(3.9) if K; = <{b;, C;> where 1 < i < ¢ then cither a) (; is a sequential command

and then D; = 4| C;, 1], or b) C; = STOP and then D; = [STOP.0], or
¢) C,€{START, GOTO} and then D, = [C. 1] or d) C; = g{2 (x....x)
and then D; = [gi)(x,, ..., x,).] where h is an integer such that | £ i < k and

a, = b, y.

Let Brp be the set of all (non-labelled) branches of P.

Lemma 3.5.1f LB,, LB, € LByrp. LB, & LB, and B; € Brp arised from LB; by (3.9}
Jori= 1,2, then B, & B,. There fore there is a one-to-one map ff of LBry onto Br,
which assigns to the labelled branch LB e LBrp such a branch B e Brp whicl: arised
from LB by (3.9).

Proof. Let LB, = (Ky.;, K, ;5 ... K,, ;) for i = [, 2. Then it follows from LB, +
#+ LB, that there exists an integer j such that 1 £ j < min(q,, q,) and K, ; = K, »
forO < h < j,butK;, & K, Therefore K;_ , must be a decision command and
it follows from (3-1 iv) that if D;; = [C;;, h; ;] arised from K, ; for i = 1, 2, then
h; =+ h;, and therefore B, + B,.

Further, if G = (V, g, 4, A) is a graph isomorphic to a flow diagram of a program
then a branch of G is a sequence B = (D, Dy, ..., D,) determined by a monotonic

path (vg, ey, v, e,. v,) of vertices and edges in G such that v, is the input vertex

and v, is an output vertex, as follows:
(3.10) D; = [Av)), A(e;()] for i=0,1,..,9—1 and D, = [i(v,),0].

Let Brg be the set of all branches of G and let two programs P and Q be Br-equiva-
lent if Brp = Brg. In addition one can define the Br-equivalence also for one program
P and one graph G by the requirement Brp = Brg, which allows to compare the

programs and the flow diagrams.

Theorem 3.6. Bryp,, = Brp for every program P, i.e., the program and its flow

diagram are Br-equivalent.

Proof. Using the definition (3.1} a one-to-one correspondence is determined
between the set LBrp and the set of all monotonic pathes in FD, which start at the
input vertex and terminate at an output vertex of FD,. The required equality follows

by (3.9) and (3.10).

Theorem 3.7. If G is isomorphic to FDy for a program P then Brg = Brpp,,.

The proof follows from Theorems 3.4 and 3.6.

p(3) I xey=:z I x+y=~'Zl p(5) al3 | xey=:2
1 1 1

bl [[stop] [_srop b0 a4l [S0P
FDp FDg

Fig. 1 Fig: 2

292

On the other hand, it must be pointed out that the equality Brpy, = Bryp, (or
Bry = Brp) may hold also in the case when F D, is not isomorphic to FD,, which is
proved by the two flow diagrams in Fig. 1 and in Fig. 2. In Fig. 1 the condition
“x < vy is superfluous in the sense that the branching, which it allows, leads to the
same remaining parts of branches. The flow diagram FD, in Fig. 2 of another pro-
gram, which docs not satisfy (3.2), is not isomorphic to FD, in Fig. I, although
Brep, = Brpp, = {(START, x < y,x + y =: z, STOP} .

Using the synthesis algorithm 3.3 one obtains:
Q = (B, START) ; (b, x < ypyorpory) B, x +y=:2);
W, STOPY ;. (b, x + y =:2>; (b, STOP) and P = ({a'", START)
@, x <y ap s @ x4+ y=:2>1 (¥, STOP)).

As it was mentioned the decision command of Fig. | and of Fig. 2 is superfluous,
and actually only the program R = ({c¢\", START); <(c®,x + y=:2);
(), STOPY), the flow diagram F Dy of which is in Fig. 3, is sufficient for the required

[[s7ar7] c(?)

1

l)my::zl (2]

1

Fig.3 [stop | cf3

FDp

algorithm. In order to be able to compare also such flow diagrams and the correspond-
ing programs, the concept of the operational branch should be introduced as follows.

An operational branch of a program P is a sequence OB = (E|, E,,..., E,)
of sequential=operational commands only, which arises from a (non-labelled)
branch B = (Dg, Dy, ..., D,) of P (or of G) by omitting all commands which
are not sequential commands, and all the second members of pairs D; (see (3.9)
or (3-10)), i.e. the integers r; from D; = [C;, r;]. Let OBr; be the set of all operational
branches of P and, similarly, let OBrg be the set of all operational branches of G,
where G is isomorphic to the flow diagram of a program. The programs P and Q¢
are called OBr-equivalent if OBrp = OBr,.

Thus one may write OBrp = OBr, = OBry. The characterization of the Br-equi-
valency and the OBr-equivalency of programs is clarified as follows.

1t can be proved (but it is beyond the frame of this paper) that the Br-equivalence
of two programs is a sufficient condition for their functional equivalence, i.e. in the
same computer the same result is computed by two Br-equivalent programs.

293

Further, it is clear (by the definitions of non-labelled and operational branches)
that if Brp = Br, then also OBr, = OBr for all programs P and Q. The converse
assertion s not valid, which is shown by Fig. 4 and 5 where flow diagrams of two
programs Py and Q, are shown such that OBr, = OBrp, but BRp = Bry,. More-
over it is immediately seen that P, and Q, compute different functions, viz P, com-
putes | x| and Q, computes —|x|.

‘ START' | STAiT

4. FLOW DIAGRAM AND ITS EXECUTION

The execution of a program requires the determination of the next state and of the
next command, i.e. which command should be executed as the next one (see Sect. 0).
The same may be determined also for an oriented graph G = (V, o, 2, A> which
satisfies (3.3) independently of the requirement (3.4). The current state is changed
only by a sequential command which is the label in A of a vertex w, while the command
which should be executed next is that one by which the unique vertex v, such that
{w, v} € ¢, is labelled in 4. If a decision command, which is the label of the vertex w,
is considered and executed, then with respect to the current state its value is a truth
value i and therefore the unique vertex v is determined such that (w, v) €9 and
A(w. v} = i. Hence A(v) should be executed as the next command.

Construction (Linearization) 4.1, If an oriented graph G = (V] ¢, 4, A) satisfies
{3.3) but does not satisfy (3.4), then an oriented graph G' = (V’, ¢, A, A’> may be
constructed as follows: consecutively (in an arbitrary order) each vertex we V is
considered such that if w, w,, ..., w, € Vare all those vertices such that (w,, w)e o
and /l(wi, w) is either a sequential or the starting command for each i = 1,2, ..., n,
then n = 2; if wis the vertex under the consideration, then n — | new vertices
{1, t5. ..., 1, are chosen and added to V, further the edge (w;, w) is omitted from o
t;) and (t;, w), which are added to ¢ for i =

[

and replaced by two new edges {w;

i

294

= 1.2,...,n — 1 (which may be done in n different ways); and finally one defines
A1) = GOTO, A'(w;, t;) = A(w;. t;)and A'(t;, w) = 1fori=1,2,....,n — 1, while
in all the remaining cases 4 and A remain unchanged.

Let us write Br; = Brg. (mod GOTO) if * Bre = * Brg. where * fry arises from
Br; as follows: each branch of #é:,- arises from a branch (Dy, Dy, ..., D,) of Brg
by omitting all pairs D, which contain “GOTO”.

Theorem 4.2. If G satisfies (3.3) and G’ arises from G by the construction 4.1,
then G’ satisfies (3.3) and (3.4), Br; = Brg (mod GOTO), and therefore OBrg. =
= OBrq. If G satisfies (3.3) then there exists G* which satisfies (3.3} and (4.1),
Brg. = Brg(mod GOTO), and therefore OBrg. = OBrg, where:

(4.1) there is no vertex labelled by “GOTO”.

Proof. The first part follows immediately by the construction 4.1, because it is suf-
ficient to show it for the single vertex under the consideration. The second part
requires a converse construction to the construction 4.1, i.e., the omission of vertices
which are labelled by GOTO, which is defined easily.

Now it is clear that 10 each oriented graph G = (V, ¢, 4, A), which satisfies (3.3)
and (4.1), a program P may be constructed such that Brg = Bryp, (mod GOTO),
and therefore it is possible to define this graph G as a flow diagram without any respect
to the program as in Sect. 3. The omission of all unconditional jumps and the omis-
sion of (3.4) enables us to give the following definition of a flow diagram (being
a reformulation of (3.3)) which is clearer and more suitable for our purpose:

(4.2} (i) there exists exactly one input vertex;
(ii) there exists at least one output vertex;
(iii) each vertex belongs at least to one (monotonic) path which starts at the
input vertex and terminates at an output vertex;
(iv) each cycle contains at least one sequential vertex;

(4.3} by the labelling 1 of vertices the input vertex is labelled by “START”, cach
output vertex is labelled by “STOP, each scquential vertex is labelled by
an operational command, and each decision vertex w with od (\v) =k =2is
labelled by a decision command in the k-valued logic;

(4.4} by the labelling A of edges all k edges starting at the vertex w such that od {w) =
= k = | are labelled by k integers 1,2, ..., k;

where the particular requirement (4.2). (4.3) and (4.4) arc classified according to the
graph structure {V, ¢) itself, the labelling A of vertices and the labelling A of edges,
respectively.

It should be mentioned that (4.3) says that the types of commaunds uniquely cor-
respond to the types of vertices.

3%
O
N

5. REGULAR LANGUAGES OF LABELLED BRANCHES

Let P = (K, KM, ..., K™), where K = (b7, 7y be a program and FD, =
= {V, p, 4, A its flow diagram. Let us define a new graph G, = {V, g, x> where x is
the following labelling of vertices in G, :3(b'") = KV for i = 0, I, ..., N. Further
let us shift the labels of vertices on those edges which terminate at them, i.e., let us
define G} = <V, g, »*} by the following requirement:

(5.1) w¥(x, ¥) = o#(y) foreach (x,p)ep.

If we assume that every monotonic path (uo, Uy ooy vq) in Gp where vg, v, is the
input vertex and an output vertex. respectively, generates the labelled branch
(3(vo), (v (). - - .. #(v,)). then we may say that the same path in G} generates the sequence
of labelled commands (x*(vg, vy), x*(vy, v,), ..., ¥*(v,_y, v,)). If LBrg, and LBrg.,
are the sets of all sequences of labelled commands generated by Gpand G}, respectively,
then it is clear that the following assertion is valid:

(5.2) LBrp = LBrg, = K“LBrg.

p°

where K“LBr., means the concatenation of K with the set of strings in LBrg.,.

Theorem 5.1. LBrp is a regular language over the vocabulary of all commands
for each program P.

Proof. Using (5.2) it is sufficient to show that LBrg., is a regular event, but this is
an immediate consequence of Theorem 3.4 of [2], because if x is the input vertex
of G}. X is the set of all output vertices in Gy and Gj[x, X | denotes the set of all
labelled branches generated by all monotonic pathes (vo, vy, ..., v,) such that v, = x
and v, € X, then obviously Gi[x, X] = LBrg.,, and Theorem 3.4 of {2] says that
GF[x, X]is a regular event. See also [5].

6. FLOW NETS

With respect to the following algebraic investigations it is convenient to modify
the concept of the flow diagram in an unessential but very useful way which consists
in omitting the input vertex. In order to avoid any confusion the new term ““flow net”
will be used for this modified flow diagram.

A flow net without origin is an oriented graph G = {V, g, 4, A) with two labellings
4 and A such that the following requirements (being similar to (4-2—4-4)) are satis-
fied:

296

(6.1) (i) there exists at least one output vertex:

(ii) there exists at least one vertex, called a possible origin, such that each
vertex belongs at least to one monotonic path which starts at the pos-
sible origin and terminates at an output vertex;

(iii) each cycle contains at least one sequential vertex, i.c., a vertex w such
that od (w) = I;

(6.2) (i) wis an output vertex <> Aw) = STOP;
(i1} wis a sequential vetex <> A(w) is an operational command;
(i) w is a decision vertex and od (w) = k <> A(w) is a decision command
in the k-valued logic;

(6.3) = (4.4)

If a possible origin v e V is distinguished then {V, g, v, 4, A is called a flow net
with the origin ». Obviously the origin should replace the input vertex of the flow
diagram.

Lemma 6.1. There is a one-to-one correspondence between flow diagrams G and
those flow nets G* with origin which arise from G by omitting the input vertex
and the unique edge starting at it. The vertex at which the omitted edge terminates
is the chosen origin. In addition Br; = [START, 1] BRg., where Brg and Brg. are
considered as sets of strings. :

The proof follows from the definitions.

It should be mentioned that it is not possible to omit also the output vertices
and to distinguish the last vertices in general, because a vertex which is connected
by an edge with an output vertex may be a decision vertex, and therefore it can
happen that sometimes it should be the last vertex, but sometimes not.

Lemima 6.2. If G = {V, 9, 4, A is a flow net and x €V, then its subgraph G, =
= (Ve 0xr A Ay defined by the requirement (6.4) is a flow net again with the pos-
sible origin x where:

(6.4) let V., 0, be the set of all vertices and edges, respectively, which belong
at least to one monotonic path in G which starts at x and terminates at an out-
put vertex of G; A, = g Ay, and A, = 4 A|,..

The proof is obvious.

Let us define a binary relation > in the set of all nets G, where xe Vand G =
=V, 0, ¢, A, A> is a flow net, and simultaneously in the set Vitself, as follows:

(65) Gx > Gy <> 4fy € Vx and Gx ~ G_v had df(Gx > Gy) & (Gv > G\”) -

297

Thecrem 6.3. The binary relation > is a quasi-ordering relation, i.e., it is re-
Sfexive and transitive, and therefore the binary relation ~ is an equivalence relation.

Proof. According to (6-4) x e V, and therefore by (6'5) G, > G, for each x e V,
which proves the reflexivity of . Further if G, > G, and G, > G, then by (6.5)
yeV,and z e V. Using (6.4) one sces that y € V, implies V, = V,, and = e V, implies
V, < V,. Therefore V, < V, is true and z € V, which means by (6.5) that G, > G,
i.e., the transitivity of > is proved. The equivalence of ~ follows by well known
theorems.

Let V= {V,, Va, ..., V)} be the set of all equivalence classes defined in ¥ with
respect to the equivalence relation ~. Then ¥ is a decomposition of V; i.e., the fol-
lowing requirements are satisfied:

(6.6) Vi0; V,nV; =0 where i # j forall i,j=1,2,..,M; M =1 and

M

uv, =V
i=1

Further let G = (¥, g) be the factor graph of G defined as follows:

(6.7) (Vi V)€ @<y there are v,eV; and v;eV; such that (v, v)eg for all
L= 1,2, M,

and finally let G; = (V}, ¢;> bedefined fori = 1,2, ..., M as follows:
(6.8) 0, =0 n V2

Lemma 6.4. If G = (V, ¢) is a finite oriented graph having at least two vertices
which satisfies (6.1), then its factor graph G is a finite oriented graph having at least
two vertices such that the following requirements are satisfied:

(6.9} (i) there exists exactly one input vertex in G;
(ii) there are no cycles in G,
(iii) there are no slings in G;
(iv) G is connected,

and each of the subgraphs G, is a finite oriented graph such that:

(6.10) (i) G; is strongly connected,
(it) each cycle in G, contains at least one vertex w such that od (w) = 1;
(iii) there are no slings in G;
(iv) if V; contains an output vertex then]V,-] = 1.

Proof. First of all let us prove (6.10). (i) follows directly by (6.5); (i) and (iii)

follow by the definition (6.8) and by the assumptions (6.1) concerning G. If V; contains
an output vertex then (iv) follows by (i).

298

Now let us prove (6.9). By (6.1 1i) it follows that in G there exists exactly one input
vertex. i.e., (6.9 1) is satisfied, and for this vertex (6.9 iv) is also satisfied. According
to (6.5) each two vertices of G which belong to the same cycle must be equivalent,
which proves that G defined by (6.7) cannot contain any cycle, i.e., (6.9 ii) is satisfied.
In G there are no slings, because this is excluded by (61 iii) for the decision vertices,
and by (ii) for the sequential ones. Therefore (6.7) cannot cause a sling, which means
that (6.9 iii) is satisfied.

Finally, M = 2 follows by (6.10 jv) and (6.9 ii and iii).

Construction 6.5. An arbitrary flow net without origin G = {V, 9, 2, A) may be
constructed as follows:

a} one takes as the base an arbitrary finite oriented graph H = (W, ¢ which has
at least two vetrices and satisfies (6.9);

b) if]WI =M and S. | £S < M is the number of the output vertices of H,
then one takes M finite oriented graphs G; = (V;, 0,5, 1 < i £ M such that (6.6) is

satisfied, each of them satisfies (6:10 i-iii), and, in addition, there are at least S
of them such that [V,»] =1

¢}y ane chooses a one-to-one mapping ¢ such that Domain ¢ = W and Range
@ = {Gi, ..., G}, and if we Wis an output vertex in G then G, = ¢(w) satisfies the
requirenent]V,»[=1
M M .
dY now one defines V= \J V; and besides the edges from \J o; which must belong
i=1 i=1
to ¢ there are the following further edges which should belong to ¢ as well; for each
pair (w, w¥) € o one takes ¢(w) = G;, ¢(w*) = G, and then one finds a pair v, v;
such that v;e Vi, v; € Vi and the vertex v; is not the only sequential vertex on a cycle
in G5 now one puts (v, v;) € ¢ after defining ¢ in this way one may, but need not,
stop. i.e., one may go on adding further edges in the following way: if (zzi, ij) €@
then one may take an arbitrary vertex v eV, and 17’,-L € V; such that v} is not the
. i . o P C ¥ — % ™. i
only sequential vertex on a cycle in {V, ¢>, and defines p* = o v {(¢vF, uj)}, this
construction may be repeated until the requirement (U:k U}k) ¢ o is satisfied,

e} the two labellings A and A are chosen arbitrarily but they must satisfy (6.2)
and (6.3), respectively.

Proof of correctness. We need to prove that the graph G = (V, ¢} determined
by a)—d) satisfies (6:1), because the other part of the assertion that cach graph
of this type may be constructed in this way, follows immediately by Lemma 6.4.

First of all it follows from (6.9) that there must exist at least one output vertex
(because the graph H is finite, e.g. by Theorem 2.1 of [3]), and therefore S > { and

299

after the choice in a) the choice in b) may be done; then also the choice in c) is
possible and it remains to consider the determination of o.

If G, is an arbitrary graph which satisfies (6.10) then either |V}] = 1, which means
that v; such that V; = {v;} can not be the only sequential vertex which belongs to
a cycle in G;, and therefore v; may (and must) be always taken in the step d), or IV,-] >
> 1 and the following possibilities must be distinguished: if all the vertices in V; are
sequential, then there always exists the required vertex because V;[> 1; if there
exists at least one decision vertex in G; then such a vertex may be taken as v; in any
case. Thus we have proved that also the step d) may be done and, if necessary, may be
repeated many times.

At last let us prove that G = (V, o) satisfies (6.1):

(i) in H there exists at least one output vertex w € Wand by c) one obtains ¢(w) =
= G;such that |V, = 1. Therefore from d), where o is determined definitely, it follows
that v; € V, where V; = {;} must be an output vertex in G;

(ify in H there exists (by (6.91)) exactly one input vertex we W and there exists
{(by (6.9)) ve V; = ¢(w); therefore, one immediately sees that v is a possible origin in G,
because if v* is an arbitrary other vertex in G then v* e V; = ¢(w*) for some w* e W,
and therefore there is a monotonic path which starts at w, contains w* and terminates
at an output vertex w** of H (see Theorem 2.1 [3]). With respect to the requirement
(6-101i) and to the construction step d) it is clear that there exists a monotonic path
in G which starts at v, contains v*, and terminates at an output vertex of G;

(iii) follows immediately by (6.10 ii) and by the construction step d).

References

[1] Culik K.: Classifications of programming theories and languages, Information Processing
Machines 17 (in print) .

[2] Culik K.: Some notes on finite state languages and events represented by finite automata
using labelled graphs, Cas. pro pést. mat. 86 (1961), 43— 55.

[31 Culik K.: Combinatorial problems in the theory of complexity of algorithmic nets without
cycles for simple computers, Aplikace mat. (16 (1971), 188—202.

[4] Culik K.: Algorithmization of algebras and relational structures, Commentationes Mathema-
ticae Universitatis Carolinae 13, 3 (1972), 457—477.

{5] Engeler E.: Algorithmic Approximations, Journal of Computer and System Sciences 5 (1971),
67—82.

300

Souhrn

SYNTAKTICKE DEFINICE PROGRAMU
A BLOKOVEHO DIAGRAMU

Karer CuLik

Program je definovan syntakticky jako uspotadana, koneénda mnozina znackova-
nych piikaz, coZ jsou jisté fetézy nad koneCnou abecedou. Znackovanou vétvi
programu se nazyva kone¢na posloupnost jeho znackovanych ptikazd, ktera udava
mozné potadi piikazit v né¢jakém dokonceném vypoctu. V silné definici programu
je pfipojena fada syntaktickych pozadavki, motivovanych vypoletnim procesem.
Blokovy diagram programu se zavadi jako orientovany graf s ohodnocenymi uzly
i hranami a pfedklada se algoritmus syntézy programu k danému blokovému dia-
gramu. NeznacCkovana a opera¢ni vétev se zavadi pro programy i blokové diagramy
a uvadi se nutné a postadujici podminky, kdy dva programy maji tutéz mnozinu
vsech znackovanych nebo neznackovanych vétvi, ktera je vzdy regularni udalosti.
Piehled o v§ech moznych blokovych diagramech je ziskan algebraicky pomoci grafové
faktorizace, kde faktor — graf je souvisly a acyklicky graf s jedinym vstupnim uzlem,
zatim co piislu§né podgrafy jsou silné souvislé.

Author’s address: Prof. Dr. Karel Culik, Dr.Sc., Vyzkumny ustav matematickych stroji,
Luznd 9, 160 00 Praha 6 - Vokovice.

301

