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Abstract

Sense-making of process models is an important task in various phases of busi-

ness process management initiatives. Despite this, there is currently hardly

any support in business process modeling tools to adequately support model

comprehension. In this paper we adapt the concept of syntax highlighting to

workflow nets, a modeling technique that is frequently used for business pro-

cess modeling. Our contribution is three-fold. First, we establish a theoretical

argument to what extent highlighting could improve comprehension. Second,

we formalize a concept for syntax highlighting in workflow nets and present a

prototypical implementation with the WoPeD modeling tool. Third, we report

on the results of an experiment that tests the hypothetical benefits of high-

lighting for comprehension. Our work can easily be transferred to other process

modeling tools and other process modeling techniques.

Key words: business process models, workflow nets, understandability,

process modeling tool, coloring

1. Introduction

Capturing business processes in the form of graphical models has become

a popular way to support the communication between business professionals

and to guide the development and implementation of IT systems [11, 30]. An
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abundance of academic literature is devoted to the formal aspects of process

modeling (see e.g. [33, 45, 59]), while much of the efforts in industry are geared

towards standardizing the involved notations. A good example of the latter is

the adoption of the Business Process Modeling Notation 2.0 as a formal OMG

standard at the end of 2009.

What has received comparatively little attention are the factors that make

the usage of process models effective. Because the primary purpose of process

models is to facilitate human communication and problem solving – as is the case

for most visual diagrams [27] – a key issue is how to improve the understanding

of such models. In other words: How can process models be created such

that they can be understood more quickly and accurately by human model

readers? This question is of significant relevance. Many companies build their

process management initiatives on large-scale process model repositories that

often contain several thousands of process models [54]. Casual modelers and

usual staff members create and read these models in support of their daily

operations. Currently, research shows that there are serious issues with the

creation and comprehension of these models [39]. Therefore, answers to the

question of accurate comprehension can be expected to improve the effective

use of process models in settings such as information systems development,

compliance checking, and training of business professionals.

This paper’s focus is on the highlighting of syntactical elements in process

models to improve their understandability. More specifically, we propose the

use of color to highlight process model elements that relate to one another in a

way that is comparable to how pairs of opening and closing brackets in a natural

sentence do. The technique of syntax highlighting, i.e. the coloring or empha-

sizing of source code in meaningful ways, has become an established feature in

programming editors to support programmers in making sense of code. Despite

the similarities that have been noted between process models and software code

[26, 63], syntax highlighting of process models has not been introduced yet. This

is all the more surprising given the wide availability of process modeling tools.

At this stage, the use of color in process models is used mainly to distinguish
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different types of model elements, for example to distinguish events (purple) and

functions (green) in Event-driven Process Chains [55], but not systematically

to aid sense-making of specific process models. Against this background, the

contribution of this article is threefold. First, we provide a detailed discussion of

potential benefits of syntax highlighting for process model comprehension from

a theoretical perspective. Second, we formalize a highlighting concept for work-

flow nets and demonstrate their applicability with an implementation within

the open source modeling tool WoPeD. Third, and based on that implementa-

tion, we report the results of an experiment that challenges the benefits of the

highlighting approach.

The structure of the paper is now as follows. In Section 2, we discuss the

effects of syntax highlighting using insights from cognitive research. Section 3

defines a formal approach to highlighting for workflow nets and presents a cor-

responding implementation. Section 4 describes an empirical test that has been

conducted to determine the effectiveness of the proposed highlighting approach.

We discuss implications of our work in Section 5 and conclude our paper with

Section 6.

2. Syntax Highlighting in Process Models

In this section we introduce the theoretical background of our research on

syntax highlighting for process models. In Section 2.1 we discuss the concept of

secondary notation and its importance for process model understanding. We use

an example of a real-world process model to illustrate the potential benefits of

highlighting as a mechanism of secondary notation. In Section 2.2 we investigate

how different user groups might benefit from highlighting.

2.1. Color and understanding

Traditionally, conceptual models including business process models are cre-

ated as an interplay between an expert in the considered domain (domain expert)

and an expert in modeling techniques (system analyst) [20]. Typically, a domain
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expert can be characterized as someone with (1) superior, detailed knowledge

of the object under consideration but often (2) minor powers of abstraction be-

yond that knowledge. The strengths of the system analyst are exactly the oppo-

site. Recently, business process modeling projects have grown to company-wide

initiatives in which non-expert modelers (or novice modelers) are increasingly

active. Such projects can easily cover the definition and maintenance of several

thousands of models. The trend towards an increasing involvement of novices

in process modeling projects causes various quality issues [54]. Recent research

reveals considerable weaknesses of process models from practice in terms of un-

derstanding and error probability. Many real-world process model collections

have error rates of up to 30% [39]. Such quality issues have been partially

attributed to the sheer complexity of certain process models [38, 40, 41, 44].

Therefore, it is an important question how readers can be better supported in

understanding a process model in an accurate way.

Most process models and corresponding languages are rather puristic from

a visual point of view. Hardly any highlighting is used except for Event-driven

Process Chains in which sometimes events (purple) and functions (green) are

distinguished by color. The research by Bertin on the semiology of graphics

identifies eight distinct visual variables that can be used to encode graphical

information [4]. Color is considered to be one of the most effective of these

variables. The human visual system is able to recognize color quickly [37].

Distinctions between different colors can be detected accurately and three times

faster than between shapes [36]. Therefore, Moody criticizes that color is hardly

used by modeling notations to distinguish notation elements [46]. These insights

clearly point to the attractiveness of using color in a systematic way to improve

the understanding of process models.

Furthermore, the Cognitive Dimensions Framework (CDF) by Green and

Petre provides the background to postulate a way to sensibly apply coloring [23,

24]. The CDF has been highly influential in language usability studies and

numerous publications have been devoted to its further development, see its

discussion in [5]. It provides a set of characteristics to evaluate a wide variety
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of notations, e.g. spreadsheets, style sheets, diagrams, etc. Specifically, process

modeling languages have been analyzed to be “abstraction-hating”, because

they do not provide any mechanism to group activities . This leads to several

problems in terms of cognitive processing as it is not directly visible where a

certain sub-component of a process model starts and ends. As a result, the inside

of a component cannot be ignored when considering behavioral aspects around

it and it is hard to neglect a sub-component’s environment when its internal

aspects are investigated. Additionally, in terms of the CDF the start and end

nodes of sub-components are examples of long-range “hidden dependencies”. In

a process model, it is very common that a particular type of start node calls for

a similar type of end node. However, the larger and more complex a model gets,

the more difficult it is to determine which start and end nodes belong to one

another. This is problematic since identifying matching entry and exit nodes of

a component helps the model reader in terms of information hiding [49, 53].

Motivated by the discussed shortcomings of process models as a visual nota-

tion according to the CDF and the potential power of color as a visual variable

mentioned eaerlier, it seems attractive to focus on the highlighting of entry and

exit nodes of sub-components. Such nodes typically reflect a particular routing

semantics. In a workflow net context, they are called operator transitions. We

will use this term already here; its precise definition will be part of the section

on our formal highlighting approach.

How exactly highlighting may be used to facilitate information hiding is

illustrated in Figure 1. It shows two versions of a real-world process model that

has been made available to us through a cooperation with the Dutch branch

of Sogeti1, a large ICT service provider. The process captures how within one

of Sogeti’s clients, a multinational bank, existing credit facilities are updated.

This is required at times, for example because of changes in the preferences of

the account holders or in the commercial circumstances. The process involves

the execution of various checks by bank clerks, as well as updates they have to

1http://www.sogeti.com/
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Figure 1: Changing a credit facility process without (a) and with (b) highlighting
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carry out in IT systems. Sogeti professionals created a model for this process

to use it as a basis for discussion with bank employees on how to improve the

business process in question.

This process model is captured as a workflow net [58]. The model captures

63 different transitions representing business activities (also often referred to

tasks), 75 places indicating milestones in the process, and 157 arcs specifying the

paths along these elements. Also notable are the 30 operator transitions (XOR-

splits, XOR-joins, AND-splits and AND-joins), which capture how alternative

and concurrent paths are spawned off and joined again at different stages in the

process. A complex aspect of this model is that it is represented in a compact

form; the modelers wanted it to fit on a single sheet of A4 paper so that it

could be easily printed and reproduced. As a result, some arrows are running

bottom-up, which could easily be interpreted as iterations in the model while

this is not always so. For, example, the arrow from B2 to F2 simply indicates

sequential progress instead of a step back.

While the formal structures of both versions of the process model are the

same, there is a notable difference in the way how matching operator transitions

are highlighted. Cognitive research into program comprehension has coined the

terms primary notation and secondary notation to describe this phenomenon.

The modeling notation as a formal set of symbols is defined as primary notation.

Primary notation specifies the semantics of all graphical elements of a particular

notation, such as Petri nets. This primary notation of Petri nets is defined using

particular shapes for the different syntax elements. In the model with highlight-

ing, it can be seen that some sets of operator transitions have received the same

color, for example E1 and A2 that are both highlighted in green. Transition

operator E1 – an AND-split – signifies that two concurrent paths are initiated

after its execution, one of them starting with transition H1, the other with tran-

sition I1. By enriching the process model with information beyond the formal

notation (e.g. color, line strength, etc.), the reader may access the information

captured in the model with a differing degree of ease [50]. Visual cues, which

are not part of a notation, are known as secondary notation [51]. These visual
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cues have a twofold advantage. First, they help to identify a decomposition of

the process model into components, which provides for information hiding when

the overall behavior of the process model is analyzed. Second, the usage of color

helps to interpret secondary notation quickly, as color can be processed by the

human visual system much faster than for instance shape [36]. These facts

should result in better comprehension performance, which is typically measured

in terms of accuracy and efficiency [7, 21]. Therefore, we formulate the following

hypotheses in relation to accuracy and efficiency of comprehension.

H1 The use of colors to highlight matching operator transitions will have a

significant positive impact on understanding accuracy.

H2 The use of colors to highlight matching operator transitions will have a

significant positive impact on understanding speed.

2.2. Highlighting, understanding, and expertise

Prior research has shown that users tend to have serious problems with un-

derstanding how different operator transitions interplay and which ones belong

together. It comes as no surprise that model readers with different character-

istics face understanding problems to a different extent. For instance, it has

been observed that readers with a solid background in Petri net concepts [41]

and theoretical concepts of process models altogether [43] show a much bet-

ter understanding performance than others. Also, other personal factors like

the duration and intensity of process modeling experience have been identified

as factors of process model understanding in prior research [52]. Altogether,

modeler expertise is a critical issue for process modeling projects [3].

Archetypically, novices and experts in process modeling can be distinguished.

The notion of expertise has been related to different aspects. As an adaptation

of [10, 16], we can state that it is established by “the amount and complex-

ity of knowledge gained through extensive experience of activities” in process

modeling [16] or by acquiring “vast amounts of knowledge and the ability to

perform pattern-based retrieval” related to process models [10]. The difference
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between novices and experts in process model comprehension can be explained

based on the Adaptive Control of Thought architecture proposed by Ander-

son [2]. According to this architecture, the human working memory interacts

with declarative and production memory, which both the latter have distinct

features. While declarative memory stores and provides access to facts that we

explicitly know, the production memory holds rules of interference, which can be

used in problem solving. The production memory of an expert contains a much

richer set of production rules than the one of a novice. In relation to process

models, an expert would likely know productions that help to hide information,

for instance, to ignore components when interpreting the overall behaviour of

a process model. While both novices and experts will presumably benefit from

color highlighting, it is likely that their differences in production memory will

result to a difference in the extent of this effect. Both an unhighlighted and

a highlighted process model are informationally equivalent, i.e. they capture

the same information on a process [34, 56]. On the other hand, they are not

computational equivalent because they differ in the ease with which informa-

tion can be deducted from them. For a novice, this computational benefit is

great as a novice lacks suitable production rules to inspect a process model.

For an expert, the computational improvement is smaller which she possesses

production rules to manage the complexity of a process model. Therefore, it

is not a surprise that expert modelers have been observed to focus on relevant

graphical elements, recognize patterns and disregard irrelevant information [50],

while novices tend to lack reading and search strategies, which result from mod-

eling experience and extensive learning. As a result, we expect highlighting of

matching nodes in a process model to be a significant aid for novices to read

the models and their control flow semantics. Experts, in turn, can much easier

identify patterns of matching operator transitions, a skill that is also referred to

as perceptual expertise [25]. Accordingly, the highlighting support helps them

to identify patterns faster they already know, which is of less value to them

in comparison to novices. As a consequence, their performance increase should

be less strong in comparison to novices. Therefore, we formulate the following
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hypotheses:

H3 The highlighting of matching operator transitions will have a significant

positive impact on understanding accuracy for novices.

H4 The highlighting of matching operator transitions will have a significant

positive impact on understanding speed for novices.

H5 The highlighting of matching operator transitions will have a significant

positive impact on understanding accuracy for experts.

H6 The highlighting of matching operator transitions will have a significant

positive impact on understanding speed for experts.

H7 The highlighting of matching operator transitions will be more significant

for understanding accuracy of novices than of experts.

H8 The highlighting of matching operator transitions will be more significant

for understanding speed of novices than of experts.

Before we can evaluate these hypotheses, we first have to explicitly define how

the syntax highlighting approach for process models can work. This is the

subject of the next section.

3. A Formal Approach to Syntax Highlighting

In this section we formalize a formal approach to highlighting matching entry

and exit nodes in nets that are inspired by so-called workflow nets. Section 3.1

defines some Petri net concepts, which are an important basis for the notion

of workflow nets. Section 3.2 presents the highlighting approach as we have

implemented it in WoPeD.

3.1. Petri Nets and Workflow Nets

A Petri net N = (P, T, F ) is a directed, bipartite graph where P is a set of

nodes called places, T a set of nodes called transitions and F ⊆ (P×T )∪(T×P )
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Figure 2: A simple Petri net

a binary flow relation. For a node n ∈ P ∪ T of a Petri net, we call •n = {m ∈

P∪T | (m, n) ∈ F} the preset of n and n• = {m ∈ P∪T | (n, m) ∈ F} the postset

of n. Figure 2 shows a Petri net with P = {p1, p2, p3, p4, p5}, T = {t1, t2, t3, t4},

F = {(p1, t1), (t1, p3), ...}. Here, for example, •t2 = {p2, p5} is the preset of t2

and t3• = {p4} is the postset of t3.

A sequence of nodes π = 〈n1, ..., nk〉 of a Petri net where (ni, ni+1) ∈ F for

i ∈ [1..k − 1] is called a path from n1 to nk. A path π = 〈n1, ..., nk〉 is called

elementary path, if it does not contain the same node more than once, i.e. for

each two nodes ni and nj always holds ni 6= nj . In Figure 2, 〈p1, t1, p3, t3, p4〉

is an example for an elementary path; 〈p1, t5, p2, t2, p1〉 is an example for an

non-elementary path. Since elementary paths contain each visited node only

once, they can be represented as plain sets instead of sequences. For technical

reasons, we define an alphabet operator α mapping an elementary path sequence

to a plain set of nodes: α(〈n1, ..., nk〉) = {n1, ..., nk}.

In the area of business process modeling, Petri nets have been used as the

basis for so-called workflow nets. By now, these have become widely-used

to capture business processes in a graphical form. Workflow nets were origi-

nally introduced in [59] and have been used in many applications and publi-

cations ever since. Inspired by the more recent workflow net variant that is

being presented in [58], a workflow W net can be formally defined as a tuple

(P, T, F, TAS , TXS , TAJ , TXJ) with the following properties:

• (P, T, F ) is a Petri net
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• TAS ⊆ T , TXS ⊆ T , TAJ ⊆ T, TXJ ⊆ T are mutually disjoint sets of

operator transitions called AND-split, XOR-split, AND-join and XOR-

join transitions respectively

• |{p ∈ P : •p = ∅}| = 1, i.e. there exists exactly one place with empty

preset (called the source place, usually denoted by i)

• |{p ∈ P : p• = ∅}| = 1, i.e. there exists exactly one place with empty

postset (called the sink place, usually denoted by o)

• ∀t ∈ T : | • t| > 0 ∧ |t • | > 0, i.e. all transitions have a non-empty preset

as well as a non-empty postset

Figure 3 shows an example of a workflow net that uses all four types of

operator transitions. The corresponding decorations are shown on the tran-

sition symbol of TAS = {register, sign}, TXS = {evaluate, check}, TAJ =

{process, archive} and TXJ = ∅. Here, register is used to represent a point

after which send form and evaluate can be carried out simultaneously (or in an

arbitrary order); evaluate itself signifies that a decision is to be made between

two paths. Note that in a classical Petri net an XOR-join is represented as

a place that has more than one preset element, e.g. form ok and acceptable

are such places. Analogously, in a classical Petri net places with more than

one postset element are equivalent to XOR-splits. We will include both types

of XOR representations in our workflow nets and consider them as equivalent.

However, we will refer to the use of decorated transitions for XOR-splits and

–joins as explicit representations and the use of places for these operators as

implicit presentations. At this point, it is important to note that XOR and

AND operators form the core of the routing logic that is supported by most

process modeling popular languages, e.g. BPMN, UML activity Diagrams, and

EPCs.

A workflow net W = (P, T, F, TAS , TXS , TAJ , TXJ) can always be uniquely

extended by adding a transition t∗ connecting the sink place o with the source

place i. We call t∗ the short-circuit transition of W . Analogously, we call the net
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Figure 3: A workflow net

W ∗ that is represented by the tuple (P, T∪{t∗}, F∪{(o, t∗), (t∗, i)}, TAS , TXS , TAJ , TXJ)

the short-circuited net of W. Note that W ∗ is not a workflow net according to

the above definition, because it has neither a source nor a sink place. We will

use it mainly for technical reasons.

For technical reasons too, we need to be able to reason about the pre-

fix or precursor of a workflow net, as it exists at intermediate stages of an

interactive modeling session. For this reason, we introduce a weakened ver-

sion of the above definition of a workflow net. Specifically, we call N =

(P, T, F, TAS , TXS , TAJ , TXJ) an operator-extended net in which (P, T, F ) is a

Petri net. As will be shown, this definition will allows us to highlight operator

transitions within incomplete workflow nets. Note that the class of workflow

nets is a subset of the class of operator-extended nets, i.e. each workflow net is

an operator-extended net.

Finally, we will assume that all operator transitions are used in a sensible

way. Specifically, each split transition has a non-singleton postset, each join

transition has a non-singleton preset, and each non-operator transition has a

singleton preset and postset. Formally, we call a given operator-extended net

N = (P, T, F, TAS , TXS , TAJ , TXJ) operator-normalized, if the following holds:

• ∀t ∈ TAS ∪ TXS : |t • | > 1 ∧ | • t| ≤ 1
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• ∀t ∈ TAJ ∪ TXJ : | • t| > 1 ∧ |t • | ≤ 1

• ∀t ∈ T \ (TAS ∪ TAJ ∪ TXS ∪ TXJ) : |t • | ≤ 1 ∧ | • t| ≤ 1

We are now able to more formally express the notion of matching operator

pairs that we aim to highlight as a way to improve the comprehension of the

overall model. Our definition is a generalization of the concept of PT/TP-

handles [18]:

In an operator-extended net N = (P, T, F, TAS , TXS , TAJ , TXJ), a pair of

nodes (n1, nk) ∈ (P ∪ T ) × (P ∪ T ) is called a matching operator pair iff

• n1 ∈ TAS and nk ∈ TAJ or n1 ∈ P ∪ TXS and nk ∈ P ∪ TXJ

• there are at least two elementary paths π1 and π2 leading from n1 to nk

with α(π1) ∩ α(π2) = {n1,nk}

The intuition behind this definition is that if two or more different paths

connect two nodes then these nodes signify the start and end of a noteworthy

sub-component of the overall routing logic. Note that the notion of matching

operator pairs is not restricted to nets that are completely or even highly block-

structured. In the next section, we will focus on the implementation of the idea

to highlight matching operator pairs.

3.2. Implementation in WoPeD

WoPeD2 is a Java-based open source tool supporting the modeling of plain

Petri nets as well as that of workflow nets. Several publications have accom-

panied the emerging development, e.g. [13, 14]. In the most recent release,

the highlighting of matching operator pairs is supported as a switchable option.

If enabled, the current editor content is constantly monitored for user-inflicted

changes by executing a detection algorithm assigning each matching operator

pair a distinguishable color from a predefined palette.

Figure 4 shows an operator-normalized workflow net with a total of four

matching operator pairs:

2http://www.woped.org/
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Figure 4: Highlighted matching operator pairs

• (t1, t6) is an AND-split/AND-join pair (red)

• (t2, t3) is an explicit XOR-split/explicit XOR-join pair (yellow)

• (p5, t5) is an implicit XOR-split/explicit XOR-join pair (green)

• (p11, p7) is an implicit XOR-split/ implicit XOR-join pair (magenta)

Note that for determining the colors it is not necessary that the editor con-

tains a workflow net; an operator-extended net will be sufficient. For simplicity

and without loss of generality, we additionally assume that nets are operator-

normalized, i.e. all operators have a “sensible” branching context. Under this

assumption, the set of candidate pairs to be considered as potentially matching

operators can be restricted to pairs (x, y) where either (1) x is an XOR-split

(or a place with a non-singleton postset) and y an XOR-join (or a place with a

non-singleton preset) or (2) x an AND-split and y an AND-join. Additionally, if

the current editor content is detected to conform to the properties of a workflow

net, the short-circuited version of the net is considered to find additional pairs

of matching operators. For example, (p11, p7) in Figure 4 can only be detected

by considering the short-circuited version of the net. Note that as long as the
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net under construction is not a workflow net, the detection of matching operator

pairs is not necessarily complete yet all detected pairs are indeed matches.

Each candidate pair of nodes is checked for being a matching operator pair

by applying the Ford and Fulkerson max-flow-min-cut algorithm [19]. This

algorithm can be used to determine the maximum flow in a flow network between

its source and sink. Our implementation applies this algorithm in the context of

an operator-extended net by considering for each candidate pair its first (split)

element as a source and its second (join) element as a sink. Furthermore, the

maximum capacity for each edge is set to 1 and the direction of each edge

determines the flow direction. If the max-flow-min-cut algorithm establishes

that the maximum flow between the two elements of a candidate pair exceeds 1

then this indicates a minimum of two different elementary paths between them.

In other words, in such a case a matching operator pair is found. In the example

of Figure 4, the maximum flow between p5 and t5 is exactly two since there is a

capacity of 1 along the path 〈p5, t8, p6, t5〉 and an additional capacity of 1 along

path 〈p5, t9, p7, t11, p11, t5〉.

Our implementation of the max-flow-min-cut algorithm is derived from the

one introduced in [29], with the modification to select nodes based on breadth-

first-search [15]. With this modification, our algorithm has a complexity of

O(|D ∪ D′||A|2). The complete algorithm executes the max-flow-min-cut algo-

rithm |(P ∪ T ) × (P ∪ T )| times and therefore runs in polynomial time with

O(|(P ∪ T )|3|F |2).

At this point, it should be considered that the membership of a node as

an element of a matching operator pair is not exclusive. Pairs of matching

operators may exist that overlap, in the sense that they share common nodes.

Since only a single color can be assigned to each node at a time, it appears

sensible to color all overlapping pairs of matching operators in the same color.

To establish a common highlighting of overlapping operator pairs, a “clustering”

is implemented as shown in Algorithm 1.

To illustrate this algorithm, we start with the example set of matching op-

erator pairs (t1, t6), (t2, t3), (p5, t5), (t8, t6), (p11, p7) for the workflow net in
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Algorithm 1 Computation of matching operator clusters

Let OpC ⊆ P(P ∪ T ) be a set of sets where each element is the set represen-

tation of a matching operator pair (i.e. each pair (x, y) is contained as a set

{x, y})

while ∃op1, op2 ∈ OpC : op1 6= op2 ∧ op1 ∩ op2 6= ∅ do

op := op1 ∪ op2

OpC := Op\{op1, op2} ∪ {op}

end while

return OpC

Figure 5. The conversion to a set of sets yields:

OpC = {{t1, t6}, {t2, t3}, {p5, t5}, {t8, t6}, {p11, p7}}. In the first iteration, {t1, t6}

and {t8, t6} are combined into {t1, t6, t8}. After the separate elements have been

removed and the combined set is added, no overlapping elements are left in OpC .

Each of the remaining elements is OpC is now a cluster of the underlying net.

All elements in a cluster will be assigned with the same color. As can be seen

in Figure 5, indeed, t1, t6, and t8 are colored the same. The color palette itself

can be created via a settings dialog and configured by the user with individually

chosen color values, as can be seen too in Figure 5.

Note how this workflow net in Figure 5 is a slightly extended version of the

block-structured net that is shown in in Figure 4: Transition t8 is turned into an

AND-split and an additional place p15 is added between transitions t8 and t6.

As such, this example also illustrates how the coloring approach is applicable

to both block-structured and non-block-structured nets.

4. Research Method

We set up an experiment to investigate the effectiveness of our proposed high-

lighting approach by testing the hypotheses of Section 2. Section 4.1 presents

our research design and a description of how the experiment was conducted.

Section 4.2 summarizes the results of the experiment.
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Figure 5: A settings dialog for the color palette

4.1. Research Design and Conduct

To design the experiment, we have been following the recommendations given

in [32, 66]. This section describes the subjects, objects and selected variables

of our experiment, introduces our hypotheses, and presents the instrumentation

and data collection procedure.

The subjects are 62 experienced modelers both from industry and academia

(experts) and 41 students following a graduate course on Business Process Man-

agement at Eindhoven University of Technology (novices). The professionals

were recruited from two Dutch consultancy organizations and three interna-

tional research groups with a special focus on Business Process Management.

All participated voluntarily. The central object that is used in the experiment is

the process model that was introduced in Figure 1. Its two variants – with and

without highlighting – were used to represent two levels of our primary factor

of interest, i.e. the highlighting of matching operator pairs. Furthermore, we

recorded the factor expertise on two levels: expert and novice. In the experi-

ment, two response variables were used. First, the number of correct answers
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to a set of closed questions was used as the indicator of understanding accuracy.

The time that was taken by the respondents to answer this set questions is the

second response variable, indicating the understanding speed.

To investigate the hypotheses of Section 2, an on-line instrument was de-

veloped to conduct a self-administered experiment. The instrument was devel-

oped with PHP 5.1.4 and JavaScript and ran on an Apache Web Server hosted

at Eindhoven University of Technology. The instrument leads the participant

through three successive parts:

1. Introduction: In this first part, the purpose of the experiment is explained

as well as the expected effort to complete it. Furthermore, an explanation

of the workflow net notation is provided. Finally, it is explained that par-

ticipants are expected to answer the questions accurately and as fast as

possible.

2. Demographic information: The participant is requested to provide informa-

tion on her background, experience with process modeling, and familiarity

with the workflow net notation.

3. Experiment: Depending on a random draw, the respondent is assigned

with an equal probability to either the model with or without highlighting

support. In total, a set of nine questions is provided one after another to

the respondent. Questions could not be skipped. At all times, a legend

with an explanation on the workflow net notation is visible.

The screenshot in Figure 6 gives an impression of the look and feel of the

instrument.

The closed questions from one of our previous experiments [41] were used in

this experiment. An analysis of these questions and the data obtained in that

work provided a value of 0.675 for Cronbach’s alpha. This can be considered as

an acceptable indication for internal consistency, for example when compared

with other empirical research in the context of business process oriented research

[28]. The questions cover issues with respect to:

• concurrency, e.g. “Can tasks A and B be be executed at the same time
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Figure 6: Screen shot of the on-line instrument

for a case?”

• exclusiveness, e.g. “Can tasks A and B both be executed for the same

case?”

• order, e.g. “If task A is executed for a case, must then always task B be

executed for the same case?”

• repetition, e.g.“Can task A be executed more than once for the same case?”

For all questions, the respondents were offered the answer categories ‘yes’,

‘no’ and ‘do not know’.

4.2. Results

Before testing the hypotheses, the quality of the data was analyzed. From

the total of 103 answer sets that were provided for the questions on the models

(both with and without highlighting), 26 were incomplete. Although the tool

did not allow any questions to be skipped, people always had the opportunity to

stop the experiment at any time by simply closing their browser. All data being

part of an incomplete set of answers was removed. Furthermore, in line with [22],
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Figure 7: Boxplots for understanding accuracy (number of correct answers) and understanding

speed (time)

quality checking was applied to the data. We expected expert modelers to be

able to at least correctly answer 5 out of 9 questions (55%) and novices at least

4 out of 9 questions (44%). Results below these thresholds were considered to

reflect a serious lack of knowledge and/or commitment. As a result, 7 additional

answer sets had to be removed. The latter is a relatively small number, which

is an indication for the overall high quality of the raw data. In total, 70 answer

sets were taken into account for the data analysis (= 103 − (26 + 7)).

General Effect of Highlighting: The 70 answer sets were explored for

the response variables of interest, understanding accuracy and understanding

speed. The subjects on average provided 7.21 correct answers for the total of

9 questions (80%) with a minimum of 5 and a maximum of 9. On average,

it took respondents a little over 10 minutes to answer the questions, with a

minimum of approximately 4 minutes and a maximum of approximately 34

minutes. Application of the Kolmogorov-Smirnov test [57] indicated that the

distributions for both variables differ significantly from the normal distribution,

which may be due to the limited size of the data set. Box plots that show the

distribution of the response variables, differentiating between the factor levels

with and without highlighting, are provided in Figure 7.

Inspection of the box plots does not point at understanding speed being af-

fected strongly by highlighting, i.e. the medians and distributions are quite

21



Table 1: Two-tailed Mann-Whitney test for Hypotheses H1 and H2

Hypothesis p-Value Support

H1 Highlighting → Accuracy 0.049 X

H2 Highlighting → Speed 0.583 ∅

similar. The understanding accuracy for subjects provides a somewhat other

picture, with the number of correct answers being slightly higher for those sub-

jects that used the process models with highlighting support for answering the

questions. A corresponding non-parametric Mann-Whitney test [57] confirms

these observations. This type of test is appropriate in the light of the non-

normality of the data. The Mann-Whitney test is applicable to experiments

that consist of one factor and two treatments with a completely randomized

design [66], as is the case here. Table 1 reports the significance levels. Ac-

cordingly, we find support for Hypothesis H1 (i.e. there ia positive impact on

understanding accuracy), but not for Hypothesis H2 (i.e. there is no positive

impact on understanding speed).

Effect of Coloring for Novices and Experts: A more detailed data

analysis that distinguishes between novices and experts is provided in Table 2.

From the table, various differences can be distinguished between the analyzed

statistics. For example, experts on average perform better than novices: They

have higher numbers of correct answers and are faster in responding to the ques-

tions. Also notable is that novices on average correctly answer 7.08 questions

when provided with highlighting support but only 5.92 without that support,

which would be in line with Hypothesis H3. To examine all the hypotheses we

stated, we used the non-parametric Mann-Whitney test separately of the novice

sub-sample and the expert sub-sample. The results are shown in Table 3.

As can be seen, a significant difference between the availability of highlight-

ing support and the lack thereof exists and relates to the understanding accuracy

(number of correct answers) for novices. Indeed, the difference we mentioned

between the 7.08 and 5.92 correct answers on average is not likely to be a mat-
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Table 2: Descriptive statistics for understanding accuracy (number of correct answers) and

understanding speed (time)

Novices Experts

With Without With Without

Statistics highlighting highlighting highlighting highlighting

Number of N 13 13 18 26

Correct Answers Mean 7.08 5.92 7.89 7.46

Median 7.00 6.00 8.00 7.50

Std. Dev. 1.188 .954 1.231 1.140

Skewness -.524 .854 -1.041 -.161

Kurtosis -.105 .221 0.289 -.697

Time (minutes) N 13 13 18 26

Mean 102.680 115.449 98.796 96.231

Median 79.333 99.167 87.083 81.917

Std. Dev. 795.681 486.906 445.450 536.402

Skewness 2.587 .694 1.471 2.251

Kurtosis 7.621 .224 1.606 4.683

Table 3: Two-tailed Mann-Whitney test for Hypotheses H3 to H8

Hypothesis p-Value Support

H3 Highlighting → Accuracy of Novices 0.017 X

H4 Highlighting → Speed of Novices 0.139 ∅

H5 Highlighting → Accuracy of Experts 0.184 ∅

H6 Highlighting → Speed of Experts 0.535 ∅

H7 Accuracy of Novices << Accuracy of Experts 0.017 << 0.184 X

H8 Speed of Novices << Speed of Experts 0.184 << 0.535 X
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ter of chance. In other words, whether a novice model reader is considering

a process model with or without highlighting will make a significant difference

in terms of her understanding accuracy. In fact, that accuracy is then higher.

The understanding speed for novices, however, does not differ significantly. Fur-

thermore, highlighting is not a distinguishing factor for the performance of the

experts.

In summary, we find support for the general benefit of highlighting for the

understanding accuracy (H1), in particular for novices (H3). The effect is not

significant for experts though (H5). Effects on understanding speed appear to

be negligible (H2, H4, H6). Still, novices appear to benefit more than experts

in terms of both understanding accuracy and understanding speed (H7-H8).

5. Discussions and Implications

In this section we discuss the results and the implications of our research.

5.1. Discussion of Results

The results of the experiment have to be interpreted in terms of significance

and strength of the noted effect. Furthermore, our distinction between novices

and experts has to be reflected upon.

Personal factors have been identified as factors of process model understand-

ing in prior research [41, 43, 52]. In this experiment we considered a classification

of novices and experts based on participants being students or professionals (ei-

ther from academia or industry). In general, the distinction between novices

and experts is not so straight-forward and related to notions that are difficult

to measure, like “the amount and complexity of knowledge gained through ex-

tensive experience of activities in a domain” [16] or “the result of acquiring [. . . ]

vast amounts of knowledge and the ability to perform pattern-based retrieval”

[10]. Furthermore, it is important to notice that task-specific experience is often

a better predictor of performance than expertise in general [6]. The fact that the

mean values in our experiment are conclusive supports the appropriateness of
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our classification: experts without highlighting are still faster and more accurate

than novices with highlighting in Table 2.

The experiment showed that the highlighting was of greatest benefit to the

accuracy of novices, such that it was the single significant effect. This observa-

tion is in line with research that establishes modeler expertise as a critical issue

for process modeling projects [3]. Petre observed in her research on secondary

notation that novices tend to lack reading and search strategies which result

from modeling experience and extensive learning [50]. Syntax highlighting in

our experiment is a significant aid for novices to read the models and their con-

trol flow semantics. Therefore, it is no surprise that their performance in terms

of accuracy is improved. Experts, in turn, can much easier identify patterns of

matching operator transitions, a skill that is also referred to as perceptual ex-

pertise [25]. Accordingly, the highlighting helps them to identify patterns they

already know. As a consequence, the performance increase is too small to be

significant in our experiment.

It is arguable that the effect of highlighting on performance of both experts

and novices might have been stronger if the models had been more complex. It

is well known from prior research that more complex models are more difficult

to understand [38, 41]. Several metrics have been proposed to measure different

dimensions of complexity of a process model, e.g. in [1, 8, 9, 35, 38, 44, 47, 48,

62]. The models we used in the experiment are fairly structured such that a split

operator most often has a direct join counterpart. Such structured models are

rather easy to understand for experts. The highlighting effect might have been

more effective also for experts if the models had been more unstructured. The

reader may recall that, indeed, the identification of matching operator pairs is

also possible in unstructured nets. Additionally, it might be argued that models

need to be much larger before highlighting starts to have a significant effect on

experts’ performance.

5.2. Implications

The experiment and the results have implications for research and practice.
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With this work we have shown the potential of secondary notation to improve

process model understanding. We have focussed on the highlighting of matching

operator pairs. Further research is needed to investigate the effect of other

types of secondary notation. In particular, techniques from automatic graph

drawing have been discussed regarding their support of understanding, e.g. in

[65]. A dedicated discussion of automatic layouting of process models and their

benefit to comprehension is missing so far. For such a research endeavor it

is important to consider modeling expertise and its interplay with secondary

notation. While process modeling expertise has been considered by some studies

on process model comprehension [41, 43, 52], there is a need for further research

on establishing a more detailed foundation for this notion.

In this article, we also demonstrated the feasibility of automatic highlighting

both by providing a formalization and by an implementation within the Petri

net modeling tool WoPeD. The general concepts of our approach can be eas-

ily extended to other activity-oriented process modeling languages (e.g. UML

Activity Diagrams [17], EPCs [60], or BPMN [12]). Even for those languages

that do not directly build on token passing semantics, graph parsing techniques

can be used to define colors based on so-called single-entry-single-exit compo-

nents [31, 64]. Therefore, our highlighting approach can be directly included in

industry process modeling tools to improve process model comprehension.

6. Conclusion

This paper addresses the problem of how process model users can be better

supported in the sense-making of a model. We adapted the concept of syntax

highlighting from software engineering and applied it to workflow nets, a for-

malism that is frequently used for business process modeling. Our contribution

is a theoretical discussion of the benefits of such highlighting, a formalization

of the highlighting problem along with a prototypical implementation, and a

thorough experimental study on the effects of highlighting on comprehension

performance. Due to the structural and semantic similarities between workflow
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nets and other process modeling languages, the results from this research can

be easily applied in other process modeling tools.

Our future work is in line with some of the open issues we already noted. We

plan to conduct further experiments to study the interaction of process model

complexity with the effects of highlighting. The assumption for this work could

be that highlighting benefits increase with an increase in model complexity. Be-

yond this, there are other types of secondary notation that we did not study in

this research. Specifically, we aim to investigate to which degree the compre-

hension of a process model can be improved by a good layout. Prior work in the

area of class diagrams suggest that comprehension would deteriorate with bad

layout [65]. The challenge in this context will be, among others, to operational-

ize the notion of a good layout for process models. Furthermore, we want to

explore the spectrum of visual parameters [46] that may be utilized to enhance

process model comprehension. More specifically, many popular process model-

ing notations include a range of symbols with a fixed graphical form without any

notable consideration of their cognitive discriminability. It would be interesting

to work on a “make over” of such notations to improve their use; the developers

of the YAWL modeling language [61], for example, have already expressed their

willingness to cooperate in such an endeavor. Finally, we also have an inter-

est in developing guidelines for process modelers with respect to the way they

structure their models. The work on seven process modeling guidelines that

we presented in [42] can be seen as a first step in that direction, which offers

considerable potential for extension.
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