

Syntax and semantics of timed Chi

Citation for published version (APA):
Beek, van, D. A., Man, K. L., Reniers, M. A., Rooda, J. E., & Schiffelers, R. R. H. (2005). Syntax and semantics
of timed Chi. (Computer science reports; Vol. 0509), (DCT rapporten; Vol. 2005.000). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/3e28f89d-a6c3-4535-88f7-79ce1f66f9a1

Syntax and Semantics of Timed Chi

D.A. van Beek1, K.L. Man2,
M.A. Reniers2, J.E. Rooda1, R.R.H. Schiffelers1

1Department of Mechanical Engineering
2Department of Mathematics and Computer Science
Eindhoven University of Technology, P.O.Box 513

5600 MB Eindhoven, The Netherlands
{d.a.v.beek,k.l.man,m.a.reniers,j.e.rooda,r.r.h.schiffelers}@tue.nl

ii

Contents

1 Introduction 1

2 Syntax and informal semantics of the timed Chi language 5

2.1 Processes . 5

2.2 Process terms . 6

2.3 Syntactic extensions 10

2.4 Data types . 16

3 Semantics of the timed Chi language 17

3.1 General description of the SOS 17

3.2 Notations and mathematical definitions 19

3.3 Deduction rules for atomic process terms 21

3.4 Deduction rules for operators 22

4 Discrete-event model of a manufacturing line 33

5 Translating timed automata to timed Chi 37

5.1 Definition of a timed automaton 37

5.2 General translation scheme 38

5.3 Example: a coffee vendor machine 39

6 Derivation of timed Chi from hybrid Chi 41

6.1 TheL1 language . 41

6.2 TheL2 language . 43

iii

iv Contents

6.3 RelatingL0(∅,∅) andL2 . 45

6.4 RelatingL2 and timed Chi . 46

7 Validation of the semantics 47

7.1 Well-definedness of the semantics 47

7.2 Properties of the semantics 47

7.3 Stateless bisimilarity 49

7.4 Properties of the Chi operators 51

Bibliography 53

A Derivation of DL2 from DL1 55

A.1 Derivation for atomic process terms 55

A.2 Derivation for operators 58

Chapter 1

Introduction

In this document, the timedχ (Chi) language is described. The timedχ language is obtained
by means of simplification of hybridχ (see [17]). The intended use ofχ is for modeling, simu-
lation, verification, and real-time control. Its application domain consists of large and complex
manufacturing systems. Although the semantics is formallydefined, the straightforward and
elegant syntax and semantics is also highly suited to non-computer scientists. In the remainder
of this report, we usually refer to timedχ asχ .

The most important concepts inχ are summarized below:

1. Integration of a straightforward semantics and ease of modeling.

• Strong time deterministic alternative composition operator. Where in the previous
version of discrete-eventχ [5] the passage of time could result in making a choice
between the two operands of the alternative composition operator (weak time deter-
minism), as is the case in many process algebras, in the current χ semantics, the
passage of time can never result in such a choice. In fact, thepassage of time can
only result in changes to the value of the predefined variabletime. In the previous ver-
sions ofχ , alternative composition15 [] x := 1 could non-deterministically choose
between doing a delay oft ≤ 5 to1(5 − t), or doing the (undelayable) actionx := 1
and then terminate. Strong time deterministic alternativecomposition means that al-
ternative composition can delay only if both process terms can delay together, so that
15 [] x := 1 can only do the (non-delayable) actionx := 1, and then terminate. Timed
automata have a comparable choice mechanism, apart from initialization. In a timed
automaton, action transitions cannot disappear as a resultof time passing. They can
only be disabled for the period of time that the associated guard evaluates to false in
the valuation prescribed by the trajectory of the variables. Also, time passing cannot
result in the choice of a different location. The only changes in a timed automaton as
a result of time passing are changes in the values of the clocks. Only initially, depend-
ing on the initial edges and invariants, different initial locations may be selected as a
result of time passing.

1

2 Chapter 1. Introduction

• Delayable guards. Where the previous version of discrete-event χ [5] had non-
delayable guards, such as found in many process algebras, the currentχ semantics
has delayable guards. A non-delayable guard cannot performa delay when it is false.
A delayable guard can delay when it is false until it becomes true, and thus facilitates
modeling. Consider for example a valveα that must be switched on when the time
becomes bigger thentmax. Using a delayable guard, this can be modeled simply by
time ≥ tmax → α := true.

Delayable guards ensure that inb → h ! b, the value of expressionb that is sent via
channelh is always true. Note thath ! b can either do a send action, or delay for
an arbitrary period of time. Non-delayable guards may lead to un-intuitive behavior,
because the value ofb that is sent may be false. Consider the process term:

((time ≤ 3 → h ! time) []110) || 15; h ?y.

Using non-delayable guards, the process term can perform a delay of at most 5, and
after performing an internal action transforms into

(h ! time []15) || h ?y.

The guard that was true has disappeared in delaying. If the communication via channel
h takes place now, a value of 5 is sent, which does not conform totime ≤ 3.

Using delayable guards on the other hand, the process term can do the delay of at most
3, and transforms into:

(time ≤ 3 → h ! time [] 17) || 12; h ?y,

where the value oftime is 3. Communication is still not possible. After a delay of 2,
followed by an internal action, the process term transformsinto:

(time ≤ 3 → h ! time [] 15) || h ?y,

where the value oftime is 5, and after another delay of 5 it transforms into:

(time ≤ 3 → h ! time []10) || h ?y.

The time-out takes place, leading to:h ?y. Due to the delayable guard, that does not
disappear while delaying, the communication does not take place, because the guard
cannot be satisfied.

• Integrated urgent and non-urgent actions. Theχ formalism has both urgent and
non-urgent actions. The concept of urgency is defined in a very flexible way: non-
delayable actions are by definition urgent and delayable actions are non-urgent. This
is achieved without any additional operators. A maximal progress operator as defined
in [5] is not needed. The concept of urgency is built into the individual parallel com-
position, alternative composition and guard operators. Consider the non-delayable
actionx := 1. The following three process terms

3

– 15 || x := 1

– 15 [] x := 1

– time = 0 y (time ≤ 0 → x := 1)

can each execute only the actionx := 1. Here,time = 0 y p denotes a process term
p for which the value oftime is initially zero. Consider now the delayable action
[x := 1]. The following three process terms

– 15 || [x := 1]

– 15 [] [x := 1]

– time = 0 y (time ≤ 0 → [x := 1])

can each execute either the actionx := 1 or perform a delay. This concept is compa-
rable to so-called urgent transitions that are present in, for example UPPAAL [8].

Communication on channels can also be urgent and non-urgentas in UPPAAL. This is
achieved by means of an operator that partitions the set of channels into a set of urgent
and a set of non-urgent channels. For the urgent channels, communication must take
place as soon as it becomes possible, whereas for the non-urgent channels, no such
preference for communication is assumed.

• Syntactic extensions. Ease of modeling is further supported in χ by extension of the
small set of orthogonal core process terms with additional process terms for ease of
modeling. These additional process terms are defined by means of a straightforward
mapping into the core process terms.

2. Concepts for complex system specification.

• Process terms for scoping that integrate abstraction, local variables, local channels and
recursion definitions.

• Parameterized process definition and process instantiation that enable:

– process re-use and

– encapsulation, hierarchical and/or modular composition of processes.

• CSP communication and synchronization concepts that allowsynchronization and
communication without sharing of variables.

The history of theχ language dates back quite some time. It was originally designed as a mod-
eling and simulation language for specification of discrete-event, continuous-time or combined
discrete-event/continuous-time models. The first simulator [13] was suited to discrete-event
models only. The simulator was successfully applied to a large number of industrial cases, such
as an integrated circuit manufacturing plant, a brewery, and process industry plants [19]. Later,
the hybrid language and simulator were developed [7, 18]. For the purpose of verification, the
discrete-event part of the language was mapped onto the process algebraχσ by means of a syn-
tactical translation. The semantics ofχσ was defined using a structured operational semantics
style (SOS), bisimulation relations were derived, and a model checker was built [5]. In this way,
verification of discrete-eventχ models was made possible [4]. In [17], the hybridχ language

4 Chapter 1. Introduction

was formally defined. The timedχ language described in this report is obtained as a simplifi-
cation of hybridχ . It is suited for discrete-event modeling. Where inχσ , it was not possible to
refer to the current (model) time, in timedχ , there is a predefined variabletime, that denotes
the current time.

This report is organized as follows. Chapter 2 describes thesyntax and informal semantics of the
timedχ language. In Chapter 3, the semantics of timedχ is formally specified. An example
in Chapter 4 illustrates the use of the language. A general translation scheme for translating
timed automata to timedχ is given in Chapter 5. The derivation of timedχ from hybridχ is
described in Chapter 6. In Chapter 7, a notion of equivalenceis defined, which is shown to be
a congruence for all timedχ operators. Furthermore, some useful properties of closed timedχ

process terms are given.

Chapter 2

Syntax and informal semantics of the
timed Chi language

This chapter presents a concise definition of the syntax and informal semantics of timedχ . The
syntax definition is incomplete in the sense that the syntax of predicates, expressions, etc, is not
defined. In the remainder of this report, we usually refer to timedχ asχ .

2.1 Processes

A χ process is a triple〈p, σ, E〉, wherep denotes a process term,σ denotes a valuation, andE
denotes an environment. The syntax of process terms is introduced in Section 2.2. Variables in
χ are used to store information, i.e., during execution variables have a value. A valuation is a
partial function from variables to values. Syntactically,a valuation is denoted by a set of pairs
{x0 7→ c0, . . . , xn 7→ cn}, wherexi denotes a variable andci its value. The valuationσ and the
environmentE, together define the variables that exist in theχ process and the variable classes
to which they belong.

Discrete behavior (instantaneous changes) of aχ process is represented by means of action
transitions, and delay behavior (time passing) is represented by means of time transitions.

The variables are grouped into different classes with respect to the delay behavior and the action
behavior. With respect to the delay behavior, the variablesare divided into the following classes:

• The discrete variables, the values of which remain constantwhile delaying.

• The predefined variable ‘time’, that denotes the current time.

With respect to the action behavior, the variables are divided into two classes:

5

6 Chapter 2. Syntax and informal semantics of the timed Chi language

• The non-jumping variables, the values of which by default donot change during action
transitions. Such changes need to be explicitly specified. This is the normal behavior of the
χ variables. The predefined variabletime is by definition non-jumping.

• The jumping variables, the values of which by default can jump to arbitrary values in ac-
tions. The values after jumping can be restricted by means ofthe action predicate, or receive
process term, that caused the jump. Note that in principle, jumping variables occur only as
an artefact of the parallel composition of a send and a receive process term, where the re-
ceive process term assigns the received value to a discrete variable, see Sections 3.3.2 and
3.4.6.

In χ , an environment is a tuple(J, R), whereJ denotes the set of jumping variables, andR
denotes a recursive process definition. It is required thatJ ⊆ (dom(σ) \ {time}), and dom(σ) ∩

dom(R) = ∅. A recursive process definition is a partial function from recursion variables to
process terms. Syntactically, a recursive process definition is denoted by a set of pairs{X0 7→

p0, . . . , Xm 7→ pm}, whereXi denotes a recursion variable andpi the process term defining it.

The domain of the valuationσ in a χ process〈p, σ, E〉 consists of the discrete variables and
the predefined variabletime.

For aχ process〈p, σ, (J, R)〉, the combination of the variable classes for the delay and action
behavior leads to the following classes of variables:

• The set of discrete variablesD is dom(σ) \ {time}.

– the set of non-jumping discrete variables isD \ J,

– the set of jumping discrete variables isD ∩ J.

• The predefined (non-jumping) variable denoting the currenttime istime.

A χ process〈p, σ, E〉 is consistent if valuationσ is consistent withp in environmentE. In
timed χ , there are two process terms which can introduce inconsistencies: the inconsistent
process term⊥ that is inconsistent with all valuations, and the signal emission operatoru y p
that is inconsistent with all valuations in which predicateu does not hold. Inχ , only consistent
processes can perform action or delay transitions, and the result of an action or delay transition
is always a consistent process.

2.2 Process terms

Process termsP (without Pext, see the table below) are the ‘core’ elements of theχ language. In
Section 2.3, the syntax ofχ process terms is extended with process termsPext to ensure better
readability ofχ models. The semantics of those process terms is defined in terms of the core
process terms given in this section.

2.2. Process terms 7

P ::= W : r � la | δ | ⊥

| [P] | u y P | P; P | b → P | P [] P
| P || P | h !! en | h ??xn | ∂A(P) | υH(P)

| X | |[V σ⊥ ‘ |’ P]| | |[H H0 ‘ |’ P]| | |[R R ‘ |’ P]|

| Pext

An informal, concise explanation of the core syntax, together with some additional (informal)
definitions, is given below. Chapter 3 gives a more detailed account of the meaning. The core
operators are listed in descending order of their binding strength as follows{y, → },; , {|| , []}.
The operators inside the braces have equal binding strength. In addition, operators of equal
binding strength associate to the right, and parentheses may be used to group expressions. For
example,p; q; r meansp; (q; r).

Strictly speaking, aχ process termp cannot perform actions nor delays. Only theχ process
〈p, σ, E〉, that is obtained by adding a valuation and an environment top, can, in principle,
perform actions and delays. Therefore, when we informally refer to a process term that per-
forms actions or delays, we actually refer to the process term together with a valuation and
environment.

2.2.1 Action predicates

An instantaneous change of variables inχ is always connected to the execution of an action.
In action predicates, the action is represented by a label. Other types of action are related
to communication, which is treated below in the paragraph onparallelism. Action predicate
W : r � la denotes instantaneous changes to the variables from setW, by means of an action
labeledla, such that predicater is satisfied. The predefined global variabletime cannot be
assigned. The action labella is taken from a given setAlabel which at least contains the special
action labelτ representing the internal or silent step. The non-jumping variables that are not
mentioned inW remain unchanged, and the jumping variables may obtain arbitrary values.

In this report, we do not explicitly give a syntax for such predicatesr . In r , variables and ‘−’
superscripted variables may occur. Of course the use of variables is restricted to the declared
variables. A ‘−’ superscripted occurrence of a variable refers to the valueof the variable in the
valuation prior to execution of the action predicate, and a normal un-superscripted occurrence
of a variable refers to the value of that variable in the valuation that results from the execution
of the action predicate. A predicater is satisfied if evaluating the ‘−’ superscripted variables
in the original valuation and evaluating the normal occurrences of the variables in the obtained
valuation means that the predicate is true. Note that it can be the case that different instantaneous
changes satisfy the predicate, this may result in non-determinism.

Note that the (multi-)assignment is not a primitive inχ , as for example in [5]. This is because
action predicates are more expressive than assignments. Anassignment can be expressed as an
action predicate (see Section 2.3.2), but not the other way around. Consider for example the
action predicate{x} : x ∈ [0, 1] � τ that changes the value ofx to a value in the interval[0, 1],

8 Chapter 2. Syntax and informal semantics of the timed Chi language

such as used in the example model in Chapter 4. Also, the predicate of an action predicate may
consist of a conjunction of implicit equations, e.g.{x} : f1(x−,x) = 0∧ . . .∧ fn(x−,x) = 0� τ .
The solution of such a system of equations, if present, need not always be expressible in an
explicit form. The system may also have multiple solutions.

Deadlock and inconsistency

In χ , only consistent processes can perform action or delay transitions, and the result of an
action or delay transition is always a consistent process. Some process terms are consistent
for certain valuations and inconsistent for other valuations. E.g. the signal emission process
term x ≥ 0 y p is consistent for the valuations in which the value ofx is greater or equal to
zero, and inconsistent for all other valuations. Inconsistent process term⊥ is inconsistent for
all valuations, and it cannot perform any transition. Process term⊥ originates from the process
algebra with propositional signals ACPps ([1]). The deadlock process termδ cannot perform
actions or delays. It is however consistent with arbitrary valuations. Both process terms are
needed for the specification of properties only.

2.2.2 Delay enabling operator

By means of thedelay enabling operator[p], delay behavior of arbitrary duration can be spec-
ified. The resulting behavior is such that arbitrary delays are allowed. As a consequence, any
delay behavior ofp is neglected. The action behavior ofp remains unchanged.

2.2.3 Signal emission

Signal emission operator uy p, whereu denotes a predicate over variables, behaves asp for
those valuations whereu holds. The process term is inconsistent with valuations forwhich u
does not hold.

2.2.4 Sequential composition

Thesequential compositionof process termsp andq behaves as process termp until p termi-
nates, and then continues to behave as process termq.

2.2.5 Conditional

Theguarded process term b→ p can perform whatever actionsp can perform under the con-
dition that the guardb evaluates to true using the current valuation. All variables are allowed
to occur inb. The guarded process term can delay according top under the condition that
for the intermediate valuations during the delay, the guardb holds. The guarded process term

2.2. Process terms 9

can perform arbitrary delays under the condition that for the intermediate valuations during the
delay, possibly excluding the first and last valuation, the guardb does not hold.

2.2.6 Choice

Thealternative composition operator[]allows a non-deterministic choice between different ac-
tions of a process. With respect to time behavior, the participants in the alternative composition
have to synchronize. This means that the trajectories of thevariables have to be agreed upon by
both participants. This means that[] is a strong time-deterministic choice operator.

2.2.7 Parallelism

Parallelism can be specified by means of theparallel composition operator|| . Parallel pro-
cesses interact by means of shared variables or by means of synchronous point-to-point com-
munication/synchronization via a channel. Channels are denoted as labels (identifiers). A set of
channel labelsH is assumed. The parallel compositionp || q synchronizes the time behavior
of p andq, interleaves the action behavior (including the instantaneous changes of variables)
of p andq, and synchronizes matching send and receive actions. The synchronization of time
behavior means that only the time behaviors that are allowedby both p andq are allowed by
their parallel composition.

By means of thesend action h!! en, whereen denotese1, . . . , en for n ≥ 1, the values of
expressionse1, . . . , en (evaluated w.r.t. the current valuation) are sent via channel h. Forn = 0,
h !! en denotesh !! and nothing is sent via the channel. By means of thereceive action h??xn,
wherexn denotesx1, . . . , xn for n ≥ 1, values forx1, . . . , xn are received from channelh. For
n = 0, h ??xn denotesh ??, and nothing is received via the channel. Communication in χ is
the sending of values by one parallel process over a channel to another parallel process, where
the received values (if any) are stored in variables. In caseno values are sent and received, we
refer to synchronization instead of communication. For communication, the acts of sending and
receiving (values) have to take place in different parallelprocesses at the same moment in time.

In order to be able to model open systems (i.e. systems that interface with the environment),
it is necessary not to enforce communication over the external channels of the model (e.g. the
channels that send or receive from the environment). For communication over internal channels,
however, the communication of matching send and receive actions, often is not only an option,
but an obligation. In such models, the separate occurrence of the send action and the receive
action over an internal channel is undesired. Theencapsulation operator∂A, whereA⊆ A\ {τ }

is a set of actions (A is the set of all possible actions andτ is the predefined internal action), is
introduced to block the actions from the setA. In order to assure that for internal channels only
the synchronous execution of matching send and receive actions takes place, one can simply
put all send and receive actions via internal channels in thesetA.

In principle the channels inχ are non-urgent. This means that communication does not nec-
essarily take place as soon as possible. In order to describealso urgent channels, theurgent

10 Chapter 2. Syntax and informal semantics of the timed Chi language

communication operatorυH(p), whereH ⊆ H is a set of channel labels (H is the set of all
possible channel labels), ensures thatp can only delay in case no communication via a chan-
nel fromH is possible. Such urgent channels correspond to urgent channels defined in some
versions of timed automata, such as UPPAAL [8].

2.2.8 Recursive definitions

Process term Xdenotes a recursion variable (identifier) that is defined either in the environment
of the process, or in a recursion scope operator process term|[R . . . | P]|, see below. Among
others, it is used to model repetition. Recursion variableX can do whatever the process term of
its definition can do.

2.2.9 Hierarchical modeling

Thus far, it has been assumed that all variables that are allowed to occur in aχ process term
are declared in the valuation. To support the hierarchical modeling of systems, it is convenient
to allow local declarations of variables. For this purpose,thevariable scope operatorprocess
term |[V σ⊥ | p]| is introduced, whereσ⊥ denotes a valuation of local discrete variables, where
values may be undefined (⊥). The set of local discrete variables is dom(σ⊥). It is allowed that
the local variables have been declared on a more global levelalready. Any occurrence of a
variable from dom(σ⊥) in process termp refers to the local variable and not to any more global
declaration of the same variable name.

For similar purposes, local channels can be declared by means of a channel scopeprocess
term |[H H0 | p]|, and local recursive definitions by means of arecursion scopeprocess term
|[R R | p]|. The channel scope process term|[H H0 | p]| is used to declare the channels from the
set H0 ⊆ H to be local. Communication actions via those local channelsare abstracted from
(replaced by internal actionτ) and the separate send and receive actions via local channels
are blocked. The recursion scope process term|[R R | p]| is used to declare local recursion
definitions by means of the setR ⊆ RS(see Section 3.1 for the definition ofRS).

2.3 Syntactic extensions

For many of the process terms and operators introduced before, there is additional, more user-
friendly syntax available, the so-called syntactic extensions. In this section, all of these syntactic
extensions are expressed in terms of the core syntax introduced in the previous section.

2.3.1 Processes

A χ model is of the following form:

2.3. Syntactic extensions 11

〈 disc s1, . . . , sk

, chan h1, . . . , hl

, i
, X1 7→ p1, . . . , Xr 7→ pr

| p
〉

where

• s1, . . . , sk denote the discrete variables,

• h1, . . . , hl denote the channels,

• i denotes an initialization predicate that restricts the allowed values of the variables initially,

• X1 7→ p1, . . . , Xr 7→ pr denote the recursion definitions,

• p is a process term defining the behavior of the model.

Besides the variables mentioned in the model defined above, the existence of the predefined
reserved global variabletime which denotes the current time, the value of which is initially
zero, is assumed. This variable cannot be declared. It can only be used in expressions in
process termp.

The aboveχ model is an abbreviation for the set ofχ processes defined by:

〈 ∂Aia(υ{h1,...,hl }(i ∧ time = 0 y p))

, σst

, (∅

, {X1 7→ p1, . . . , Xr 7→ pr }

)

〉,

namely for each valuationσst, with dom(σst) = {s1, . . . , sk , time}, a separateχ process. In the
χ process,Aia represents the internal send and receive actions via channels h1, . . . , hl .

As a shorthand, the keyworddisc is omitted when there are no discrete variable declarations,
and the keywordchan is omitted when there are no channel declarations. Also the initialization
predicatei and the recursive definitionsX1 7→ p1, . . . , Xr 7→ pr may be omitted, indicating
a predicate that always holds and an empty list of recursive definitions, respectively.

2.3.2 Process terms

The syntactic extensions for process terms are defined as follows:

12 Chapter 2. Syntax and informal semantics of the timed Chi language

Pext ::= skip | xn := en | xn : r | h ! en | h ?xn

| 1d(P) | 1d | ∗P | ∗b : P
| |[disc sk, chan hm, i, L R ‘ |’ P]|

| lp(xk , hm, en)

The operators ofP and Pext are listed in descending order of their binding strength as follows
{∗, ∗ :, y, → }, ; , {|| , []}.

Skip

Process term skip is an abbreviation for an action predicatethat can only perform an internal
action (τ) without changing the valuation.

skip , ∅ : true� τ

Multi-assignment

Multi-assignmentxn := en for n ≥ 1 is an abbreviation for an internal action that changes
variablesx1, . . . , xn to the values of expressionse1, . . . , en, respectively. Forn = 1, this gives
a normal assignmentx := e.

xn := en , {xn} : x1 = e−
1 ∧ · · · ∧ xn = e−

n � τ

Heree− denotes the result of replacing all variablesv in eby their ‘−’ superscripted versionv−.
For example, the translation of process termx := 2x + yz is defined as{x} : x = 2x− + y−z−,
and the translation ofx, y := x + y, x − y is defined as{x, y} : (x = x− + y−)∧ (y = x− − y−).

Action predicate

Action predicatexn : r denotes instantaneous changes to the variablesx1, . . . , xn, by means of
an internal actionτ , such that predicater over variables, dotted variables, and ‘−’ superscripted
variables is satisfied.

xn : r , {xn} : r � τ

2.3. Syntactic extensions 13

Delayable send and receive

Process termsh ! en, andh ?xn are the respective delayable equivalents ofh !! en andh ??xn.
They are defined by means of the delay enabling operator[p], which adds arbitrary delay be-
havior to p.

h ! en , [h !! en]

h ?xn , [h ??xn]

Delay operators

By means of the delay operator1d(p), a process term is forced to delay for the amount of time
units specified by the value of numerical expressiond, and then proceeds asp. The abbreviation
1d denotes a process term that first delays ford time units, and then terminates by means of an
internal actionτ .

1d(p) , |[V {t 7→ ⊥} | t = time + d y time ≥ t → p]|

1d , 1d(skip)

In the definition of1d(p), t denotes a fresh variable, not occurring free inp. Delays are only
defined for non-negative values ofd. Therefore, we assume that the value ofd in the valuation
is non-negative.

Repetition operators

Process term∗p represents the infinite repetition of process termp. Guarded repetition∗b : p
can be interpreted as “whileb do p”.

∗p , |[R {X 7→ p; X} | X]|

∗b : p , |[R {X 7→ b → skip; p; X [] ¬b → skip} | X]|

In the definition of∗p and∗b : p, recursion variableX denotes a fresh recursion variable not
occurring free inp.

Scope operator

The modeling scope operator process term

|[disc sk, chan hm, i, L R ‘ |’ p]|

is used to declare a scope consisting of local discrete variables s1, . . . , sk, local channels
h1, . . . , hm, initialization predicatei , and local recursion definition listL R. The variables all
have to be different.

14 Chapter 2. Syntax and informal semantics of the timed Chi language

|[disc sk

, chan hm

, i
, L R

| p
]|

,

|[V σs

| |[H {h1, . . . , hm}

| υ{h1,...,hm}(|[R {L R} | i y p]|)

]|

]|

HereL R denotes the recursion definitionsX1 7→ p1, . . . , Xr 7→ pr , σs denotes a valuation with
dom(σs) = {s1, . . . ,sk}, andσs is undefined for all elements from its domain:∀v∈dom(σs) σs(v) =

⊥.

In a similar way as defined forχ processes, the keyworddisc is omitted when there are no
discrete variable declarations, and the keywordchan is omitted when there are no local channel
declarations. Also the initialization predicatei and the recursion definitions may be omitted,
indicating a predicate that always holds and an empty list ofrecursion definitions, respectively.

Process instantiation

Process instantiation process termlp(xk, hm, en), wherelp denotes a process label, enables (re)-
use of a process definition. A process definition is specified once, but the associated processes
can be instantiated many times, possibly with different parameters: external variablesxk, exter-
nal channelshm, and expressionsen.

Chi specifications in which process instantiationslp(xk, hm, en) are used have the following
structure:

pd1
...

pdj

〈 disc . . . , chan . . . , i , L R | p 〉,

where for each process instantiationlp(xk,hm,en) occurring inp, a matching process definition
of the form

lp(ext x′
k, chan h′

m, val vn) =

|[disc zd , chan h′′
m′ , i , X 7→ p

| pbody

]|

must be present among thej process definitionspd1 . . . pdj . Herelp denotes a process label,
xk denotes the ‘actual external’ variablesx1, . . . , xk, hm denotes the ‘actual external’ channels

2.3. Syntactic extensions 15

h1, . . . , hm, en denotes the expressionse1, . . . , en, x′
k denotes the ‘formal external’ variables

x′
1, . . . , x′

k, h′
m denotes the ‘formal external’ channelsh′

1, . . . , h′
m, vn denotes the ‘value pa-

rameters’v1, . . . , vn, h′′
m′ denotes the local channelsh′′

1, . . . , h′′
m′, i denotes the initialization

predicate, andX 7→ p denotes the recursion definitionsX1 7→ p1, . . . , Xr 7→ pr . In a similar
way,zd denotes a comma separated list of local discrete variables.

In process termpbody, apart from the local variableszd and local channelsh′′
m′ , also the formal

external variablesx′
k, formal external channelsh′

m, and value parametersvn may be used. We
assume that the formal external variablesx′

k, the value parametersvn, the local variableszd and
the recursion variablesX are all different. In the same way, the formal external channels h′

m

must be different from the local channelsh′′
m′ . Furthermore, all variables and channels used in

pbody must be declared.

Formally, the syntactic translation of process instantiation

lp(xk, hm, en)

with corresponding process definition

lp(ext x′
k, chan h′

m, val vn) =

|[disc zd , chan h′′
m′

, i
, X 7→ p
| pbody

]|

is given by

|[disc zd, vn, chan h′′
m′

, i ∧ (vn = w)

, X 7→ p
| pbody

]| [xk, hm, en/x′
k, h′

m, w].

This notation denotes the substitution of variablesx′
k by xk, of channelsh′

m by hm, and of
variablew by expressionen. The substitution takes place on the initialization predicatei ∧ (vn =

w), on the recursion definitionsX 7→ p and on the process termpbody.

The variablew is assumed to be fresh with respect tox′
k, vn, zd. The substitution is defined

in such a way that no variables fromxk or en, and no channels fromhm become bound. If
substitution would cause new bindings, the local variable or local channel that a variable or
channel fromxk, en, or hm would become bound to, is renamed into a fresh variable or fresh
channel before the substitution takes place.

The translation declares the value parametersvn as local discrete variables with initial values
en. By convention, however, process termpbody normally does not change the values of these
variables.

16 Chapter 2. Syntax and informal semantics of the timed Chi language

2.4 Data types

Theχ language is statically strongly typed. Besides the classification of variables as defined
before, all variables have a type. The type of a variable defines the allowed values of the variable
and the allowed operations on the variable. The atomic typesare nat (natural numbers, including
zero), int (integers), real (real-valued numbers), bool (booleans), string (strings), and enum
(enumerations). Type constructors operate on existing types to create structured types. Theχ

language defines type constructors to create sets, lists, array tuples, record tuples, dictionaries,
functions, and distributions (for stochastic models). Channels also have a type that indicates the
type of data that is communicated via the channel. Pure synchronization channels, that do not
communicate data, are of the predefined type void. Theχ type system is strictly enforced in the
χ tools. However, since the type system is not formalized, it is omitted from the specifications
in this report.

Chapter 3

Semantics of the timed Chi language

This chapter presents the structured operational semantics (SOS [16]) of timedχ . It associates
a hybrid transition system [6] with aχ process. The semantics is defined only for a subset of
the syntactically allowedχ processes. E.g. the semantics of theχ process〈x ≥ 1 → p, σ, E〉 is
defined only for variablesx that have a defined value. These additional semantical restrictions
on χ processes, if present, are specified together with the SOS rules for each process term in
Sections 3.3 and 3.4.

3.1 General description of the SOS

The main purpose of an SOS is to define the behavior of hybridχ processes at a certain chosen
level of abstraction. The meaning of aχ process depends on the values of the variables and
on the environment. A setV of variables, and a setH of channel labels are assumed. The
values of the variables at a specific moment in time are captured by means of a valuation, i.e.,
a partial function from the variables to the set of values3 (containing at least the booleansB
and the realsR). The set of all valuations is denoted6: 6 = V 7→ 3, and we assumeσ ∈ 6

and time ∈ dom(σ) for all χ processes〈p, σ, E〉. The setT is used to represent points in
time; usuallyT = R≥0. The set of environmentsES is defined asES= P(V) × RS, where
RS= XS 7→ P denotes the set of all partial functions of recursion variablesXSto process terms
P.

The SOS is chosen to represent the following:

1. Discrete behavior by means of action transitions:

(a) −→ ⊆ (P × 6 × ES) × (6 × A × 6) × (P × 6 × ES), whereA denotes the set
of actions, and is defined asA = Alabel∪ Acom. The set of action labelsAlabel includes
at least the pre-defined internal actionτ . The set of communication actionsAcom is
defined asAcom = {isa(h, cs), ira(h, cs, W), ca(h, cs) | h ∈ H, cs ∈ 3∗, W ⊆ V},

17

18 Chapter 3. Semantics of the timed Chi language

where isa, ira, and ca denote action labels for the internal send action, the internal
receive action, and the communication action respectively, h ∈ H denotes a channel,
cs ∈ 3∗ denotes a list[c1, . . . , cn] of values, andW denotes a set of variables. The

intuition of an action transition〈p,σ, E〉
ξ,a,ξ ′

−−−→ 〈p′,σ ′, E′〉 is that the process〈p,σ, E〉

executes the discrete actiona ∈ A with valuationsξ andξ ′ and thereby transforms
into the process〈p′, σ ′, E′〉, whereσ ′ andE′ denote the accompanying valuation and
environment of the process termp′, respectively, after the discrete actiona is executed.

(b) −→ 〈X, , 〉 ⊆ (P × 6 × ES) × (6 × A × 6) × (6 × ES). The intuition of

a (termination) transition〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈X, σ ′, E′〉 is that the process〈p, σ, E〉

executes the discrete actiona with valuationsξ andξ ′ and thereby transforms into the
terminated process〈X, σ ′, E′〉.

2. Delay behavior (time-passing) by means of time transitions: 7−→ ⊆ (P × 6 × ES) ×

(T × (T 7→6))× (P×6×ES). The intuition of a time transition〈p,σ, E〉
t,ρ

7−→ 〈p′,σ ′, E′〉

is that during the time transition, the valuation at each time-points ∈ [0, t] is given byρ(s).
At the end-pointt , the resulting process is〈p′, σ ′, E′〉.

3. Consistency by means of a unary relation: ⊆ (P × 6 × ES) × 6. The intuition of a

consistency transition〈p, σ, E〉
ξ
 is that process termp is consistent with valuationξ in

environmentE.

In this report, for all transitions, the domain of the valuation σ equals the domain of valuation
σ ′, and environmentE equals environmentE′.

For all action transitions〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈X, σ ′, E′〉 and〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈p′, σ ′, E′〉, dom(σ) =

dom(σ ′), ξ = σ , ξ ′ = σ ′, andE = E′.

For all time transitions〈p, σ, E〉
t,ρ

7−→ 〈p, σ ′, E′〉, dom(ρ) = [0, t], ρ(0) = σ , ρ(t) = σ ′, and
E = E′. These properties of the semantics can be found in Chapter 7.

The relations and predicates mentioned above are defined through so-called deduction rules. A
deduction rule is of the formH

r , whereH is a number of hypotheses separated by commas and
r is the result of the rule. The result of a deduction rule can bederived if all of its hypotheses
are derived. In case the set of hypotheses is empty, the deduction rule is called an axiom.

In order to increase the readability of theχ deduction rules, some additional abbreviations

are used. NotationE 〈p, σ 〉
ξ,a,ξ ′

−−−→ 〈q, σ ′〉, whereq ∈ P ∪ {X} is an abbreviation for

〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈q, σ ′, E〉, notationE 〈p, σ 〉
t,ρ

7−→ 〈q, σ ′〉 is an abbreviation for〈p, σ, E〉
t,ρ

7−→

〈q, σ ′, E〉, and notationE 〈p, σ 〉
ξ
 is an abbreviation for〈p, σ, E〉

ξ
 .

NotationE f1, . . . , fn, where fi represents one of the previously defined transition relations

(of the forms〈p, σ 〉
ξ,a,ξ ′

−−−→ 〈q, σ ′〉 or 〈p, σ 〉
t,ρ

7−→ 〈q, σ ′〉 or 〈p, σ 〉
ξ
) is an abbreviation for

E f1, . . . , E fn.

3.2. Notations and mathematical definitions 19

Notation

E′ 〈p1, σ1〉
ξ1,a1,ξ

′
1

−−−−→

〈 q11
...

q1n

, σ ′
1

〉

, . . . , 〈pm, σm〉
ξm,am,ξ ′

m
−−−−−→

〈 qm1
...

qmn

, σ ′
m

〉

, C

E 〈r, σ 〉
ξ,b,ξ ′

−−−→

〈 s1
...

sn

, σ ′

〉

whereqj i , si ∈ P ∪ {X}, pi , r ∈ P, andC denotes an optional hypothesis that must be satisfied
in the deduction rule, is an abbreviation for the following rules (one for eachi):

E′ 〈p1, σ1〉
ξ1,a1,ξ

′
1

−−−−→ 〈q1i , σ
′
1〉, . . . , 〈pm, σm〉

ξm,am,ξ ′
m

−−−−−→ 〈qmi , σ
′
m〉, C

E 〈r, σ 〉
ξ,b,ξ ′

−−−→ 〈si , σ ′〉

The notationH
R , whereR is a number of results separated by commas, is an abbreviation for a

set of deduction rules of the formHr ; one for eachr ∈ R, and notationE H
r is an abbreviation

for EH
Er .

Furthermore, notation〈p, σ, E〉
ca(h,∗)
9 denotes(@ξ,cs,ξ ′,p′,σ ′,E′ 〈p, σ, E〉

ξ,ca(h,cs),ξ ′

−−−−−−→ 〈p′, σ ′, E′〉)

∧ (@ξ,cs,ξ ′,σ ′,E′ 〈p, σ, E〉
ξ,ca(h,cs),ξ ′

−−−−−−→ 〈X, σ ′, E′〉), and notation〈p, σ, E〉
α
−→ 〈p′, σ ′, E′〉 is an

abbreviation for〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈p′, σ ′, E′〉 for someξ , a, andξ ′.

3.2 Notations and mathematical definitions

Notations f ∈ M → G andg ∈ M 7→ G define complete functionf , dom(f) = M, and partial
functiong, dom(g) ⊆ M, both with rangeG.

3.2.1 Operators on functions

Based on [9], the following definitions of operators�, ∪, and↓ applied on functions are used.
If f is a function, dom(f) and range(f) denote the domain and range off , respectively. IfS is
a set, f � Sdenotes the restriction off to S, that is, the functiong with dom(g) = dom(f) ∩ S,
such thatg(c) = f (c) for eachc ∈ dom(g).

If f andg are functions with dom(f) ∩ dom(g) = ∅, then f ∪ g denotes the unique functionh
with dom(h) = dom(f) ∪ dom(g) satisfying the condition: for eachc ∈ dom(h), if c ∈ dom(f)

thenh(c) = f (c), andh(c) = g(c) otherwise.

If f is a function whose range is a set of functions andS is a set, thenf ↓ S denotes the
function g with dom(g) = dom(f) such thatg(c) = f (c) � S for eachc ∈ dom(g). If f is

20 Chapter 3. Semantics of the timed Chi language

a function whose range is a set of functions, all of which havea particular elementd in their
domain, thenf ↓ d denotes the functiong with dom(g) = dom(f) such thatg(c) = f (c)(d)

for eachc ∈ dom(g).

3.2.2 Notations

Let x ∈ V be a variable,S ⊆ V be a set of variables,σ ∈ 6 be a valuation,e be an expression
over variables and constants, andt ∈ T be a time-point, then the following notations are defined:

• σ (x) denotes the value of variablex in valuationσ . We use the similar notationσ (e). to
denote the value of expressione for valuationσ .

• Function4 ∈ 6 ×P(V) → P(6) returns a set of valuations, given a valuation, and the set
of jumping variables. Formally, function4 is defined as:

4(σ, J) = {σ ′ | dom(σ ′) = dom(σ), ∀x∈dom(σ)\J σ ′(x) = σ (x)}.

The domain of the valuations is given by dom(σ). The values of the variables in dom(σ)\ J
are given byσ . The jumping variablesJ are allowed to change arbitrarily.

• Function� ∈ 6 × T → P(T 7→ 6) returns a set of trajectories for the model variables,
given a valuation and the duration of the time transition. For t ≥ 0, the set contains exactly
one trajectory. Fort < 0, the set is empty. Formally, function� is defined as:

�(σ, t) =

{ρ

| ρ ∈ [0, t] 7→ (dom(σ) → 3)

, t ≥ 0
, ∀x ∈ dom(σ) \ {time} : ρ ↓ x is a constant function.
, ∀x ∈ dom(σ) : (ρ ↓ x)(0) = σ (x)

, ∀s ∈ [0, t] : ρ(s)(time) = σ (time) + s
}

In some SOS rules describing delay behavior,�(σ, t) is used as a hypothesis. It does not
restrictt and the trajectoryρ other than by means of the default restrictions. Among others,
the discrete variables remain constant, and the durationt of the time transition must be
positive or zero.

3.3. Deduction rules for atomic process terms 21

3.3 Deduction rules for atomic process terms

3.3.1 Action predicate

Action predicate process termW : r � la denotes instantaneous changes to the variables from
setW ⊆ dom(σ) \ {time}, by means of an action labeledla ∈ Alabel, such that predicater over
variables from dom(σ−) and dom(σ ′) is satisfied, see Rule 1.

Variables occurring with a ‘−’ superscript inr are evaluated inσ−, which denotes a valuation
with dom(σ−) = {x− | x ∈ dom(σ)}, andσ−(x−) = σ (x). For valuationσ ′, the values of the
non-jumping variables (dom(σ) \ (J ∪ W)) are given byσ . The jumping variablesJ and the
variables from setW are allowed to change such that the action predicate is satisfied.

Rule 2 states that action predicates are consistent with anyvaluationsσ in any environmentE.

σ ′ ∈ 4(σ, J ∪ W), σ− ∪ σ ′ |H r

(J, R) 〈W : r � la, σ 〉
σ , la, σ ′

−−−−−→ 〈X, σ ′〉

T-1

E 〈W : r � la, σ 〉
σ

T-2

3.3.2 Send and receive

Send and receive process termsh !! en andh ??xn denote undelayable sending of expression
en via channelh, and undelayable receiving of information via channelh into variable(s)xn,
respectively.

The values of expressionse1, . . . , en which are sent via channelh are evaluated in valuationσ ,
see Rule 3, whereen denotese1, . . . , en, [σ (en)] denotes the list of values[σ (e1), . . . , σ (en)]

for n ≥ 1, andσ (e) denotes the value of expressione for valuationσ . The case thatn equals 0,
represents the case where nothing is sent via the channel, and e0 and[σ (e0)] denote an empty
expression and an empty list, respectively. Forn ≥ 1, the receive process termh ??x1, . . . , xn

can receive the list of values[c1, . . . , cn], see Rule 4, wherexn denotesx1, . . . , xn, {xn} denotes
the set{x1, . . . , xn} ({xn} ⊆ dom(σ) \ {time}), [cn] denotes the list of values[c1, . . . , cn], and
σ ′(xn) = cn is an abbreviation forσ ′(x1) = c1, . . . , σ ′(xn) = cn. We assume that all variables
in xn are different:xi = xj H⇒ i = j . For n = 0, nothing is received, so thatx0 andc0 are
empty, andσ ′(x0) = c0 always holds. Furthermore, we assume{xn} ⊆ dom(σ) \ {time}. Rules
5 and 6 state that the send and receive process terms are consistent with any valuationσ in any
environmentE.

σ ′ ∈ 4(σ, J)

(J, R) 〈h !! en, σ 〉
σ , isa(h,[σ(en)]), σ ′

−−−−−−−−−−−→ 〈X, σ ′〉

T-3

22 Chapter 3. Semantics of the timed Chi language

σ ′ ∈ 4(σ, J ∪ {xn}), σ ′(xn) = cn

(J, R) 〈h ??xn, σ 〉
σ , ira(h,[cn],{xn}), σ ′

−−−−−−−−−−−−→ 〈X, σ ′〉

T-4

E 〈h !! en, σ 〉
σ

T-5
E 〈h ??xn, σ 〉

σ

T-6

3.3.3 Consistent deadlock

Process termδ cannot perform any action transition, nor time transition.It is, however, consis-
tent with any valuationσ in any environmentE.

E 〈δ, σ 〉
σ

T-7

3.3.4 Inconsistent process term

Inconsistent process term⊥ is considered to be in an inconsistent state from its start. Like
process termδ, process term⊥ cannot perform any action transitions, nor time transitions.
Process term⊥ originates from the process algebra with propositional signals ACPps ([1]).

3.4 Deduction rules for operators

3.4.1 Delay enabling operator

By means of the delay enabling operator[p], time transitions of arbitrary duration are allowed
for the behavior ofp (see Rule 9). Time transitions ofp itself are ignored. The delay enabling
operator does not affect the action behavior ofp (see Rule 8). Process term[p] is consistent
with any valuationσ in any environmentE (see Rule 10).

E

〈p, σ 〉
α
−→ 〈
X
p′ , σ

′〉

〈[p], σ 〉
α
−→ 〈
X
p′ , σ

′〉

T-8 E
ρ ∈ �(σ, t)

〈[p], σ 〉
t,ρ

7−→ 〈[p], ρ(t)〉
T-9

E 〈[p], σ 〉
σ

T-10

3.4. Deduction rules for operators 23

3.4.2 Signal emission operator

The signal emission operatoru y p ensures thatp starts its behavior from a valuationξ in
which predicateu is satisfied. This operator was inspired by the signal emission operator from
the process algebra with propositional signals ACPps [1], which was also used in [3]. Rule 13
states that the signal emission operator restricts consistency of process termu y p to those
valuationsξ that satisfy predicateu in environmentE.

E

〈p, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉, ξ |H u

〈u y p, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉

T-11 E
〈p, σ 〉

t,ρ
7−→ 〈p′, σ ′〉, ρ(0) |H u

〈 u y p, σ 〉
t,ρ

7−→ 〈p′, σ ′〉
T-12

E
〈p, σ 〉

ξ
 , ξ |H u

〈 u y p, σ 〉
ξ

T-13

3.4.3 Sequential composition operator

The sequential composition of process termsp andq behaves as process termp until p ter-
minates, and then continues to behave as process termq. When p terminates, its right-hand
valuationξ ′ must be consistent withq (see Rule 14).

E
〈p, σ 〉

ξ,a,ξ ′

−−−→ 〈X, σ ′〉, 〈q, σ ′〉
ξ ′

〈p; q, σ 〉
ξ,a,ξ ′

−−−→ 〈q, σ ′〉

T-14 E
〈p, σ 〉

α
−→ 〈p′, σ ′〉

〈p; q, σ 〉
α
−→ 〈p′ ; q, σ ′〉

T-15

E
〈p, σ 〉

t,ρ
7−→ 〈p′, σ ′〉

〈p; q, σ 〉
t,ρ

7−→ 〈p′ ; q, σ ′〉
T-16 E

〈p, σ 〉
ξ

〈p; q, σ 〉
ξ

T-17

3.4.4 Guard operator

The guarded process termb → p can perform whatever actionsp can perform under the con-
dition that the guard evaluates to true using valuationξ (we assumeb to be defined inξ in
Rule 18). Evaluating the guard inξ ensures that when guard operators are nested with signal
emission operators, actions can be executed only if all emitted predicates and all guards hold,
independently of the order.

The guarded process term can delay according top under the condition that for all intermediate
valuations the guard evaluates to true (∀s∈[0,t] ρ(s) |H b).

24 Chapter 3. Semantics of the timed Chi language

The guarded process term can perform arbitrary delays underthe condition that for the inter-
mediate valuations, possibly excluding the first and last valuation, the guard does not hold (
∀s∈(0,t) ρ(s) |H ¬b). This ensures that, for example, the process〈 disc x, x = 1 | time ≥

x → skip 〉 behaves as expected: it can first perform a time transition of1, such that the value
of the current timetime becomes 1, and thereafter it can perform aτ action to the terminated
process. If the condition in Rule 20 would be∀s∈[0,t] ρ(s) |H ¬b, then a time transition of 1
would be impossible. This is because the value of the guard should then also be false for the last
time point of the time transition, so that the point where thevalue oftime equals 1 could not be

reached. The conditionρ(0) |H b ⇒ 〈p, σ 〉
0,ρ�{0}
7−→ 〈p′, σ ′〉 in Rule 20, which states thatp must

be able to delay for a duration of 0 if the guard is initially true, ensures that undelayable actions
in p have priority over delay behavior of a guard that is initially true and continues as false. The

conditionρ(t) |H b ⇒ 〈p, ρσ (t)〉
ρ(t)
 in Rule 20 requires consistency if the guard holds in the

end-point of the trajectory. This ensures that it is impossible to delay to an inconsistent state.

Rule 21 and 22 define thatb → p is consistent with (21) valuations for whichb holds and with
which p is consistent, and with (22) valuations for whichb does not hold.

E

〈p, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉, ξ |H b

〈b → p, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉

T-18

E
〈p, σ 〉

t,ρ
7−→ 〈p′, σ ′〉, ∀s∈[0,t] ρ(s) |H b

〈b → p, σ 〉
t,ρ

7−→ 〈b → p′, σ ′〉
T-19

E

ρ ∈ �(σ, t), ∀s∈(0,t) ρ(s) |H ¬b,

ρ(0) |H b ⇒ 〈p, σ 〉
0,ρ�{0}
7−→ 〈p′, σ ′〉

ρ(t) |H b ⇒ 〈p, ρ(t)〉
ρ(t)

〈b → p, σ 〉
t,ρ

7−→ 〈b → p, ρ(t)〉
T-20

E
〈p, σ 〉

ξ
 , ξ |H b

〈b → p, σ 〉
ξ

T-21
σ |H ¬b

E 〈b → p, σ 〉
σ

T-22

3.4.5 Alternative composition operator

Applying the alternative composition operator to process terms p and q models a non-
deterministic choice betweenp andq for action transitions. Process termp can perform action
transitions only if the initial valuationξ is consistent withq, as specified in Rule 23.

3.4. Deduction rules for operators 25

The passage of time by itself cannot result in making a choice(see Rule 24). This is called
strong time-determinism, as defined in [14]. Consider for example theχ process〈(h !; p []

110; q) || r, σ, E〉 for somep, q, r ∈ P, σ ∈ 6 and E ∈ ES. The alternative composition
specifies a send process term with a time-out of 10 time units.Depending onr , either the send
succeeds first, followed byp, or the time-out succeeds first, followed byq, regardless ofq. This
is different from, for example, theχσ process algebra [5]. There,〈h ! [] (110;11), σ 〉 does not
make a choice after expiration of110.

Rule 25 states that an alternative composition is consistent with a valuation if both alternatives
are consistent with that valuation.

E

〈p, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉, 〈q, σ 〉
ξ

〈p [] q, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉, 〈q [] p, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉

T-23

E
〈p, σ 〉

t,ρ
7−→ 〈p′, σ ′〉, 〈q, σ 〉

t,ρ
7−→ 〈q′, σ ′〉

〈p [] q, σ 〉
t,ρ

7−→ 〈p′ [] q′, σ ′〉
T-24

E
〈p, σ 〉

ξ
 , 〈q, σ 〉

ξ

〈p [] q, σ 〉
ξ

T-25

3.4.6 Parallel composition operator

The parallel composition of process termsp andq has as its behavior with respect to action
transitions the interleaving of the behaviors ofp andq (see Rule 27). Process termp can only
perform action transitions from a valuationξ which is consistent withq. Furthermore,q must
be consistent with the resulting valuationξ ′ (see Rule 27).

The parallel composition allows the synchronization of matching send and receive actions. A
send action isa(h, cs) and a receive action ira(h′, cs′, W) match iff h = h′ andcs= cs′; i.e. the
channels used for sending and receiving are the same, and also the values sent and the values
received are identical. Furthermore, the resulting valuations ξ ′ andσ ′ of both the send action
and the receive action have to be the same. In order to be able to receive values in variables
of the same scope as the send process term, the variables of which the value changes due to
the receive action are passed on to the send process term. This is achieved by means of set
W on the receive action, and the addition of this setW to the set of jumping variables in the
environment where the send action takes place (see Rule 26).The result of the synchronization
is a communication action that is represented by ca(h, cs) as defined by Rule 26.

26 Chapter 3. Semantics of the timed Chi language

The time transitions of the process terms that are put in parallel have to synchronize to obtain
the time transition (with the same time stept and trajectoryρ) of their parallel composition as
defined by Rule 28.

A parallel composition of two process terms is consistent with a valuation if both process terms
are consistent with that valuation (see Rule 29).

(J ∪ W, R) 〈p, σ 〉
ξ,isa(h,cs),ξ ′

−−−−−−→

〈

X
p′

X
p′

, σ ′

〉

,

(J, R) 〈q, σ 〉
ξ,ira(h,cs,W),ξ ′

−−−−−−−−→

〈

X
X
q′

q′

, σ ′

〉

(J, R) 〈p || q, σ 〉
ξ,ca(h,cs),ξ ′

−−−−−−→

〈

X
p′

q′

p′ || q′

, σ ′

〉

,

〈q || p, σ 〉
ξ,ca(h,cs),ξ ′

−−−−−−→

〈

X
p′

q′

q′ || p′

, σ ′

〉

T-26

E

〈q, σ 〉
ξ
 , 〈p, σ 〉

ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉, 〈q, σ ′〉
ξ ′

〈p || q, σ 〉
ξ,a,ξ ′

−−−→ 〈
q

p′ || q
, σ ′〉, 〈q || p, σ 〉

ξ,a,ξ ′

−−−→ 〈
q

q || p′ , σ
′〉

T-27

E
〈p, σ 〉

t,ρ
7−→ 〈p′, σ ′〉, 〈q, σ 〉

t,ρ
7−→ 〈q′, σ ′〉

〈p || q, σ 〉
t,ρ

7−→ 〈p′ || q′, σ ′〉
T-28

E
〈p, σ 〉

ξ
 , 〈q, σ 〉

ξ

〈p || q, σ 〉
ξ

T-29

3.4. Deduction rules for operators 27

3.4.7 Action encapsulation operator

The behavior of the action encapsulation applied to a process term∂A(p) is the same as the
behavior of its argument with the restriction that actions from the setA (A ⊆ A\ {τ }) cannot be
executed (see Rule 30). Action encapsulation has no effect on time transitions and consistency,
as defined by Rules 31 and 32.

E

〈p, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉, a 6∈ A

〈∂A(p), σ 〉
ξ,a,ξ ′

−−−→ 〈
X

∂A(p′)
, σ ′〉

T-30

E
〈p, σ 〉

t,ρ
7−→ 〈p′, σ ′〉

〈∂A(p), σ 〉
t,ρ

7−→ 〈∂A(p′), σ ′〉
T-31 E

〈p, σ 〉
ξ

〈∂A(p), σ 〉
ξ

T-32

3.4.8 Urgent communication operator

The urgent communication operatorυH(p) gives communication actions via channels from set
H ⊆ H a higher priority than time transitions. Action behavior and consistency are not affected
by the urgent communication operator, see Rules 33 and 35. Time transitions are allowed only
if at each intermediate state while delaying no communication actions via channels fromH are
possible.

E

〈p, σ 〉
α
−→ 〈
X
p′ , σ

′〉

〈υH(p), σ 〉
α
−→ 〈

X
υH(p′)

, σ ′〉

T-33

E

〈p, σ 〉
t,ρ

7−→ 〈p′, σ ′〉,

∀s∈[0,t) (〈p, σ 〉
s,ρ�[0,s]
7−→ 〈ps, σs〉, 〈ps, σs〉

t−s,ρ−s
7−→ 〈p′, σ ′〉, ∀h∈H 〈ps, σs, E〉

ca(h,∗)
9)

〈υH(p), σ 〉
t,ρ

7−→ 〈υH(p′), σ ′〉
T-34

E
〈p, σ 〉

ξ

〈υH(p), σ 〉
ξ

T-35

whereρ−s denotes the trajectoryρ shifted left bys time-units and starting at 0: dom(ρ−s) =

[0, t − s], and∀t ′ ∈ dom(ρ−s) : ρ−s(t ′) = ρ(t ′ + s), wheret denotes the end-point of the domain
of ρ: dom(ρ) = [0, t].

28 Chapter 3. Semantics of the timed Chi language

3.4.9 Recursion variable

A recursion variable process termX behaves as the process term given byR(X). HereR(X) is
the process term that is defined for recursion variableX in function R. This is equivalent to syn-
tactically replacing recursion variableX by its defining process termR(X). It is assumed that
X is defined in the environment:X ∈ dom(R). FunctionR can be defined in the environment
of theχ process directly, or by means of the recursion scope operator, see Section 3.4.12.

(J, R)

〈R(X), σ 〉
α
−→ 〈
X
p′ , σ

′〉

〈X, σ 〉
α
−→ 〈
X
p′ , σ

′〉

T-36 (J, R)
〈R(X), σ 〉

t,ρ
7−→ 〈p′, σ ′〉

〈X, σ 〉
t,ρ

7−→ 〈p′, σ ′〉
T-37

(J, R)
〈R(X), σ 〉

ξ

〈X, σ 〉
ξ

T-38

3.4.10 Variable scope operator

By means of the variable scope operator, local variables areintroduced in aχ process. A
variable scope operator process term

|[V σd⊥
| p]|,

that is used in an environment(J, R), with valuationσ , and whereσd⊥
denotes a local valuation

with domain{d}, andd denotes the local discrete variablesd1, . . . ,dk, behaves asp after taking
the union of the local and global valuation. To ensure that all local variables are fresh with
respect to the global variables, the local variables are first renamed. Thusd′, in the rules below,
denotes fresh variablesd′

1, . . . , d′
k with respect to dom(σ). The local variablesd1, . . . , dk are

assumed to be all different. Notationp[d′/d] denotes the process term that is obtained by
substitution of the variablesd in p by d′. After execution of an action or a delay transition, the
local variables of the variable scope operator are renamed back to their original names.

The local variables are invisible outside of the scope operator. This is done by means of data
abstraction. For action transitions, data abstraction takes place by restricting the valuations, and
the valuation of the resulting process, to the global variables, and by keeping only the global
variables in the setW of the internal receive actions. For time transitions, dataabstraction
takes place by restricting the trajectory to the global variables. In this way, all changes to local
variables are removed.

Action transition abstraction functionκ ∈ 6 ×6 × A×6 → 6 × A×6 is defined as follows.
For arbitrary receive actions ira(h, cs, W):

κσ (ξ, ira(h, cs, W), ξ ′) = ξσ , ira(h, cs, W ∩ dom(σ)), ξ ′
σ ,

3.4. Deduction rules for operators 29

and for all other actions:
κσ (ξ, a, ξ ′) = ξσ , a, ξ ′

σ ,

where valuationsξσ , ξ ′
σ denoteξ � dom(σ), ξ ′ � dom(σ), respectively. Furthermore, in the rules

below, the following abbreviations are used: valuationσ ′
σ denotesσ ′ � dom(σ), and trajectory

ρσ denotesρ ↓ σ .

Valuationσd⊥
∈ {d} 7→ (3 ∪ {⊥}) and valuationσd′ ∈ {d′} 7→ 3 define the same values for

all (renamed) variables for whichσd⊥
is defined. For the undefined variables inσd⊥

, σd′ has an
arbitrary value:∀ v ∈ dom(σd⊥

) : σd⊥
(v) 6= ⊥ ⇒ σd′(v[d′/d]) = σd⊥

(v), wherev[d′/d] denotes
the renamed version of variablev.

E

〈p[d′/d], σ ∪ σd′〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉

〈|[V σd⊥
| p]|, σ 〉

κσ (ξ,a,ξ ′)
−−−−−→

〈
X

|[V (σ ′ � {d′})[d/d′] | p′[d/d′]]|
, σ ′

σ 〉

T-39

E
〈p[d′/d], σ ∪ σd′〉

t,ρ
7−→ 〈p′, σ ′〉

〈|[V σd⊥
| p]|, σ 〉

t,ρσ
7−→

〈|[V (σ ′ � {d′})[d/d′] | p′[d/d′]]|, σ ′
σ 〉

T-40

E
〈p[d′/d], σ ∪ σd′〉

ξ

〈|[V σd⊥
| p]|, σ 〉

ξσ

T-41

3.4.11 Channel scope operator

By means of the channel scope operator, local channels can beintroduced in aχ process.
By means of action abstraction, communication actions on local channels are made invisible
outside of the scope operator.

Action abstraction takes place by substituting communication actions ca(h, cs) using a local
channel (h ∈ H0) by internalτ actions (see Rule 42). The internal send and receive actions
(isa(h, cs) and ira(h, cs, W)) on a local channelh are blocked, because Rule 42 only specifies
behavior for communication actions ca(h,cs). Therefore, these internal send and receive actions
are not visible outside of the scope operator. Function ch∈ A → H ∪ {⊥} extracts the channel
label from an action. It is defined as ch(ca(h,cs)) = h, ch(isa(h,cs)) = h, ch(ira(h,cs,W)) = h,
and ch(la) = ⊥, wherela ∈ Alabel.

30 Chapter 3. Semantics of the timed Chi language

E

〈p, σ 〉
ξ,ca(h,cs),ξ ′

−−−−−−→ 〈
X
p′ , σ

′〉, h ∈ H0

〈|[H H0 | p]|, σ 〉
ξ,τ,ξ ′

−−−→ 〈
X

|[H H0 | p′]|
, σ ′〉

T-42

E

〈p, σ 〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉, ch(a) 6∈ H0

〈|[H H0 | p]|, σ 〉
ξ,a,ξ ′

−−−→ 〈
X

|[H H0 | p′]|
, σ ′〉

T-43

E
〈p, σ 〉

t,ρ
7−→ 〈p′, σ ′〉

〈|[H H0 | p]|, σ 〉
t,ρ

7−→ 〈|[H H0 | p′]|, σ ′〉
T-44

E
〈p, σ 〉

ξ

〈|[H H0 | p]|, σ 〉
ξ

T-45

3.4.12 Recursion scope operator

By means of the recursion scope operator, local recursion definitions are introduced in aχ
process. The application of the recursion scope operator toa process termp with a ‘global’
valuationσ and a ‘global’ environment(J, R) behaves asp after the addition of local recursion
definitions to the global recursion definitions. In the rulesbelow,X 7→ q denotes the recursion
definitionsX1 7→ q1, . . . , Xr 7→ qr . To prevent redefinition of recursion definitions already
existing in the environment, the local recursion variablesare renamed to fresh variables if they
are already defined in the environment. In fact,X′

i = Xi (1 ≤ i ≤ r) if Xi 6∈ dom(R) and X′
i

denotes a fresh variable with respect to dom(R) if Xi ∈ dom(R). Notationp[X ′/X] denotes the
process term that is obtained by substitution of the variablesX in p by X ′.

(J, R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
α
−→ 〈
X
p′ , σ

′〉

(J, R) 〈|[R {X 7→ q} | p]|, σ 〉
α
−→ 〈

X
|[R {X 7→ q} | p′[X/X ′]]|

, σ ′〉

T-46

(J, R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
t,ρ

7−→ 〈p′, σ ′〉,

(J, R) 〈|[R {X 7→ q} | p]|, σ 〉
t,ρ

7−→ 〈|[R {X 7→ q} | p′[X/X ′]]|, σ ′〉
T-47

3.4. Deduction rules for operators 31

(J, R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
ξ

(J, R) 〈|[R {X 7→ q} | p]|, σ 〉
ξ

T-48

Consider, for example, the process term|[R X 7→ Y, Y 7→ x := 0 | |[R Y 7→ x := 1 | X]|]|.
Local recursion variableY with definition Y 7→ x := 1 conflicts with the recursion variable
definitionY 7→ x := 0 from the outer scope. The renaming of the local variable in the rules of
the recursion scope operator ensures that the process term behaves as|[R X 7→ Y, Y 7→ x := 0 |

|[R Z 7→ x := 1 | X]|]|. Thus, the value of variablex becomes 0. The renaming also ensures
that the use of repetition∗p and guarded repetition∗b : p, which are defined in Section 2.3.2
as|[R {X 7→ p; X} | X]| and |[R {X 7→ b → skip; p; X [] ¬b → skip} | X]|, respectively,
cannot override existing recursion definitions using the same recursion variableX.

32 Chapter 3. Semantics of the timed Chi language

Chapter 4

Discrete-event model of a
manufacturing line

A manufacturing line consists of a generatorG, distributerD, two manufacturing cellsC, and
an assembling machineMA . Figure 4.1 shows the iconic model of the manufacturing line.
ProcessesR andE are added to obtain a closed system; they do not model actual behavior.

dc1 cm1

cm2
dr

megd

dc2

C

MA EG D

R

C

Figure 4.1: Iconic model of a manufacturing line.

The manufacturing line is modeled as follows, wheretgen, tout, ptmin1, ptmax1, ptmin2, ptmax2,
ptmin3, ptmax3, ptmin4, ptmax4, andpt denote constants.

〈 G(gd, tgen)

|| D(gd, dc1, dc2, dr, tout)

|| R(dr)
|| C(dc1, cm1, ptmin1, ptmax1, N1, ptmin2, ptmax2)

|| C(dc2, cm2, ptmin3, ptmax3, N2, ptmin4, ptmax4)

|| MA(cm1, cm2, me, pt)

33

34 Chapter 4. Discrete-event model of a manufacturing line

|| E(me)
〉

G(chan gd, val tgen) = |[disc x, x = false | ∗(1tgen; gd ! x)]|

D(chan gd, dc1, dc2, dr, val tout) =

|[disc x
| ∗(gd?x; (dc1 ! x [] dc2 ! x [] 1tout; dr ! x))

]|

R(chan dr) = |[disc x | ∗(dr ?x)]|

MA(chan cm1, cm2, me, val pt) =

|[disc x, y
| ∗((cm1 ?x || cm2 ?y); 1pt; me! x)

]|

E(chan me) = |[disc x | ∗(me?x)]|

Every tgen time units (assumingtgen ≥ tout, see processD), a product is generated by generator
G. A product is modeled by a boolean variablex that is initially false. The boolean indicates
whether the product has done the second round in a manufacturing cellC. A product enters the
manufacturing line via channelgd. The distributor tries to send a product either via channeldc1

or channeldc2 . In case this is not possible withintout time units, the product is rejected and
sent to reject processR via channeldr (dc1 ! x []dc2 ! x []1tout; dr ! x). ProcessR consumes the
rejected products (∗(dr ?x)).

A manufacturing cellC, shown in Figure 4.2, consists of two machines (Mrw, M) and aN-place
FIFO (first-in-first-out) bufferB.

mb outbm

mm

in BMrw M

Figure 4.2: Iconic model of a manufacturing cellC.

Theχ specification of the manufacturing cell is as follows:

C(chan in, out, val ptmin1, ptmax1, N, ptmin2, ptmax2)

|[chan mb, bm, mm

35

| Mrw(in, mb, mm, ptmin1, ptmax1)

|| B(mb, bm, N)

|| M(bm, out, mm, ptmin2, ptmax2)

]|

Products enter the cell via channelin. The routing of a product in the manufacturing cell is as
follows: Mrw, B, M, Mrw, B, M. Products leave the manufacturing cell via channelout. The
process definitions of the buffer and the machines are given by

B(chan in, out, val N) =

|[disc x
, xs= []

| ∗(len(xs) < N → in ?x; xs := xs++[x]

[] len(xs) > 0 → out! hd(xs); xs := tl(xs)
)

]|

Mrw(chan in, out, mm, val ptmin, ptmax) =

|[disc x, pt
| ∗((in ?x [] mm?x; x := true); pt : pt ∈ [ptmin, ptmax]; 1pt; out! x)

]|

M(chan in, out, mm, val ptmin, ptmax) =

|[disc x, pt
| ∗(in ?x; pt : pt ∈ [ptmin, ptmax]; 1pt; (x → out! x [] ¬x → mm! x))

]|

The buffer can store up toN products, which are stored in a listxs(len(xs) < N → in?x; xs:=

xs++[x]), where[x] denotes a list with one elementx, and++ denotes list concatenation. The
empty list is denoted by[]. If the buffer is not empty, the first product in the buffer canbe sent
to the machine via channelout (len(xs) > 0 → out!hd(xs); xs:= tl(xs)), where hd(xs) denotes
the first element (head) of listxs, and tl(xs) denotes the remainder (tail) of listxswithout its first
element. MachineMrw receives products from channelsin andmm. A product received from
mm is assigned the value true, which indicates that this product is processed by machineMrw

for the second time (in ?x [] mm?x; x := true). The machine has a processing time between
ptmin andptmax time units (pt : pt ∈ [ptmin,ptmax]; 1pt). Processed products are sent via channel
out to the bufferB. MachineM receives products via channelin, and processes them forpt time
units. Depending on the value of product variablex, the product is sent either via channelmm
to machineMrw (x equals false) or it leaves the manufacturing cell via channel out (x equals
true) (x → out! x [] ¬x → mm! x).

After processing in one of the two manufacturing cellsC, products are sent to machineMA .
MachineMA waits to receive one product via channelcm1, and one product via channelcm2,

36 Chapter 4. Discrete-event model of a manufacturing line

in a non-deterministic order (cm1 ?x || cm2 ? y). After processing these two products (1pt),
the combination of them leaves the manufacturing line via channelout (out ! x). ProcessE
consumes the processed products.

Chapter 5

Translating timed automata to timed
Chi

In this chapter, the timed automata model is translated to the timedχ formalism.

5.1 Definition of a timed automaton

A timed automaton (based on [11]) consists of the following components:

• A finite set of (real-valued) clocksX = {x1, . . . , xn}, and a finite setY = {y1, . . . , ym} of
variables.

• A finite directed multi-graph(V, E), whereV denotes a set of vertices (locations / control
modes) andE denotes a set of edges (control switches). Vertexv0 ∈ V denotes the initial
location.

• A vertex labeling function inv that assigns an invariant to each locationv ∈ V , and a ver-
tex labeling function init that assigns an initialization predicate to the initial locationv0.
Invariants and initialization predicates are predicates over variables and clocks.

• Three edge labeling functions guard, reset, and assign thatassign to each edgee ∈ E, a
guard, clock resets, and assignments to variables, respectively. Guards are predicates over
variables and clocks, and clock resets are of the formx := 0, wherex denotes a clock.

• A finite set6 of events, and an edge labeling function event∈ E → 6 that assigns an event
to each edgee ∈ E.

37

38 Chapter 5. Translating timed automata to timed Chi

5.2 General translation scheme

Consider a timed automaton withn clock variables (X = {x1, . . . , xn}), m discrete variables
(Y = {y1, . . . , ym}), k locations (V = {v1, . . . , vk}), and initial locationv1, to be translated to a
correspondingχ specification. The translation is defined as follows:

〈 |[R { v1 7→ ¬(TC(inv(v1))) → ⊥

([]e:e∈edges(v1)

[TC(guard(e)) → TA(TR(reset(e)), TC(assign(e))) � event(e)]; target(e)
)

...

, vk 7→ ¬(TC(inv(vk))) → ⊥

([]e:e∈edges(vk)

[TC(guard(e)) → TA(TR(reset(e)), TC(assign(e))) � event(e)]; target(e)
)

}

| v1

]|

, R(init(v1)) ∪ {time 7→ 0}, (∅,∅)

〉

The delay behavior in a vertexvi is restricted by means of its invariant. This restriction istrans-
lated to the process term⊥, guarded with the negation of its invariant (¬(TC(inv(vi))) → ⊥).
FunctionTC replaces all clock variablesx by expressionstime − x. E.g. invariantTC(x ≤ 2)

becomestime − x ≤ 2.

Each outgoing edge is translated to a process term of the form[b → W : r � la; X]. In this
process term, the guardb is defined asTC(guard(e)).

The label of the action predicate is defined as event(e), and the predicater is defined as
TA(TR(reset(e)), TC(assign(e))), where functionTR replaces a clock resetx := 0 by x := time,
and functionTA combines clock resets and assignments into one action predicate. For example
TA(x := time, y := 2) becomes{x, y} : x = time ∧ y = 2.

FunctionR translates an init predicatex0 = c0∧· · ·∧xn = cn to a valuation{x0 7→ c0, . . . ,xn 7→

cn} . E.g.R(x = 1 ∧ y = 2) = {x 7→ 1, y 7→ 2}.

In the translation scheme, theδ process term cannot be used instead of the inconsistent process
term ⊥. Consider for instance a timed automaton with one clock variablex, one locationv0,
function init(v0) = (x = 0) and function inv(v0) = (x < 1). This automaton can perform time
transitions with durationt ∈ [0, 1). Using the translation scheme, the followingχ process is
obtained:〈|[R v0 7→ ¬(time − x < 1) → ⊥ | v0]|, {x 7→ 0, time 7→ 0}, (∅,∅)〉. Like the timed
automaton model, this process can perform time transitionsof durationt ∈ [0, 1). Translating
the timed automaton model toχ , usingδ instead of⊥, the following χ process is obtained:
〈|[R v0 7→ ¬(time − x < 1) → δ | v0]|, {x 7→ 0, time 7→ 0}, (∅,∅)〉. This process can perform
time transitions of durationt ∈ [0, 1], including t = 1, and is therefore incorrect.

5.3. Example: a coffee vendor machine 39

5.3 Example: a coffee vendor machine

5.3.1 Timed automaton model of the coffee vendor machine

After receiving a coin, modeled by means of actioncoin in the timed automaton model of Figure
5.1, the coffee machine allows the user to push a button (action button) within 5 time units. If
the user pushes the button within this time interval, the machine produces the coffee after 2 to
4 time units (coffee). Otherwise, the machine refunds after 0.1 to 1 time units (refund).

x = 5

coin

x < 5
button

x := 0

x := 0
τ

x := 0

coffee refund
x > 0.1x > 2

x = 0

x ≤ 4

x ≤ 5

x ≤ 1
s4

s2

s1

s3

Figure 5.1: Timed automaton of the coffee vendor machine.

5.3.2 Aχ model of the coffee vendor machine

Translation of the timed automaton model of the coffee vendor machine described in the previ-
ous section results in the following timedχ specification.

40 Chapter 5. Translating timed automata to timed Chi

〈 |[R { s1 7→ ¬(true) → ⊥

[] [true→ {x} : x = time � coin]; s2

, s2 7→ ¬(time − x ≤ 5) → ⊥

[] [time − x < 5 → {x} : x = time � button]; s3

[] [time − x = 5 → {x} : x = time � τ]; s4

, s3 7→ ¬(time − x ≤ 4) → ⊥

[] [time − x > 2 → ∅ : true� coffee]; s1

, s4 7→ ¬(time − x ≤ 1) → ⊥

[] [time − x > 0.1 → ∅ : true� refund]; s1

}

| s1

]|

, {time 7→ 0, x 7→ 0, (∅,∅)

〉

Chapter 6

Derivation of timed Chi from hybrid
Chi

In this chapter, the timedχ language is derived from the hybridχ language defined in [17], such
that hybridχ is an operational conservative extension of timedχ . This derivation is divided
into two main steps: 1) the syntax of hybridχ is restricted (Section 6.1), 2) the continuous and
algebraic variables are removed (Section 6.2).

6.1 TheL1 language

Let L0(C, L) be the hybridχ language, whereC andL denote the set of continuous variables
and the set of algebraic variables, respectively.

Restricting the syntax of theL0 language leads to theL1 language. The syntactic restrictions
are listed below:

• remove delay predicateu,

• remove jump enabling operatorιJ+,

• remove variable scope operators|[V σdx⊥
, {x}, {g} | p]|, where{x} 6= ∅ or {g} 6= ∅. Therefore,

the remaining variable scope operators in theL1 language are of the form|[V σdx⊥
,∅,∅ | p]|.

This results in the following syntax for the process termsp ∈ PL1 of theL1 language:

PL1 ::= W : r � la | δ | ⊥

| [P] | u y P | P; P | b → P | P [] P
| P || P | h !! en | h ??xn | ∂A(P) | υH(P)

| X | |[V σ⊥,∅,∅ ‘ |’ P]| | |[H H0 ‘ |’ P]| | |[R R ‘ |’ P]|

| PextL1

41

42 Chapter 6. Derivation of timed Chi from hybrid Chi

PextL1
::= skip | xn := en | xn : r | h ! en | h ?xn

| 1d(P) | 1d | ∗P | ∗b : P
| |[disc sk, chan hm, i, L R ‘ |’ P]|

| lp(xk , hm, en)

The deduction system ofL1, denoted byDL1, consists of all deduction rules of the deduction
system ofL0 in which only syntax fromL1 is used, i.e., the deduction rules defining atomic
process terms and operators that are removed are omitted.

Lemma 1 DL1 ⊂ DL0.

Proof. Trivial �

Lemma 2 If all syntax used in the conclusion of a deduction rule fromDL0 is contained inL1,
then all syntax used in the hypothesis of this rule is also contained inL1.

Proof. Trivial �

Lemma 3 Let p and p′ be closed process terms from PL1, σ,σ ′ be valuations,ξ, ξ ′ be extended
valuations,(C, J, L , R) and(C′, J ′, L ′, R′) be environments, a be an action,ρ be a trajectory,
and t ∈ T . Then

L0(C, L) |H 〈p, σ, (C, J, L , R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (C′, J ′, L ′, R′)〉 ⇔

L1(C, L) |H 〈p, σ, (C, J, L , R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (C′, J ′, L ′, R′)〉,

L0(C, L) |H 〈p, σ, (C, J, L , R)〉
t,ρ

7−→ 〈p′, σ ′, (C′, J ′, L ′, R′)〉 ⇔

L1(C, L) |H 〈p, σ, (C, J, L , R)〉
t,ρ

7−→ 〈p′, σ ′, (C′, J ′, L ′, R′)〉,

L0(C, L) |H 〈p, σ, (C, J, L , R)〉
ξ
 ⇔

L1(C, L) |H 〈p, σ, (C, J, L , R)〉
ξ
 ,

where 〈p, σ, (C, J, L , R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (C′, J ′, L ′, R′)〉 is an abbreviation for

〈p, σ, (C, J, L , R)〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′, (C′, J ′, L ′, R′)〉 for some p′.

Proof. The proof for the three statements of the lemma are very similar. Therefore, we only
consider the second statement. Proof of left implication (⇐): We prove this lemma by induction
on the depth of the proof of a time transition derived inL1(C, L) and use case distinction on

6.2. TheL2 language 43

the deduction rule applied last. If a time transition can be derived fromDL1, there exists a
deduction rule fromDL1 and a substitution such that this transition is obtained from applying
the substitution to the deduction rule. Using Lemma 1, this deduction rule is also part ofDL0.
By induction (Lemma 2 guarantees that the substituted hypotheses are alsoL1(C, L)-terms) the
substituted hypotheses of the deduction rule are also derivable inL0(C, L). Therefore, using
the same deduction rule and the same substitution, the transition can be derived inL0(C, L) as
well.

Proof of right implication (⇒): The proof follows the same lines with the additional obser-
vation that due to Lemma 2, a proof of a transition betweenL1(C, L)-terms will never use a
deduction rule that is not also contained inDL1. �

6.2 TheL2 language

TheL2 language is defined asL2 ≡ L1(∅, ∅). The syntax ofL2 remains unchanged w.r.t.L1.
The deduction system ofL2 equals the deduction systemDL1, where all occurrences ofC and
L are replaced by∅ (this substitution is also applied to the functions� and4). Furthermore,
mathematical equalities of the form dom(ξ) = dom(σ) H⇒ ξσ = ξ , dom(ξ∅∅) = ∅ H⇒

σ ∪ ξ∅∅ = σ are used. Some free variables are renamed to other free variables for a more
intuitive representation. After the substitution, all environments are of the form(∅, J, ∅, R).
Since, there are no deduction rules which can modify the empty sets of the environment, this
information is redundant. Hence, the environment is simplified to(J, R).

To illustrate howDL2 is derived fromDL1, the derivation is shown below for function4, func-
tion � and the deduction rule of the action transition of the actionpredicate inDL2. The other
derivations can be found in Appendix A.

Substitution[∅,∅/C, L] on function definition4,

4(σ, C, J, L) = {ξ | dom(ξ) = dom(σ) ∪ Ċ ∪ L , ∀x∈dom(σ)\J ξ(x) = σ (x)}

results in the following definition:

4(σ, J) = {σ ′ | dom(σ ′) = dom(σ), ∀x∈dom(σ)\J σ ′(x) = σ (x)},

using C = ∅ H⇒ Ċ = ∅, and bound variableξ is substituted by bound variableσ ′. The
signature of the function is simplified to4 ∈ (6 × P(V)) → P(6).

All occurrences of function� in the deduction rules ofDL2 are of the form�(σ, C, L , u, t) (or
in abbreviated notation�σEt), whereu ≡ true. Therefore, in the function definition for� true
can be substituted foru.

Substitution[∅,∅, true/C, L , u] on function definition�,

44 Chapter 6. Derivation of timed Chi from hybrid Chi

�(σ, C, L , u, t) =

{ ρ

| ρ ∈ [0, t] 7→ ((dom(σ) ∪ Ċ ∪ L) → 3)

, t ≥ 0
, ∀s ∈ [0, t] : ρ(s) |H u
, ∀x ∈ Ċ ∪ L : ρ ↓ x is a bounded function that is absolutely

continuous except for a finite number of points
, ∀x ∈ dom(σ) \ ({time} ∪ C) : ρ ↓ x is a constant function
, ∀x ∈ C : ρ ↓ x is an absolutely continuous function
, ∀x ∈ dom(σ) : (ρ ↓ x)(0) = σ (x)

, ∀s ∈ [0, t], x ∈ C :

(ρ ↓ x)(s) = (ρ ↓ x)(0) +
∫ s

0 (ρ ↓ ẋ)(s′)ds′

ρ ↓ x is differentiable ins ⇒

(ρ ↓ ẋ)(s) = (d
dt (ρ ↓ x))(s)

, ∀s ∈ [0, t] : ρ(s)(time) = σ (time) + s
}

results in the following definition:

�(σ, t) =

{ρ

| ρ ∈ [0, t] 7→ ((dom(σ)) → 3)

, t ≥ 0
, ∀x ∈ dom(σ) \ {time} : ρ ↓ x is a constant function
, ∀x ∈ dom(σ) : (ρ ↓ x)(0) = σ (x)

, ∀s ∈ [0, t] : ρ(s)(time) = σ (time) + s
}

usingC = ∅ H⇒ Ċ = ∅. The signature of the function is simplified to� ∈ 6 × T → P(T 7→

6).

Substitution of[∅,∅/C, L] on the deduction rule for the action transition of the actionpredicate,

ξ = σ ∪ ξ Ċ L , ξ ′ ∈ 4(σ, C, J ∪ W, L), ξ− ∪ ξ ′ |H r

(C, J, L , R) 〈W : r � la, σ 〉
ξ , la, ξ ′

−−−−→ 〈X, ξ ′
σ 〉

results in the following deduction rule:

σ ′ ∈ 4(σ, J ∪ W), σ− ∪ σ ′ |H r

(J, R) 〈W : r � la, σ 〉
σ , la, σ ′

−−−−−→ 〈X, σ ′〉

L2-1

using dom(ξ ĊL) = ∅ H⇒ ξ = σ , dom(ξ ′) = dom(σ) H⇒ ξ ′
σ = ξ ′, and free variablesξ ′ and

ξ− are substituted byσ ′ andσ−, respectively.

6.3. RelatingL0(∅,∅) andL2 45

Lemma 4 Let p and p′ be closed process terms from PL2, σ,σ ′ be valuations,ξ, ξ ′ be extended
valuations, J and J′ be sets of jumping variables, R and R′ be recursion definitions, a be an
action,ρ be a trajectory, and t∈ T . Then

L1(∅,∅) |H 〈p, σ, (∅, J,∅, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (∅, J ′,∅, R′)〉 ⇔

L2 |H 〈p, σ, (J, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (J ′, R′)〉

L1(∅,∅) |H 〈p, σ, (∅, J,∅, R)〉
t,ρ

7−→ 〈p′, σ ′, (∅, J ′,∅, R′)〉 ⇔

L2 |H 〈p, σ, (J, R)〉
t,ρ

7−→ 〈p′, σ ′, (J ′, R′)〉

L1(∅,∅) |H 〈p, σ, (∅, J,∅, R)〉
ξ
 ⇔

L2 |H 〈p, σ, (J, R)〉
ξ
 ,

where 〈p, σ, (∅, J, ∅, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (∅, J ′, ∅, R′)〉 is an abbreviation for

〈p, σ, (∅, J, ∅, R)〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ ′, (∅, J ′, ∅, R′)〉 for some p′, and 〈p, σ, (J, R)〉

ξ,a,ξ ′

−−−→

〈 , σ ′, (J ′, R′)〉 is an abbreviation for〈p, σ, (J, R)〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′, (J ′, R′)〉 for some p′.

Proof. This proof follows the same lines as the proof of Lemma 3. There are two important
differences. The first difference is that the deduction rules ofL1(∅, ∅) and the deduction rules
of L2 are syntactically different. Nevertheless, by construction of the deduction system ofL2,
there is a one-to-one mapping between these sets of deduction rules that explains precisely how
the application of a deduction rules from one of these languages has to be mimicked by the
application of a deduction rule from the other language.

The second difference is that, due to the renaming of some variables in the original deduction
rule, the substitutions that are used in deriving in the two deduction systems are not identical
anymore. Again, by construction, i.e. using the mathematical identities as defined in this
section and in Appendix A, also here it is clear how a substitution used for deriving a transition
in L1(∅, ∅) can be transformed into a substitution used for deriving thesame transition inL2,
and vice versa. �

6.3 RelatingL0(∅,∅) and L2

From Lemma 3 and 4 we obtain the following relation betweenL0(∅,∅) andL2:

Corrolary 1 Let p and p′ be closed process terms from PL2, σ, σ ′ be valuations,ξ, ξ ′ be
extended valuations, J and J′ be sets of jumping variables, R and R′ be recursion definitions,

46 Chapter 6. Derivation of timed Chi from hybrid Chi

a be an action,ρ be a trajectory, and t∈ T . Then

L0(∅,∅) |H 〈p, σ, (∅, J,∅, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (∅, J ′,∅, R′)〉 ⇔

L2 |H 〈p, σ, (J, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (J ′, R′)〉

L0(∅,∅) |H 〈p, σ, (∅, J,∅, R)〉
t,ρ

7−→ 〈p′, σ ′, (∅, J ′,∅, R′)〉 ⇔

L2 |H 〈p, σ, (J, R)〉
t,ρ

7−→ 〈p′, σ ′, (J ′, R′)〉

L0(∅,∅) |H 〈p, σ, (∅, J,∅, R)〉
ξ
 ⇔

L2 |H 〈p, σ, (J, R)〉
ξ
 ,

where 〈p, σ, (∅, J, ∅, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (∅, J ′, ∅, R′)〉 is an abbreviation for

〈p, σ, (∅, J,∅, R)〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′, (∅, J ′,∅, R′)〉 for some p′.

6.4 RelatingL2 and timed Chi

Let h̄ be a bijective mapping that maps the process terms of theL2 language to the process
terms of the timedχ language. It is defined as

h̄(|[V σ⊥,∅,∅ ‘ |’ P]|) = |[V σ⊥ ‘ |’ h̄(P)]|,

and distributes over all other operators.

Lemma 5 Let p and p′ be closed process terms from theL2 language,σ,σ ′, ξ, ξ ′ be valuations,
J and J′ be sets of jumping variables, R and R′ be recursion definitions, a be an action,ρ be a
trajectory, and t∈ T . Then

L2 |H 〈p, σ, (J, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (J ′, R′)〉 ⇔

timedχ |H 〈h̄(p), σ, (J, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (J ′, R′)〉

L2 |H 〈p, σ, (J, R)〉
t,ρ

7−→ 〈p′, σ ′, (J ′, R′)〉 ⇔

timedχ |H 〈h̄(p), σ, (J, R)〉
t,ρ

7−→ 〈h̄(p′), σ ′, (J ′, R′)〉

L2 |H 〈p, σ, (J, R)〉
ξ
 ⇔

timedχ |H 〈h̄(p), σ, (J, R)〉
ξ
 ,

where 〈p, σ, (J, R)〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, (J ′, R′)〉 is an abbreviation for〈p, σ, (J, R)〉
ξ,a,ξ ′

−−−→

〈
X
p′ , σ ′, (J ′, R′)〉 for some p′, and〈h̄(p), σ, (J, R)〉

ξ,a,ξ ′

−−−→ 〈 , σ ′, (J ′, R′)〉 is an abbreviation

for 〈h̄(p), σ, (J, R)〉
ξ,a,ξ ′

−−−→ 〈
X

h̄(p′)
, σ ′, (J ′, R′)〉 for some p′.

Proof. Trivial �

Chapter 7

Validation of the semantics

First we consider the well-definedness of the semantics in Section 7.1. Then, in Section 7.2,
some properties of the Chi semantics are given. In Section 7.3, a notion of equivalence is
defined, called stateless bisimilarity [12], which is similar to the well-known notion of bisimi-
larity [15, 10]. It is also shown that this relation is an equivalence and a congruence for allχ

operators. Some useful properties of closedχ process terms are given in Section 7.4. Many of
these properties express intuitions about the meaning of theχ operators such as the commutativ-
ity and associativity of the alternative composition and the parallel composition operator. Other
properties are introduced for the purpose of simplifyingχ models. Both the examples treated
in the previous section and the properties treated in this section add to the level of confidence
one has with respect to the ‘correctness’ of the semantics.

7.1 Well-definedness of the semantics

In the term deduction system negative hypotheses are used inRule 34 of the urgency commu-
nication operator. As a consequence it is not obvious at firstsight whether the term deduction
system defines a unique transition system for each closed process term. Well-definedness of
the term deduction system can be obtained by providing astratification [2]. The mapping that
associates with every positive action transition and positive consistency predicate the value 0
and with every positive time transition the value 1, turns out to be a stratification.

7.2 Properties of the semantics

In this section, some useful properties about the semanticsof χ are introduced that can be
applied in the remainder of the report (especially in the proofs of the properties in Section 7.4).

With the current set of deduction rules for the semantics ofχ , the left-hand and right-hand
valuation are always the same as the initial and resulting valuation of an action transition, re-

47

48 Chapter 7. Validation of the semantics

spectively. A similar reasoning applies to the first and lastvaluation of a trajectory on a time
transition and the initial and resulting valuation, respectively. Also note that the environment is
never changed in a transition, and that the valuation on the consistency transition is the same as
the initial valuation.

The following lemma captures these facts.

Lemma 6 Let p and p′ be closed process terms,σ, σ ′, ξ, ξ ′ be valuations, E and E′ be envi-
ronments, a be an action,ρ be a trajectory, and t∈ T . Then

〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, E′〉 ⇒ dom(σ) = dom(σ ′) ∧ ξ = σ ∧ ξ ′ = σ ′

∧E = E′,

〈p, σ, E〉
t,ρ

7−→ 〈p′, σ ′, E′〉 ⇒ dom(ρ) = [0, t] ∧ ρ(0) = σ ∧ ρ(t) = σ ′

∧E = E′,

〈p, σ, E〉
ξ
 ⇒ ξ = σ.

where〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈 , σ ′, E′〉 is an abbreviation for〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ ′, E′〉 for some

p′.

Proof. See Lemma 5, Corollary 1, and [17, Lemma 1]. �

If a χ process can perform action or time transitions, the processis consistent.

Lemma 7 Let p and p′ be closed process terms,σ, σ ′, ξ, ξ ′ be valuations, E and E′ be envi-
ronments, and a be an action. Then

〈p, σ, E〉
ξ,a,ξ ′

−−−→ ⇒ 〈p, σ, E〉
ξ
 ,

where〈p, σ, E〉
ξ,a,ξ ′

−−−→ is an abbreviation for∃p′,σ ′,E′ 〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′, E′〉.

Proof. See Lemma 5, Corollary 1, and [17, Lemma 2]. �

Lemma 8 Let p and p′ be closed process terms,σ andσ ′ be valuations, E and E′ be environ-
ments, t∈ T , andρ be a trajectory. Then,

〈p, σ, E〉
t,ρ

7−→ ⇒ 〈p, σ, E〉
ρ(0)
 ,

where〈p, σ, E〉
t,ρ

7−→ is an abbreviation for∃p′,σ ′,E′ 〈p, σ, E〉
t,ρ

7−→ 〈p′, σ ′, E′〉.

7.3. Stateless bisimilarity 49

Proof. See Lemma 5, Corollary 1, and [17, Lemma 3]. �

The following lemma shows that any variation in the set of jumping variables in the environment
of a consistentχ process has no effect on the consistency transition.

Lemma 9 Let p be a closed process term,σ, ξ be a valuations, J, W be sets of variables such
that J and W⊆ dom(σ) \ {time}, and R be a recursion definition. Then

〈p, σ, (J, R)〉
ξ
 ⇔ 〈p, σ, (J ∪ W, R)〉

ξ
 .

Proof. See Lemma 5, Corollary 1, and [17, Lemma 4]. �

7.3 Stateless bisimilarity

Two closedχ process terms are considered equivalent if they have the same behavior (in the
bisimulation sense) in case both are considered from the same initial valuation of model vari-
ables and the same environment. We also assume that the initial valuation contains at least the
free occurrences of variables in the two closedχ process terms being equivalent.

Definition 1 (Stateless bisimilarity) A stateless bisimulation relation on closed process terms
is a relation R⊆ P × P such that∀(p, q) ∈ R, the following holds:

1. ∀σ, E, ξ, a, ξ ′, σ ′, E′ : 〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈X, σ ′, E′〉

⇔ 〈q, σ, E〉
ξ,a,ξ ′

−−−→ 〈X, σ ′, E′〉,

2. ∀σ, E, ξ, a, ξ ′, p′, σ ′, E′ : 〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈p′, σ ′, E′〉

⇒ ∃q′ : 〈q, σ, E〉
ξ,a,ξ ′

−−−→ 〈q′, σ ′, E′〉 ∧ (p′, q′) ∈ R,

3. ∀σ, E, ξ, a, ξ ′, q′, σ ′, E′ : 〈q, σ, E〉
ξ,a,ξ ′

−−−→ 〈q′, σ ′, E′〉

⇒ ∃p′ : 〈p, σ, E〉
ξ,a,ξ ′

−−−→ 〈p′, σ ′, E′〉 ∧ (p′, q′) ∈ R,

4. ∀σ, E, t, ρ, p′, σ ′, E′ : 〈p, σ, E〉
t,ρ

7−→ 〈p′, σ ′, E′〉

⇒ ∃q′ : 〈q, σ, E〉
t,ρ

7−→ 〈q′, σ ′, E′〉 ∧ (p′, q′) ∈ R,

5. ∀σ, E, t, ρ, q′, σ ′, E′ : 〈q, σ, E〉
t,ρ

7−→ 〈q′, σ ′, E′〉

⇒ ∃p′ : 〈p, σ, E〉
t,ρ

7−→ 〈p′, σ ′, E′〉 ∧ (p′, q′) ∈ R,

50 Chapter 7. Validation of the semantics

6. ∀σ, E, ξ : 〈p, σ, E〉
ξ
 ⇔ 〈q, σ, E〉

ξ
 .

Two closed process terms p and q are stateless bisimilar, denoted by p
t

↔ q, if there exists a
stateless bisimulation relation R such that(p, q) ∈ R.

Note that in the above definition of stateless bisimilarity it is possible that the left-hand and
right-hand valuation of model variables, as displayed on anaction transition, are different from
the respective valuations of model variables of the state before performing the action transition
and the state reached by performing the action transition. Similarly, the valuation of model
variables before and after a time transition can be different from the initial and end-point of a
trajectory, respectively.

As a consequence of Lemma 6, the definition of stateless bisimilarity can be simplified consid-
erably. Yet, with in mind future extensions of theχ language, it might well be the case that
these properties of the semantics are lost. Since we would prefer not to redo all the coming
proofs (in such a future), this presentation was chosen.

Stateless bisimilarity is proved to be a congruence with respect to allχ operators. As a conse-
quence, algebraic reasoning is facilitated, since it is allowed to replace equals by equals in any
context.

Theorem 1 (Congruence)Stateless bisimilarity is a congruence with respect to allχ opera-
tors.

Proof. The deduction rules of theχ language, satisfy theprocess-tyftformat of [12]. Therefore,
stateless bisimilarity is a congruence. �

The hybrid χ language without continuous variables and algebraic variables, denoted by
L0(∅, ∅) (see Chapter 6), is an operational conservative extension of the timedχ language,
i.e., for closed timedχ-terms, any equality and only equalities that can be derivedin timedχ

can also be derived inL0(∅,∅).

Lemma 10 Let p and q be closed process terms from timedχ . Then

L0(∅,∅) |H h̄−1(p) ↔ h̄−1(q) ⇔ timedχ |H p
t

↔ q.

Proof. This follows immediately from the definition of̄h as described in Section 6.4, Lemma

5, Corollary 1, and the definitions of↔ (see [17]) and
t

↔ (see Definition 1). �

7.4. Properties of the Chi operators 51

7.4 Properties of the Chi operators

In this section, some properties of the operators ofχ that hold with respect to stateless bisim-
ilarity are discussed. Most of these correspond well with our intuitions, and hence this can
be considered as an additional validation of the semantics.It is not our intention to provide a
complete list of such properties (complete in the sense thatevery equivalence between closed
process terms is derivable from those properties). For the proofs of the properties, we refer to
Lemma 10 and the proofs of the corresponding properties in[17].

Proposition 1 (Signal emission operator)The following properties hold for all closed process
terms p∈ P and predicates u, u′:

truey p ↔ p
falsey p ↔ ⊥

u y (u′ y p) ↔ (u ∧ u′) y p

If a true predicate is emitted, the process term is simply executed. If falsity holds initially, the
process term is inconsistent. A concatenation of signal emissions leads to a signal emission
with conjunction of predicates.

Proposition 2 (Alternative composition) The following properties hold for all closed process
terms p, q, r ∈ P:

p [] p ↔ p
p [] q ↔ q [] p
(p [] q) [] r ↔ p [] (q [] r)

The alternative composition is idempotent, commutative and associative. The propertyp []

δ ↔ p does not hold. Consider, for examplep = false→ skip. Thenp [] δ cannot perform any
time transitions, whilep can perform arbitrary time transitions. Propertyp [] δ ↔ δ does not
hold either. Consider, for examplep = skip. Thenp [] δ can perform aτ transition, whileδ

cannot.

Proposition 3 (Guard operator) The following properties hold for all closed process terms
p ∈ P and guard b:

true→ p ↔ p
b → (p [] q) ↔ b → p [] b → q

If a process term is guarded by a true predicate, the process term is simply executed. The guard
distributes over the alternative composition operator.

52 Chapter 7. Validation of the semantics

Proposition 4 (Sequential composition)The following properties hold for all closed process
terms p, q, r ∈ P and guard b:

δ; p ↔ δ

(p; q); r ↔ p; (q; r)
(p [] q); r ↔ p; r [] q; r
b → (p; q) ↔ (b → p); q

A deadlock process term followed by some other process termsis equivalent to the deadlock
process term itself since the deadlock process term does notterminate successfully, i.e., dead-
lock is a left-zero element for sequential composition. Sequential composition is associative
and alternative composition distributes over sequential composition from the left. A guard dis-
tributes to the left argument of a sequential composition.

Proposition 5 (Parallel composition) The following properties hold for all closed process
terms p, q, r ∈ P :

p || q ↔ q || p
(p || q) || r ↔ p || (q || r)

Parallel composition is commutative and associative.

Proposition 6 (Action encapsulation operator) The following properties hold for all closed
process terms p∈ P, and sets of actionsA, A′:

∂∅(p) ↔ p
∂A(∂A′(p)) ↔ ∂A∪A′(p)

If there are no actions to be encapsulated, the application of the action encapsulation operator
to a process termp has no effect. Multiple applications of the action encapsulation operator are
equivalent to a single application where all the actions to be encapsulated are combined using
union of sets of actions.

Proposition 7 (Inconsistent process)The following properties hold for all closed process
terms p∈ P and predicate u:

u y ⊥ ↔ ⊥

p [] ⊥ ↔ ⊥

p || ⊥ ↔ ⊥

∂A(⊥) ↔ ⊥

⊥; p ↔ ⊥

skip; ⊥ ↔ δ

The inconsistent process term is a zero element for signal emission operator, alternative com-
position, parallel composition and action encapsulation operator. It is also a left-zero element
for sequential composition. Going on as⊥ after performing an action transition, for example
skip, is impossible.

Bibliography

[1] J. Baeten and J. Bergstra. Process algebra with propositional signals.Theoretical Com-
puter Science, 177(2):381–405, 1997.

[2] J. Baeten and C. Verhoef. Concrete process algebra. In S.Abramsky, D. Gabbay, and
T. Maibaum, editors,Handbook of Logic in Computer Science, volume 4 (Semantic Mod-
elling), pages 149–268. Oxford University Press, 1995.

[3] J. A. Bergstra and C. A. Middelburg. Process algebra for hybrid systems. Technical
Report CS-Report 03-06, Eindhoven University of Technology, Department of Computer
Science, The Netherlands, 2003.

[4] V. Bos and J. J. T. Kleijn. Automatic verification of a manufacturing system.Robotics
and Computer Integrated Manufacturing, 17(3):185–198, 2000.

[5] V. Bos and J. J. T. Kleijn.Formal Specification and Analysis of Industrial Systems. PhD
thesis, Eindhoven University of Technology, 2002.

[6] P. J. L. Cuijpers, M. A. Reniers, and W. P. M. H. Heemels. Hybrid transition systems.
Technical Report CS-Report 02-12, Eindhoven University ofTechnology, Department of
Computer Science, The Netherlands, 2002.

[7] G. Fábián.A Language and Simulator for Hybrid Systems. PhD thesis, Eindhoven Uni-
versity of Technology, 1999.

[8] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on Software
Tools for Technology Transfer, 1(1–2):134–152, 1997.

[9] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata. Inf. Comput., 185(1):105–
157, 2003.

[10] R. Milner. A Calculus of Communicating Systems, volume 92 ofLNCS. Springer, 1980.

[11] M. Möller. Structure and Hierarchy in Real-Time Systems. PhD thesis, University of
Aarhus, 2002.

[12] M. Mousavi, M. Reniers, and J. F. Groote. Congruence forSOS with data. InProceedings
of Nineteenth Annual IEEE Symposium on Logic in Computer Science (LICS’04), pages
302–313, Turku, Finland, 2004. IEEE Computer Society Press.

53

54 Bibliography

[13] G. Naumoski and W. Alberts.A Discrete-Event Simulator for Systems Engineering. PhD
thesis, Eindhoven University of Technology, 1998.

[14] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and application.
Information and Computation, 114:131–178, 1994.

[15] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor,Proceed-
ings 5th GI Conference, volume 104 ofLNCS, pages 167–183. Springer, 1981.

[16] G. D. Plotkin. A structural approach to operational semantics. Technical Report DIAMI
FN-19, Computer Science Department, Aarhus University, 1981.

[17] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R.R. H. Schiffelers. Syntax
and consistent equation semantics of hybrid Chi. TechnicalReport CS-Report 04-37,
Eindhoven University of Technology, Department of Computer Science, The Netherlands,
2004.

[18] D. A. van Beek and J. E. Rooda. Languages and applications in hybrid modelling and
simulation: Positioning of Chi.Control Engineering Practice, 8(1):81–91, 2000.

[19] D. A. van Beek, A. van den Ham, and J. E. Rooda. Modelling and control of process
industry batch production systems. In15th Triennial World Congress of the International
Federation of Automatic Control, Barcelona, 2002. CD-ROM.

Appendix A

Derivation of DL2 from DL1

This appendix shows the derivation of the deduction rules ofDL2 from DL1, as described in
Section 6.2. Sections A.1 and A.2 show the derivation for theatomic process terms and the
operators, respectively. The deduction rules fromDL2 which are not shown in these sections
are syntactically equivalent to their corresponding deduction rules inDL1. Deduction rules with
a label of the formL2-n, wheren denotes the number of the deduction rule, are fromDL2. The
other deduction rules are fromDL1.

A.1 Derivation for atomic process terms

Action predicate

ξ = σ ∪ ξ ĊL , ξ ′ ∈ 4(σ, C, J ∪ W, L), ξ− ∪ ξ ′ |H r

(C, J, L , R) 〈W : r � la, σ 〉
ξ , la, ξ ′

−−−−→ 〈X, ξ ′
σ 〉

1

σ ′ ∈ 4(σ, J ∪ W), σ− ∪ σ ′ |H r

(J, R) 〈W : r � la, σ 〉
σ , la, σ ′

−−−−−→ 〈X, σ ′〉

L2-1

• Environment(C, J, L , R) is simplified to(J, R),

• dom(ξ Ċ L) = ∅ H⇒ ξ = σ ,

• dom(ξ ′) = dom(σ) H⇒ ξ ′
σ = ξ ′,

• free variablesξ ′ andξ− are renamed toσ ′ andσ−, respectively,

• for function4 see Section 6.2.

55

56 Appendix A. Derivation ofDL2 from DL1

(C, J, L , R) 〈W : r � la, σ 〉
σ∪ξ ĊL

2

E 〈W : r � la, σ 〉
σ

L2-2

• Environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• dom(ξ ĊL) = ∅ H⇒ σ ∪ ξ ĊL = σ .

Send and receive

ξ = σ ∪ ξ Ċ L , ξ ′ ∈ 4(σ, C, J, L)

(C, J, L , R) 〈h !! en, σ 〉
ξ , isa(h,[ξ(en)]), ξ ′

−−−−−−−−−−→ 〈X, ξ ′
σ 〉

3

σ ′ ∈ 4(σ, J)

(J, R) 〈h !! en, σ 〉
σ , isa(h,[σ(en)]), σ ′

−−−−−−−−−−−→ 〈X, σ ′〉

L2-3

• Environment(C, J, L , R) is simplified to(J, R),

• dom(ξ Ċ L) = ∅ H⇒ ξ = σ ,

• dom(ξ ′) = dom(σ) H⇒ ξ ′
σ = ξ ′,

• free variableξ ′ is renamed toσ ′,

• for function4 see Section 6.2.

ξ = σ ∪ ξ ĊL , ξ ′ ∈ 4(σ, C, J ∪ {xn}, L), ξ ′(xn) = cn

(C, J, L , R) 〈h ??xn, σ 〉
ξ , ira(h,[cn],{xn}), ξ ′

−−−−−−−−−−−→ 〈X, ξ ′
σ 〉

4

σ ′ ∈ 4(σ, J ∪ {xn}), σ ′(xn) = cn

(J, R) 〈h ??xn, σ 〉
σ , ira(h,[cn],{xn}), σ ′

−−−−−−−−−−−−→ 〈X, σ ′〉

L2-4

• Environment(C, J, L , R) is simplified to(J, R),

• dom(ξ Ċ L) = ∅ H⇒ ξ = σ ,

• dom(ξ ′) = dom(σ) H⇒ ξ ′
σ = ξ ′,

A.1. Derivation for atomic process terms 57

• free variableξ ′ is renamed toσ ′,

• for function4 see Section 6.2.

(C, J, L , R) 〈h !! en, σ 〉
σ∪ξ ĊL

5

E 〈h !! en, σ 〉
σ

L2-5

• Environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• dom(ξ Ċ L) = ∅ H⇒ σ ∪ ξ Ċ L = σ .

(C, J, L , R) 〈h ??xn, σ 〉
σ∪ξ ĊL

6

E 〈h ??xn, σ 〉
σ

L2-6

• Environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• dom(ξ Ċ L) = ∅ H⇒ σ ∪ ξ Ċ L = σ .

Consistent deadlock

(C, J, L , R) 〈δ, σ 〉
σ∪ξ ĊL

7

E 〈δ, σ 〉
σ

L2-7

• Environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• dom(ξ Ċ L) = ∅ H⇒ σ ∪ ξ Ċ L = σ .

58 Appendix A. Derivation ofDL2 from DL1

A.2 Derivation for operators

Delay enabling operator

E
ρ ∈ �σEt

〈[p], σ 〉
t,ρ

7−→ 〈[p], ρσ (t)〉
9

E
ρ ∈ �(σ, t)

〈[p], σ 〉
t,ρ

7−→ 〈[p], ρ(t)〉
L2-9

• dom(range(ρ)) = dom(σ) H⇒ ρσ = ρ,

• for function� see Section 6.2.

(C, J, L , R) 〈[p], σ 〉
σ∪ξ ĊL

10

E 〈[p], σ 〉
σ

L2-10

• Environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• dom(ξ ĊL) = ∅ H⇒ σ ∪ ξ ĊL = σ .

Guard operator

E

ρ ∈ �σEt , ∀s∈(0,t) ρ(s) |H ¬b,

ρ(0) |H b ⇒ 〈p, σ 〉
0,ρ�{0}
7−→ 〈p′, σ ′〉,

ρ(t) |H b ⇒ 〈p, ρσ (t)〉
ρ(t)

〈b → p, σ 〉
t,ρ

7−→ 〈b → p, ρσ (t)〉
20

E

ρ ∈ �(σ, t), ∀s∈(0,t) ρ(s) |H ¬b,

ρ(0) |H b ⇒ 〈p, σ 〉
0,ρ�{0}
7−→ 〈p′, σ ′〉

ρ(t) |H b ⇒ 〈p, ρ(t)〉
ρ(t)

〈b → p, σ 〉
t,ρ

7−→ 〈b → p, ρ(t)〉
L2-20

• dom(range(ρ)) = dom(σ) H⇒ ρσ = ρ,

• for function� see Section 6.2.

A.2. Derivation for operators 59

σ ∪ ξ Ċ L |H ¬b

(C, J, L , R) 〈b → p, σ 〉
σ∪ξ ĊL

22

σ |H ¬b

E 〈b → p, σ 〉
σ

L2-22

• Environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• dom(ξ Ċ L) = ∅ H⇒ σ ∪ ξ Ċ L = σ .

Parallel composition operator

(C, J ∪ W, L , R) 〈p, σ 〉
ξ,isa(h,cs),ξ ′

−−−−−−→

〈

X
p′

X
p′

, σ ′

〉

,

(C, J, L , R) 〈q, σ 〉
ξ,ira(h,cs,W),ξ ′

−−−−−−−−→

〈

X
X
q′

q′

, σ ′

〉

(C, J, L , R) 〈p || q, σ 〉
ξ,ca(h,cs),ξ ′

−−−−−−→

〈

X
p′

q′

p′ || q′

, σ ′

〉

,

〈q || p, σ 〉
ξ,ca(h,cs),ξ ′

−−−−−−→

〈

X
p′

q′

q′ || p′

, σ ′

〉

26

60 Appendix A. Derivation ofDL2 from DL1

(J ∪ W, R) 〈p, σ 〉
ξ,isa(h,cs),ξ ′

−−−−−−→

〈

X
p′

X
p′

, σ ′

〉

,

(J, R) 〈q, σ 〉
ξ,ira(h,cs,W),ξ ′

−−−−−−−−→

〈

X
X
q′

q′

, σ ′

〉

(J, R) 〈p || q, σ 〉
ξ,ca(h,cs),ξ ′

−−−−−−→

〈

X
p′

q′

p′ || q′

, σ ′

〉

,

〈q || p, σ 〉
ξ,ca(h,cs),ξ ′

−−−−−−→

〈

X
p′

q′

q′ || p′

, σ ′

〉

L2-26

• Environment(C, J ∪ W, L , R) is simplified to(J ∪ W, R),

• environment(C, J, L , R) is simplified to(J, R).

Recursion variable

(C, J, L , R)

〈R(X), σ 〉
α
−→ 〈
X
p′ , σ

′〉

〈X, σ 〉
α
−→ 〈
X
p′ , σ

′〉

36

(J, R)

〈R(X), σ 〉
α
−→ 〈
X
p′ , σ

′〉

〈X, σ 〉
α
−→ 〈
X
p′ , σ

′〉

L2-36

• Environment(C, J, L , R) is simplified to(J, R).

(C, J, L , R)
〈R(X), σ 〉

t,ρ
7−→ 〈p′, σ ′〉

〈X, σ 〉
t,ρ

7−→ 〈p′, σ ′〉
37

(J, R)
〈R(X), σ 〉

t,ρ
7−→ 〈p′, σ ′〉

〈X, σ 〉
t,ρ

7−→ 〈p′, σ ′〉
L2-37

A.2. Derivation for operators 61

• Environment(C, J, L , R) is simplified to(J, R).

(C, J, L , R)
〈R(X), σ 〉

ξ

〈X, σ 〉
ξ

38

(J, R)
〈R(X), σ 〉

ξ

〈X, σ 〉
ξ

L2-38

• Environment(C, J, L , R) is simplified to(J, R).

Variable scope operator

(C ∪ {x′
0}, J, L ∪ {g′

0}, R) 〈p[d′, x′
0, g′

0/d, x0, g0], σ ∪ σd′x′
0
〉

ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉

(C, J, L , R) 〈|[V σdx0⊥
, {x0}, {g0} | p]|, σ 〉

κσ Ċ L(ξ,a,ξ ′)
−−−−−−→

〈
X

|[V (σ ′ � {d′, x′
0})[d, x0/d′, x′

0], {x0}, {g0} | p′[d, x0, g0/d′, x′
0, g′

0]]|
, σ ′

σ 〉

39

E

〈p[d′/d], σ ∪ σd′〉
ξ,a,ξ ′

−−−→ 〈
X
p′ , σ

′〉

〈|[V σd⊥
,∅,∅ | p]|, σ 〉

κσ (ξ,a,ξ ′)
−−−−−→ 〈

X
|[V (σ ′ � {d′})[d/d′],∅,∅ | p′[d/d′]]|

, σ ′
σ 〉

L2-39

• {x0} = ∅ H⇒ {x′
0} = ∅,

• {g0} = ∅ H⇒ {g′
0} = ∅,

• {x′
0} = ∅ ∧ {g′

0} = ∅ H⇒ (C ∪ {x′
0}, J, L ∪ {g′

0}, R) = (C, J, L , R),

• environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• notationσdx0⊥
is simplified toσd⊥

, which is defined asσd⊥
∈ {d} 7→ (3 ∪ ⊥). Notationσd′x′

0

is simplified toσd′, which is defined asσd′ ∈ {d′} 7→ (3),

• substitution p[d′, x′
0, g′

0/d, x0, g0] is simplified to p[d′/d], and substitution
p[d, x0, g0/d′, x′

0, g′
0] is simplified top[d/d′],

62 Appendix A. Derivation ofDL2 from DL1

• substitution[∅,∅/C, L] on function definitionκ for arbitrary receive actions ira(h, cs, W):

κσ Ċ L(ξ, ira(h, cs, W), ξ ′) = ξσ Ċ L , ira(h, cs, W ∩ (dom(σ) ∪ L)), ξ ′

σ Ċ L,

and for all other actions:
κσ Ċ L(ξ, a, ξ ′) = ξσ Ċ L, a, ξ ′

σ Ċ L
,

result in the following definition for arbitrary receive actions ira(h, cs, W):

κσ (ξ, ira(h, cs, W), ξ ′) = ξσ , ira(h, cs, W ∩ dom(σ)), ξ ′
σ ,

and for all other actions:
κσ (ξ, a, ξ ′) = ξσ , a, ξ ′

σ ,

where valuationsξσ andξ ′
σ denoteξ � dom(σ) andξ ′ � dom(σ), respectively. The signature

of functionκ is simplified toκ ∈ 6 × 6 × A × 6 → 6 × A × 6.

(C ∪ {x′
0}, J, L ∪ {g′

0}, R) 〈p[d′, x′
0, g′

0/d, x0, g0], σ ∪ σd′x′
0
〉

t,ρ
7−→ 〈p′, σ ′〉

(C, J, L , R) 〈|[V σdx0⊥
, {x0}, {g0} | p]|, σ 〉

t,ρσ ĊL
7−→

〈|[V (σ ′ � {d′, x′
0})[d, x0/d′, x′

0], {x0}, {g0} | p′[d, x0, g0/d′, x′
0, g′

0]]|, σ ′
σ 〉

40

E
〈p[d′/d], σ ∪ σd′〉

t,ρ
7−→ 〈p′, σ ′〉

〈|[V σd⊥
,∅,∅ | p]|, σ 〉

t,ρσ
7−→ 〈|[V (σ ′ � {d′})[d/d′],∅,∅ | p′[d/d′]]|, σ ′

σ 〉
L2-40

• {x0} = ∅ H⇒ {x′
0} = ∅,

• {g0} = ∅ H⇒ {g′
0} = ∅,

• {x′
0} = ∅ ∧ {g′

0} = ∅ H⇒ (C ∪ {x′
0}, J, L ∪ {g′

0}, R) = (C, J, L , R),

• environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• notationσdx0⊥
is simplified toσd⊥

, which is defined asσd⊥
∈ {d} 7→ (3 ∪ ⊥), and notation

σd′x′
0

is simplified toσd′, which is defined asσd′ ∈ {d′} 7→ (3),

• substitution p[d′, x′
0, g′

0/d, x0, g0] is simplified to p[d′/d], and substitution
p[d, x0, g0/d′, x′

0, g′
0] is simplified top[d/d′],

• notationρσ Ċ L is simplified toρσ which denotesρ ↓ dom(σ).

(C ∪ {x′
0}, J, L ∪ {g′

0}, R) 〈p[d′, x′
0, g′

0/d, x0, g0], σ ∪ σd′x′
0
〉

ξ

(C, J, L , R) 〈|[V σdx0⊥
, {x0}, {g0} | p]|, σ 〉

ξσ Ċ L
41

A.2. Derivation for operators 63

E
〈p[d′/d], σ ∪ σd′〉

ξ

〈|[V σd⊥
,∅,∅ | p]|, σ 〉

ξσ
L2-41

• {x0} = ∅ H⇒ {x′
0} = ∅,

• {g0} = ∅ H⇒ {g′
0} = ∅,

• {x′
0} = ∅ ∧ {g′

0} = ∅ H⇒ (C ∪ {x′
0}, J, L ∪ {g′

0}, R) = (C, J, L , R),

• environment(C, J, L , R) is simplified to(J, R), and denoted byE,

• notationσdx⊥
is simplified toσd⊥

, which is defined asσd⊥
∈ {d} 7→ (3 ∪ ⊥), and notation

σd′x′
0

is simplified toσd′, which is defined asσd′ ∈ {d′} 7→ (3),

• substitution p[d′, x′
0, g′

0/d, x0, g0] is simplified to p[d′/d], and substitution
p[d, x0, g0/d′, x′

0, g′
0] is simplified top[d/d′],

• abbreviationξσ Ċ L is simplified toξσ which denotesξ � dom(σ).

Recursion scope operator

(C, J, L , R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
α
−→ 〈
X
p′ , σ

′〉

(C, J, L , R) 〈|[R {X 7→ q} | p]|, σ 〉
α
−→ 〈

X
|[R {X 7→ q} | p′[X/X ′]]|

, σ ′〉

46

(J, R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
α
−→ 〈
X
p′ , σ

′〉

(J, R) 〈|[R {X 7→ q} | p]|, σ 〉
α
−→ 〈

X
|[R {X 7→ q} | p′[X/X ′]]|

, σ ′〉

L2-46

• Environment(C, J, L , R ∪ {X ′ 7→ q[X ′/X]}) is simplified to(J, R ∪ {X ′ 7→ q[X ′/X]}).

(C, J, L , R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
t,ρ

7−→ 〈p′, σ ′〉,

(C, J, L , R) 〈|[R {X 7→ q} | p]|, σ 〉
t,ρ

7−→ 〈|[R {X 7→ q} | p′[X/X ′]]|, σ ′〉
47

(J, R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
t,ρ

7−→ 〈p′, σ ′〉,

(J, R) 〈|[R {X 7→ q} | p]|, σ 〉
t,ρ

7−→ 〈|[R {X 7→ q} | p′[X/X ′]]|, σ ′〉
L2-47

• Environment(C, J, L , R ∪ {X ′ 7→ q[X ′/X]}) is simplified to(J, R ∪ {X ′ 7→ q[X ′/X]}).

64 Appendix A. Derivation ofDL2 from DL1

(C, J, L , R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
ξ

(C, J, L , R) 〈|[R {X 7→ q} | p]|, σ 〉
ξ

48

(J, R ∪ {X ′ 7→ q[X ′/X]}) 〈p[X ′/X], σ 〉
ξ

(J, R) 〈|[R {X 7→ q} | p]|, σ 〉
ξ

L2-48

• Environment(C, J, L , R ∪ {X ′ 7→ q[X ′/X]}) is simplified to(J, R ∪ {X ′ 7→ q[X ′/X]}).

