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Synthesis and Acquisition of Laban Movement Analysis Qualitative Parameters
for Communicative Gestures

Abstract

Humans use gestures in most communicative acts. How are these gestures initiated and performed?
What kinds of communicative roles do they play and what kinds of meanings do they convey? How do
listeners extract and understand these meanings? Will it be possible to build computerized
communicating agents that can extract and understand the meanings and accordingly simulate and
display expressive gestures on the computer in such a way that they can be effective conversational
partners? All these questions are easy to ask, but far more difficult to answer. In this thesis we try to
address these questions regarding the synthesis and acquisition of communicative gestures.

Our approach to gesture is based on the principles of movement observation science, specifically Laban
Movement Analysis (LMA) and its Effort and Shape components. LMA, developed in the dance
community over the past seventy years, is an effective method for observing, describing, notating, and
interpreting human movement to enhance communication and expression in everyday and professional
life. Its Effort and Shape component provide us with a comprehensive and valuable set of parameters to
characterize gesture formation. The computational model (the EMOTE system) we have built offers
power and flexibility to procedurally synthesize gestures based on predefined key pose and time
information plus Effort and Shape qualities.

To provide real quantitative foundations for a complete communicative gesture model, we have built a
computational framework where the observable characteristics of gestures - not only key pose and timing
but also the underlying motion qualitites - can be extracted from live performance, either in 3D motion
capture data or in 2D video data, and correlated with observations validated by LMA notators.
Experiments of this sort have not been conducted before and should be of interest not only to the
computer animation and computer vision community but would be a powerful and valuable
methodological tool for creating personalized, communicating agents.
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ABSTRACT
SYNTHESIS AND AQUISITION OF LABAN MOVEMENT ANALYSIS
QUALITATIVE PARAMETERS FOR COMMUNICATIVE GESTURES
Liwei Zhao

Supervisor: Norman I. Badler

Humans use gestures in most communicative acts. How are these gestures initiated and
performed? What kinds of communicative roles do they play and what kinds of meanings
do they convey? How do listeners extract and understand these meanings? Will it be
possible to build computerized communicating agents that can extract and understand
the meanings and accordingly simulate and display expressive gestures on the computer in
such a way that they can be effective conversational partners? All these questions are easy
to ask, but far more difficult to answer. In the thesis we try to address these questions
regarding the synthesis and acquisition of communicative gestures.

Our approach to gesture is based on the principles of movement observation science,
specifically Laban Movement Analysis (LMA) and its Effort and Shape components.
LMA, developed in the dance community over the past seventy years, is an effective
method for observing, describing, notating, and interpreting human movement to enhance
communication and expression in everyday and professional life. Its Effort and Shape
component provide us with a comprehensive and valuable set of parameters to characterize
gesture formation. The computational model (the EMOTE system) we have built offers
power and flexibility to procedurally synthesize gestures based on predefined key pose and
time information plus Effort and Shape qualities.

To provide real quantitative foundations for a complete communicative gesture model,
we have built a computational framework where the observable characteristics of gestures—
not only key pose and timing but also the underlying motion qualities—can be extracted
from live performance, either in 3D motion capture data or in 2D video data, and correlated
with observations validated by LMA notators. Experiments of this sort have not been
conducted before and should be of interest not only to the computer animation and
computer vision community but would be a powerful and valuable methodological tool

for creating personalized, communicating agents.
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Chapter 1

Introduction

Human movement ranges from voluntary, goal-oriented movements to involuntary,
subconscious movements. Voluntary movements include task-driven actions, such as
walking to get somewhere or speaking. Involuntary movements occur for physiological
or biological purposes; for instance, blinking, balancing, and breathing. A wide class of
movement falls in between these two. In general, this class is characterized by movements
which occur in concert and perhaps unconsciously with other activities. We note two
interesting subclasses of this class of movements. One subclass consists of low-level
motor controls that accomplish a larger coordinated task. For instance, unconscious
finger controls form grasps, leg and foot coordination enable walking or running, and lip
movements generate speech. Another important subclass are communicative acts: facial
expressions, limb gestures, and postural attitude. While computer animation researchers
have actively studied all these classes of human movements [3, 30, 16, 27, 130, 138, 5, 26,
28, 97], it remains difficult to procedurally generate convincing communicative “natural”
limb and postural movements.

McNeill and Cassell [90, 30, 27] approach communicative gestures through several

categories:
e Iconics represent some feature of the subject, such as the shape or spatial extent of

an object.

e Metaphorics represent an abstract feature of the subject, such as exchange,

emergence, or use.



e Deictics indicate a point in space that may refer to people or spatializable things.

e Beats are hand movements that occur with accented spoken words and speaker

turn-taking.

¢ Emblems are stereotypical patterns with understood semantics, such as a good-bye

wave, or the OK-sign.

Such an approach has served to make conversational characters appear to gesture more-
or-less appropriately while they speak and interact with each other or real people. The
impression that one gets when watching even the most recent efforts in making convincing
conversational characters is that the synthetic movements still lack some qualities that
make them look “right”. Indeed, the characters seem to be doing the right things, but
with a kind of robotic awkwardness that quickly marks the performance as synthetic. It is
not a computer animation problem per se — conventional but skilled key-pose animators
are able to produce excellent gestures in three dimensional (3D) characters by careful
application of classic rules for conventional animation [124, 81]. But there is a considerable
gap between what an animator intuits in a character (and is therefore able to animate)
and what happens in a procedurally synthesized movement.

The McNeill/Cassell approach to gesture is rooted in psychology and experimental
procedures that use human observers to manually note and characterize a subject’s gestures
during a story-telling or conversational situation. The difficulty in this approach is hidden
within the decision to call something a gesture. That is, the observer notes the occurrence of
a gesture and then records its type. This kind of recording fails to capture the parameters of
movement that makes one particular gesture appear over another (its movement qualities),
as well as what makes the gesture appear at all. This issue is crucial in the studies of
Kendon [65], who tries to understand the deeper question: What makes a movement a
gesture or not? In his work, a gesture is a particular act that appears in the arms or
body during discourse. There may be movements that are not gestures and there may be
movements that are perceived as gestures in some cultures but not in others. So clearly, the
notion of “gesture” as a driver for computer-generated characters cannot be—in itself—the

primary motivator of natural movements.



1.1 Owur Approach

To address this apparent dilemma, we argue that looking only at the psychological or
descriptive notion of gestures is insufficient to capture motion qualities needed by animated
characters. We need to look toward movement representations outside the constraints of
communicative acts. We find that Laban Movement Analysis (LMA) [35, 76, 39, 11, 77, 60,
12, 88, 93] and its Effort and Shape components provide us with the most comprehensive
and valuable set of parameters for describing the form and execution of the qualitative
aspects of movements. LMA is not the same as Labanotation [60]. The former addresses
movement qualities while the latter addresses places and positions. We have created and
implemented prototype computational models of Effort and Shape to apply qualitative
parameters to generate expressive movements on the torso and the limbs of an articulated

human figure [5, 31, 32]. We call this system EMOTE (Expressive MOTion Engine).

Our EMOTE approach to gesture augments the McNeill/Cassell approach by
addressing a missing dimension: gesture exists not just because it has underlying
linguistic relationships but also because it has some distinctiveness in its Effort and
Shape parameters. Our approach meshes perfectly with the perspective offered by the
LMA proponents: “Gesture ... is any movement of any body part in which Effort or
Shape elements or combinations can be observed [12].” Our EMOTE approach to gesture
also complies with two other important LMA concepts. The first one is synthesized by
Bartenieff when she observes that it is not just the main movement actions that let us
identify behavior but it is the sequence and phrasing of Effort and Shape parameters that
express and reinforce content [12]. The other concept is best expressed by Lamb: a gesture
localized in the limbs alone lacks impact, but when its Effort and Shape characteristics
spread to the whole body, a person appears to project full involvement, conviction, and
sincerity [78]. In the animated Gilbert and George characters produced for [30], torso
involvement was precluded. The characters appear to nod and move their arms in a
vaguely disturbing, disembodied fashion. When the rest of the body is moved along with

limb gestures, the greater weight of the torso naturally reacts to and absorbs limb forces.

Effort and Shape qualities provide us with a comprehensive and valuable set of

parameters to characterize gesture formation. The EMOTE model offers power and



flexibility to procedurally synthesize gestures based on predefined key pose and time
information plus Effort and Shape qualities. To provide real quantitative foundations
for a complete communicative gesture model, we have elaborated the EMOTE system in

several new ways:

e Bypass manual key pose specification by connecting a motion capture system with
the EMOTE system and automatically extracting the key point definitions from live

performance.

e Experiment with porting EMOTE to a deformable human model in a commercially

available visualization package (Alias|Wavefront’s Maya 3.0).

e Connect EMOTE with an agent model so that agent motion manners can set

appropriate EMOTE parameters for gesture performance.

e Investigate motion analysis techniques for extracting EMOTE Effort parameters from

live inputs, both in 3D motion capture data and in 2D video data.

e Validate the automated acquisition of EMOTE Effort parameters by experiments

using professional LMA notators for ground truth.

It is also very important to distinguish between motion quality and expressivity and
communicativity. The difference lies in that motion quality emphasizes how movement
is performed and how stability, mobility, exertion, and recuperation are dynamically
interleaved, while expressivity and communicativity stress more the degrees to which
linguistic or psychological information are effectively conveyed through the motion channel.
The association of motion qualities with the underlying gestural movement facilitates
but does not necessarily determine the expression and communication of individual
predispositions and characteristics. Different motion qualities distributed over the same
underlying motion may produce dramatically different gestures and hence may effect an
observer’s interpretation of the internal state of the performer. On the other hand, motion
qualities plus the underlying movement are not necessarily sufficient to determine the
linguistic or psychological meaning of a gestural movement. We believe there are other

factors including contextual variables at work determining the real meaning of gesture.



Nonetheless, by building computational models of motion qualities we open the door to
later research that might rigorously study the effect of these qualities on expressivity and
communication.

This work does not attempt to address the problem of gesture recognition, nor does
it intend to build a model for expressing or communicating the linguistic or psychological
meaning of gesture. Instead, our current approach is focused on gesture analysis and
synthesis — we first convert the gestural movements from observation into a computational
representation, which comprises not merely motion forms but also Effort and Shape motion
qualities. We are then able to use the computational representation to generate a variety
of gestures by adjusting its motion quality parameters. We believe it is the computational
representation that forms the basis for further quantification of more complicated gesture

models and ultimately for gesture understanding and recognition.

1.2 Overview

The remainder of this document presents our implementation of a bi-directional gesture
framework where Effort and Shape parameters are used both to synthesize expressive limb
and torso movements, and in reverse, the Effort and Shape parameters, as well as the
key pose and timing information, are extracted from live performance. We shall review
the related work and scope of the gesture research in Chapter 2. Chapter 3 introduces
the basic concepts and components of Laban Movement Analysis (LMA) theory. Gesture
synthesis is presented in Chapter 4, while gesture acquisition is elaborated in Chapter 5
and Chapter 6, dealing with acquisition from 3D and 2D data, respectively. We conclude

with our contributions and future work in Chapter 7.



Chapter 2

Related Work and Scope

Broadly speaking, there are two separate threads running through the gesture research
field. In one thread, there is work by linguists, psychologists, neurologists, choreographers,
physical therapists, and others. Basically, they are not committed to building a
computational gesture model to verify their theories, and are rarely concerned with any
computer implementation implications of their work. Their concern is largely with a
conceptual understanding of gesture and its function. Although their work often involves
some deep analysis, most of their models are qualitative and theoretical, making it very
difficult to justify their correctness, generality, and appropriateness. The other thread of
research on gesture operates in areas such as computer vision, human-computer interaction
(HCI), human motor control, and computer graphics and animation. Most of these
approaches are in a system-oriented context. Various computerized systems have been
built to recognize, analyze, and/or synthesize gestures for control, modeling, or animation
purposes. While these approaches explore different areas of research, some fundamental
questions remain unanswered, such as whether or not gesture really serves any measurable

function and utility, how gesture and speech are correlated and how gesture reveals affect.

We shall investigate all the important approaches taken within each thread to give a
complete overview about the state-of-the-art in gesture and carefully position our approach.
The remainder of this chapter is organized as following: we embark on our investigation by
presenting several possible definitions of gesture, followed by a taxonomy and classification

of gestures done by several major researchers. Then we move on to qualitative gesture



models and computational gesture models. In the section on qualitative models, we
summarize the experiments, hypotheses, and theories about the fundamental questions
of gesture that have intrigued researchers for years in disciplines such as psychology,
linguistics, theater, dance, and cognitive science. Their approaches provide valuable input
to building a computational gesture model. Some system builders are connected to and
cognizant of the work being done in some of the areas. For example, Cassell’s work [30]

has psychological/linguistic roots. Our focus is to build a computational gesture model.

2.1 Definition of Gesture

There is no single universally accepted definition of what a gesture actually is. Kendon,

“.. for an

one of the few people who presented a definition, defines a gesture thus:
action to be treated as a gesture it must have features which make it stand out as
such.” [65] Clearly, this is not really a definition though it suggests the use of features
as the distinguishing characteristics. McNeill [90] defines a gesture as “movements of the
arms and hands which are closely synchronized with the flow of speech.” This explicitly
excludes the involvement of the body or gestures without speech. Some researchers have
a narrower focus, for example, Cassell [27] focuses on hand gestures that co-occur with
spoken language. American Heritage FElectronic Dictionary gives a broader definition: “a
motion of the limbs or body made to express or help express thought or to emphasize

speech.” While all are useful descriptions of gestures, none really gives a generative or

analytical view suitable for computational implementations.

2.2 Taxonomy and Classification

The lack of a clear definition of gestures in general raises another issue: the taxonomy of
gestures. Over the years a number of gesture classification schemes have been proposed.
Table 2.1 summarizes six major taxonomies of gestures, starting with Efron’s work in the
1940’s [41] and most recently that of McNeill in 1995 [90], as well as Koons and Wexelblat’s
classification scheme with focus on computer interpretation [134]. The summary provides

only a rough comparison, which omits some of the details of each scheme. For example,
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McNeill distinguishes two kinds of iconic gestures ([90], pp.12-13). It is hard to compare

these taxonomies; difficulties, as noted by Wexelblat [134], include:

1. A lack of a guided, systematic, and disciplined classifying method behind them: their
authors observe and describe identifying characteristics for each category of gestures

but provide no rule base in making decisions of classification.

2. Each taxonomy uses different terminology, including using the same term to mean

different gestures.

3. Some taxonomies are incomplete — two do not include deictics, one of the most basic

forms of gesture;
4. Categories in each taxonomy are not exclusive but instead there might be overlaps.

Although each scheme has its special usefulness due to the different historical backgrounds
of its development, we are prone to agree with that of McNeill because of its comprehensive

coverage and its focus on narrative and conversational gestures.

2.3 Qualitative Gesture Models

2.3.1 Psychological and Linguistic Gesture Models

Modern psychological and linguistic research on gesture based on systematic observations
or experiments started with Efron’s work [41] in 1940’s’. In Efron’s gestural theory, three
phases in each gesture are identified: preparation, stroke, and retraction. In the preparation
phase, the hands are raised to the location where the gesture begins. In the stroke phase,
the actual gesture is performed, and the hands relax and fall back to the resting places in
the retraction phase.

Following Efron’s seminal work, three main researchers — Kendon [64, 65, 66, 67],
McNeill & Levy [91, 89, 90],and Rimé & Schiaratura [112, 113] — have made significant

contributions to the gesture research in the psychological/linguistic domain?.

!The work by F. Descartes (1839), C. Darwin (1872), W. Wundt (1900) and K. Buhler (1933) are also
creditable, but more comprehensive and therefore useful research has been carried on contemporarily, in a
new interdisciplinary field which spans psychology, linguistics, and semiotics.

2There are also a number of researchers whose work made some contributions to the field. For example,



e Kendon
Kendon began his research by attempting to determine what people saw when they
watched gestures [64]. His experiments involved having subjects view videotapes of
people speaking in a foreign language that the viewers did not understand. Kendon

reported that the viewers had no trouble picking out gestures.

Through investigating the relationship between a gesture phrase and a tone unit
of speech, he proposed his gesticulation theory. A gesture phrase is the “nucleus
of movement with definite form and enhanced dynamic qualities ... preceded by a
preparatory movement and succeeded by a movement which either moves the limb
back to its rest position or repositions it for the beginning of a new gesture phrase”
([65], pp- 34). A tone unit is a “phonologically defined syllabic grouping with a
single intonation tune” ([65], pp. 34). He finds the stroke of the gesture phrase occurs
simultaneously with (or slightly preceding) the nucleus of the tone unit. Also, Kendon
notes that modes of expression are not equivalent. First, they are used in different
contexts. For example, gestures might be produced more often when the conditions
of speech reception are impaired by a noisy environment or by limited knowledge of a
foreign language. Second, gestures and speech do not obey similar constraints in the
turn-taking system. Finally, what is difficult to express in speech may be conveyed
by gesture, including spatial information such as distance, orientation, and trajectory

that are elusive to speech [67].

Kendon [66] orders gestures of varying natures along a continuum of “linguisticity:”
Gesticulation = Language-like Gestures = Pantomimes = Emblems = Sign
Languages. As we move from left to right: (1) the obligatory presence of speech
declines, (2) the presence of language properties increases, and (3) idiosyncratic
gestures are replaced by socially regulated signs [90]. In other words, the formalized,
linguistic component of the expression present in speech is replaced by signs going

from gesticulation to sign languages. This is supportive of the idea that gesture

the classification and explanation by Ekman and Friesen [43] is quite meticulous and credible. But their
work overlaps considerably with what we will cover and therefore is not explicitly listed. Many more
specialized researchers investigate some specific gesture related areas. For example, Klima and Bellugi [68]
(1979), Stokoe (1960, 1972), Friedman (1977) and Liddell (1980) have done some linguistically oriented
studies on gesture and ASL (American Sign Language). This specialized research is not reviewed in this
thesis.
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and speech are one integrated system. Also, the continuum sorts out gestures of
fundamentally different kinds. Many researchers refer to all forms of nonverbal
behavior as “gesture,” failing to distinguish among different categories, with the

result that behaviors that differ fundamentally are confused or conflated.

McNeill & Levy

McNeill and Levy conducted experiments that involved having subjects watch a
cartoon and then narrate the action of the cartoon to other subjects who have not
seen it. They made the same discovery as Kendon: speech and gesture are part of
a coherent whole [91]. In his most recent work, McNeill has elaborated this idea
by providing a conceptual framework that includes both gesture and language [90].
According to McNeill, gestures present meaning in a form fundamentally different
from that of speech: (1) gestures are noncombinatoric — two gestures produced
together do not combine to form a larger, more complex gesture; (2) there is no
hierarchical structure of gestures made out of other gestures, which contrasts with the
hierarchical structure of language; (3) gestures do not share such linguistic properties
as standard forms and duality of patterning. Despite these differences, McNeill
argues that gestures are so closely linked to speech that both should be viewed
within a unified conceptual framework. In support of his claim, McNeill enumerates
five reasons ([90], pp. 23-25): (i) gestures occur only during speech; (i) they are
semantically and pragmatically coexpressive; (i74) they are synchronous; (iv) they
develop together in children; (v) there is a simultaneous breakdown of gestural and

linguistic abilities in aphasia.

McNeill also addresses timing related issues [90]. He hypothesizes three “rules” that
govern how gesture and speech synchronize: phonological, semantic, and pragmatic
rules. The phonological rule means that the stroke of the gesture precedes or ends
at, but does not follow the phonological peak syllable of speech, which complies with
Kendon’s observations. The semantic rule is that gesture and speech must cover the
same idea if they co-occur. This rule is even applicable in cases of multiple gestures
and multiple clauses. The pragmatic rule says that gestures and speech serve the

same pragmatic functions if they co-occur. Although theoretically it is possible to
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violate these rules, McNeil claims that no exception has been caught in a wide variety

of observations and experiments [90].

Rimé & Schiaratura

Rimé & Schiaratura grounded their research by conducting experiments that involved
putting speakers in conditions where the speakers could see their listeners and
where there was no listener. They found the gesture frequency was not seriously
decreased when the mutual visibility of partners was experimentally suppressed or
while speaking by telephone [112]. Thus, they deduced that gesture must serve some
function or purpose for the speaker more than just communicative. However, Krauss
and Hadar [72] argue that this experimental result is not necessarily in conflict with
the view that gestures are generally intended to be communicative because people
always gesture when they speak spontaneously — they simply cannot suppress it when

they are on the telephone.

Another important experiment conducted by Rimé & Schiaratura involved restricting
speakers from using gestures during their speech. They found that speakers tended to
give poorer descriptions and induce more compensatory motor activity of eyebrows

and fingers®

. Furthermore, careful analysis of the semantic content of the speech
showed that the speakers used more words but the speech was less clear and less
fluid [113]%. Again, this empirical evidence can be interpreted to support theories
like McNeill’s that gesture and speech are elements of a single integrated system.
On the other hand, these experimental data sets can also be interpreted to support
the hypothesis of Krauss and Hada that gestures facilitate access to lexical memory
because the effects of restricting gesturing on speech were found to be similar to those
of making word retrieval difficult by other means such as requiring subjects to use

rare or unusual words [72]. We discuss Krauss and Hadar’s approach in the following

because their approach offers another psychological and cognitive dimension.

3D.M. Dobrogaev (1929) did some similar experiments and reported that speakers instructed to curb
facial expressions, head movements, and gestural movements found it difficult to produce articulate speech,
but the experiment lacked necessary controls and the results were presented mostly in impressionistic terms.

*Graham and Heywood did some similar experiments [51] but reported contradictory findings — they
asked six speakers to describe abstract line drawings to a small audience of listeners, and found the
elimination of gesture had no particularly marked effects on speech performance, however, their studies
were criticized for some methodological problems [72].
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e Krauss and Hadar
Krauss and Hadar based their theory on a subset of speech-related gestures — “lexical

" which are relatively “long, broad, and complex arm-hand movements that

gestures,’
often incorporate shapes or dynamics related to the content of the accompanying
speech” ([72], pp. 99). In their view, lexical gestures facilitate lexical retrieval. As
shown in Figure 2.1, the gesturally-represented spatiodynamic features are fed via
the kinesic monitor to the formulator, where they participate in lexical search and
facilitate the retrieval. Some findings also support the idea of semantic facilitation
(Hadar 1998), suggesting entry via the lemma system, or the idea of word form
facilitation (McNeill 1966), suggesting entry via the word form system®. The link
from the speech production system to the gesture production system is not shown,
even though such a path is necessary to tell when to terminate a gesture. In a
mechanism proposed by Krauss et al. [73] to explain the tendency of gestures that
are associated with hesitations, they suggest such a link: lexical selection switches
off the gesture production system. On this account, if the set of spatiodynamic
features is realized successfully in the lexical selection, the gesture production system
is aborted. Consequently, many gestures are activated but may not actually get
executed; difficulties encountered in lexical selection may simply allow sufficient time
for the gesture to reach execution, or expedite such an execution. Alternatively,
a gesture simply may be terminated when a new gesture is initiated. A similar
but comparatively more complex dual mechanism is proposed by Butterworth and
Hadar [25, 53]. In their view, some gestures are activated directly from short-term
memory while others are initiated by failures of lexical retrieval. They assert that
retrieval failures often result in a re-run of lexical selection, and during such re-
runs, the formulator attempts to gather more cues for lexical selection by activating
non-propositional representations. It is these non-propositional representations that
actually initiate a gesture. Some pathological data has been reported [72] supporting

of the hypothesis, but further investigations should be carried out to attest to it.

SHadar and Butterworth [25] also suggest a link to the conceptualizer, which implies that the
spatial/dynamic features would directly contribute to the construction of the speaker’s communicative
intention and only affect lexical retrieval indirectly. But the available experimental data so far [46] is not
supportive of this hypothesis.
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Moreover, both mechanisms apply only to those gestures that are associated with
hesitations. These gestures usually amount to about 30% of total lexical gestures in
a normal subject. Either the mechanism has to be revised or a different mechanism

must be hypothesized to account for gestures that are not associated with hesitations.

Topics Assertions ‘ Divergences
Gesture is closely linked to The full sentence is planned in
speech; gestures occur when advance during the gesture
there is some discrepancy preparation phase, or there is a
between the units of thought single process underlying gesture
Gesture and the units of speech and speech
and
Speech Gesture and speech are
not equivalent. Gesture
has some nonlinguistic — none —
properties, more freedom
Gesture phrase occurs The amount of time precedence is
Gesture simultaneously with variable, but no one has data
and (or slightly proceeding) showing gestures occur later than
Time the relevant speech units the related speech units
Gesture Symbolic/emblematic, deictic | The question is whether there is
and gestures are generally adequate justification for assuming
Communication | communicatively intended and | that all or most co-speech gestures
communicatively effective are so intended

Table 2.2: Assertions and divergences in psycholinguistic approaches

Although there are no definitive psycholinguistic models so far to explain all the
functionalities of communicative gestures accurately and convincingly, models proposed
by various researchers provide a convenient way of systemizing available data. They also
compel theorists to make explicit the assumptions that underlie their formulations, thus
making it easier to assess in what ways, and to what extent, different theories differ. We
conclude this section by providing a chart (see Table 2.2) that summarizes several major
assertions that are generally accepted by psycholinguistic researchers, as well as conceptions

that diverge among them®.

6There are also a number of other assertions and disagreements that are not listed in the chart.
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2.3.2 Gesture Models in Cognitive Science

Building cognitive models is very much a research area at the forefront of psychological and
AT research. In the previous section, we presented some psychological models, but with a
focus on aspects that are associated with linguistics. In this section our investigation is
more from a perspective of cognitive science.

Generally speaking, a cognitive model employed in psychological research serves as a
vehicle for understanding human behavior. If the model is successful at producing human-
like behavior under certain assumptions, a hypothesis can be formulated that different
behavior will emerge under different assumptions. Change those assumptions in the model
and see how it behaves. Explorations with models in such a way can then be used to design
experimental conditions that are likely to show measurable effects. Speech-accompanying
gesture, as an important human behavior, has been extensively studied within a broadly
cognitive context. Numerous studies have yielded contradictory hypotheses, theories, and
empirical evidence [46]. We list two representative hypotheses and their corresponding

cognitive models in the following.

e Coactivation Models
Some researchers have assumed inevitable activation of the gestural system during
speech production and gestures is visible manifestation of the speaker’s ongoing
thinking process. In this conception, gesture and speech share origins and are
triggered simultaneously, then separate into two different output channels. However,
if the interaction occurs at the initial phase of the speech process, as McNeill assumes
([89], pp. 367), the model is not without problems — it is not clear how to identify the
common stage, where the interaction occurs, and the output stage, where dissociation
may be observed. On the other hand, to explain situations in which some gestures
relate to prosodic features (such as stress, melodic contour) or syllabic structure
of the verbal utterance, some researchers assume a collaborative model in which
the interactions between gesture and speech happen at several different levels [25].

Nevertheless, this requires that the gesture depends not only on the expressed content

For example, investigators generally agree that the type of information communicated is an important
determinant of gestural behavior but diverge with regard to other important factors such as speech
connectivity, speech tempo, and familiarity of the spoken language, etc.
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but also on the surface characteristics of the sentence, and thus, on the motor
planning of the utterance. To make things more complicated, coactivation models
imply a direct relationship between speech fluency and gesture production: the more
one speaks, the more gestures are performed. In some circumstances, this may be
true, but in other conditions (i.e., for bilingual subjects), gestural rate and speech

fluency can be inversely related [46].

Competition Models

Empirical evidence shows that the gestural stroke phases alternate with rest phases
and gesture production is sometimes prevented or delayed instead of simultaneously
activated during the process of expression of thought [46]. According to this evidence,
some researchers hypothesize that gesture and speech are two rival tasks — they
compete and inhibit each other through their connections. Under a resource-sharing
view, they assume that resources are limited and, thus, the attention load required
for one task reduces the amount that can be allocated to the other concurrent task.
From such a perspective, gesturing while speaking constitutes a particular dual-
task diagram in which the speakers are required to divide their attention between
concurrent processes. When the attention load reaches its maximum, hesitation
pauses occur. A qualification that emerged from research on attentional mechanisms
shows that fully automated tasks no longer require attention, which might be the case
with some of the gestures performed while speaking when made without attentional
control or in coordination with speech movements. Moreover, during silence, gesture
production could be inhibited by the processing load required by speech planning.
Although this model can be supported by some observations, the level at which

inhibitions occur is not clearly specified yet.

In summary, the cognitive study of the interactions between gesture and speech from

a cognitive perspective does not provide us with a consistent answer. Relationships

between gesture and speech are found to be sometimes facilitative and sometimes

competitive. The experimental literature has to be carefully reviewed in relation to these

different hypotheses. Together with experimental analysis, observations from pathology,

developmental psychology and neuropsychology may be used to delineate the functioning

17



of communicative gestures.

2.3.3 Performative Gesture Models in Theater and Dance

For years, in theater and dance, gestures have been seen as the most appropriate means
of expression. People use gestures to enhance the emotional content of their characters
and stories. Gestures communicate to the audience whether or not they should like or
hate a character, or whether the story is a tragedy or comedy. For the avant-garde theater
gesture is not simply a decorative addition but rather the source, cause, and director of
language. Gestures can be very culturally-based. In ballet, movement takes as its base the
Greco-Roman ideals of posture and movement. Erect, open posture and slow, expansive
gestures are seen as elegant and graceful, while narrow, cramped and jerky movements
are seen as ugly and poor [115]. Appropriately planned and selected, gestures can create
a mood and arouse an emotional response in the audience [40]. In a play, the director
looks at the combined movement of the cast and treats movement as an extension of line,
mass, and form. The actors themselves must keep in mind the amount of movement in a
gesture and the amount of space covered whether they are conveying power or weakness
on stage. The length of the gesture, whether long or short, the intensity of the gesture,
whether strong or light, will add to the emotional content. Motion is an important cue
toward helping the audience to understand a character. The wrong movement or motion
qualities can ruin a character or even the whole dynamic of the stage.

Two gesture models in theater and dance have long been recognized and analyzed: one
is the ballet model and the other is the mime model. Both are highly stylized and codified.
Gestures in ballet are based on the movement potential of the human body and they select,
shape and emphasize certain features of movement, while gestures in mime are generally
a presentation of ordinary actions with stresses on certain features, evoking the everyday

world. For more details about these two gesture models, see [115].

2.4 Computational Gesture Models

Scientific research dependent on a qualitative model is a difficult and slow effort because

investigators lack tools that could make measuring relevant phenomena inexpensive and
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highly repeatable so that they can verify their theories and adjust their models easily and
quickly. Advances in digital computing equipment and computational approaches to image
processing, tracking and recognition, simulation and animation provide a possible answer.

In fact, numerous computational models have been built on the topic of gesture study.

2.4.1 Gesture Models in Multimodal Interfaces and Computer Vision

New approaches to multimodal interfaces using hand/arm gestures, as well as voice/speech
and facial expressions, have been proposed in recent years. This process has been
remarkably expedited as virtual reality (VR) and distributed virtual environment (DIVE)
becomes a part of our present space and time. Many researchers advocate that gestures
are more natural to use in multimodal interfaces than conventional cumbersome human-

computer interaction devices such as mice and keyboards.

2.4.1.1 First Steps

The ground-breaking work probably was done by Richard Bolt [22] 7 in the early 1980’s.
In his famous system “Put-That-There,” Bolt used a combination of prototype Polhemus

6D pose tracking system and some simple voice recognition software. On the screen, the

7 7

user saw objects. The user would then “point” at an object and say “Put that ...” move
her finger to where she wanted the object to be, and say “there.” Pure speech commands
were also possible, “Put the red ball to the right of the yellow box.”

The advantage of this technique is robustness and immediate visual feedback.
The disadvantages are inflexibility, because the gesture recognition was hard-wired in
mechanical devices and only those gestures it was designed for can be recognized, and
inconvenience, in that the mechanical sensors had to be mounted on and calibrated to the
user.

Since then, many technologies and approaches have been proposed and developed.
These approaches can be roughly classified as glove-based or vision-based. Most of these

approaches, however, focus on hand gestures only. The functions that arm gestures and

body postures play in the human-computer interaction have been largely neglected.

7 At the same time Myron Krueger also did some pioneer work in building Virtual Reality applications [74,
75].
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2.4.1.2 Glove-Based Approaches

In a glove-based approach, some mechanical or optical sensors are usually attached to a
glove, which transduces finger flexions and abductions into electrical signals in such a way
that hand postures can be determined. The relative position of the hand is determined by
some additional sensors (magnetic or acoustical) mounted to the glove. A detailed survey
of glove-based input devices can be found in [122].

Baudel and Beaudouin-Lafon [14] develop a real-time glove-based system in which
hand gestures are used to control browsing in a hypertext presentation. The system is
called Charade. Charade can recognize sixteen hand gestural commands, each of which
comprises three phases: start posture, dynamic phase, and end posture. The commands
are distinguished based on the start posture as well as the dynamic phase.

Glove-Talk is a gesture-to-speech interface, developed by Fels and Hinton [45], using
a VPL DataGlove!™ connected to a DECtalk speech synthesizer via five independent
neural networks. They defined a 203 gesture-to-word vocabulary and used Glove-Talk to

map complete gestures to complete words.

2.4.1.3 Vision-Based Approaches

A vision-based approach is more natural and convenient than a glove-based approach. Yet
it is also more difficult, due to the limitations of today’s computer vision in handling a
highly non-convex and flexible volume like a human hand. Several different approaches
have been proposed so far [110, 87, 47, 96, 80, 120, 59]. The most straightforward one is
simply the use of a single video camera, or a pair of cameras to acquire visual information
about a person under a certain environment and try to extract the necessary gestures.
Nonetheless, this approach faces several difficult problems: segmentation of the moving
hand from a sometimes very complex environment, analysis of hand motion, tracking of
hand position relative to the environment, recognition of hand postures, etc. To lower the
burden, some systems use passive markers or marked gloves. The others use restrictive
setups: uniform background, very limited gesture vocabulary, or just a simple static posture
analysis.

Markers are usually placed on the fingertips. They are colored in such a manner
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that they can be easily detected using image histogram analysis. Once the markers are
detected and tracked, the gesture can be recognized using several classification schemes.
Maggioni [87] describes a hand tracking system (called Gesture-Computer) that is based
on the use of a specially marked glove. The glove has two slightly off-centered, differently
colored circular regions. Using single camera images Gesture-Computer can compute
several image geometry parameters based on the first and second moments and use them
to estimate hand position and orientation.

Rehg and Kanade [110] propose a complete hand gestural interface, called DigitEyes,
applicable in a restricted background. With DigitFyes, finger tip and link parameters
can be extracted from either 2D or 3D video images using edge-based techniques. These

parameters then can be applied to a 3D cylindrical kinematic model of the human hand

with 27 degrees of freedom (DOF).

Some systems approach the issue through analyzing and extracting features that are
associated with the images of hand/arm postures. The analyzed features range from basic
geometric properties, such as image moments, to those that are the results of a more
complex analysis (i.e., neural networks [45]). Hand/arm silhouettes are one of the simplest
yet widely used features. Silhouettes can be easily extracted from local hand/arm images
in restricted background setups. In case of complex backgrounds, techniques such as
color histogram analysis can be employed. In his VideoPlace, VideoDesk and VideoTouch,
Krueger [74, 75] uses silhouettes to analyze images and identify users’ body parts. Segen
and Kumar [120] use some edge-based techniques to extract from hand posture images,
local features such as “peaks” and “valleys.”® Gestures are then classified based on these
local features. Experiments conducted on a 3D graphical editor, a virtual fly-through,
and a video game find the parameter estimation is stable. The common characteristics
shared by all the approaches is that they do not result in the estimation of the real hand
parameters such as joint angles. The systems are applicable to both simple hand tracking
and more complex gesture classification. Furthermore, some systems have taken a voice-
vision combined approach [125, 86, 131, 132]. Such a multimodal approach is promising

in offering a more natural human-computer interface. In Table 2.3 we summarize the

8Peaks are features whose curvatures are positive with a magnitude greater than a fixed threshold while
valleys are features whose curvatures are negative with a magnitude less than the threshold.
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Application Author Input/Output Gestural Capabilities
and System Techniques Used Supported
6D pose tracking Pointing and dragging
Put-That-There Bolt [22] and simple speech gestures
recognition
Videoplace Multiple video Can identify users’ head
Videodesk Krueger [75] cameras, Sensory arms, legs, hands, fingers
Videotouch floor; output sound movements and response
graphical displays accordingly
Baudel & DataGlove™™ and Sixteen gestural commands
Charade Beaudouin- position sensing
Lafon [14] devices
Gesture- Marked glove, Six static hand gestures
Computer Maggioni [87] head tracking,
mono camera
Ymir Cyberglove™™ and Understand limited
(with animated Thérisson [125] body tracking utterance, intonation, body
characters: Gandalf, system, speech stance, hand gesture, eye
Bilbo and Roland) synthesizer gaze, head-face direction
Fels & DataGlove ™, 203 gesture-to-word
GloveTalk Hinton [45] speech synthesizer vocabulary, map complete
gestures to complete words
Vogler & Three cameras Recognizes 53 ASL signs
ASL-recognizer Metaxas or a magnetic
[131, 132] sensor system
Gesture VR Segen & Two cameras Three hand gestures:
Kumar [120] point, reach, and click
Rea Cassell et al. [28] | Two cameras Turn-taking gestures
Rehg & Mono camera or Can track a fully
DigitEyes Kanade [110] stereo camera; articulated hand (27 DOF)
output 3D hands
Hand-controlled Freeman & A Flex-Cam”™ video | Two gestural commands:
TV Weissman [47] camera; output open-hand and closed-hand
graphical menu
Mono camera, Various gestures: pointing,
ALIVE Maes, use Pfinder as the hand-shaking, etc. Gestures
(Vitual Dogs) Blumberg, & hand /head/body can be interpreted depending
Pentland [86] tracking system; on current states and past
auditory output history

Table 2.3: A few HCI systems that employ gestures
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approaches that are related to our discussion.

2.4.1.4 Multimodal Interface

To allow our highly skilled communicative behavior to control interactions in a more
natural, robust, reliable, and efficient way, multimodal systems usually combine different
input modes. According to the studies conducted by Oviatt [102, 103], multimodal
systems that incorporate multiple input modes can facilitate new uses of computing —
some input modalities may be suited for some specific tasks and conditions but less
ideal or inappropriate in others. With a multimodal architecture, however, adaptive
weighting of the input modes can be performed to enhance and stabilize the system’s
overall performance. In addition, errors can be reduced or avoided if parallel or duplicate
input modes are available, giving a more accurate and stable system.

It is interesting to compare the multimodal interface models with the psychological
models we reviewed previously and the embodied conversational agent models that we
will cover in the following. From an information processing flow standpoint, multimodal
interface systems focus on the input side, which can be either language oriented (speech,
gestures, and pen input) or more broadly defined (postures, gaze patterns, and lip
movements), while psychological or cognitive models focus more on the output side where
the speech and gestures are coordinated, complementing and/or competing with each other.
Embodied conversational agent models cover both input and output. Thus, formally,
the architecture of any approach to an embodied conversational agent model [30, 29, 10]
consists of both a multimodal interface and a speech/gesture generator (see Fig. 2.2). As
the human computer interactions shift toward natural multimodal behavior, the interface
design may become more conversational or social in style, rather than limited to commands

or mouse control.

2.4.2 Gesture Models in Computer Graphics

Studies on qualitative models and interface designs are so vast and extensive that
comparatively the computer graphics literature is rather sparse, especially on the topic

of creating natural gestures procedurally.
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Cassell, Badler and their colleagues [30] describe a computational gesture-speech
system which can automatically generate and animate conversations between two human-
like agents with synchronized speech, gestures and facial expressions. In this work
four communicative gesture types, Iconics, Metaphorics, Deictics and Beat, have been
distinguished and studied on the cognitive basis of a gesture-speech relationship. The
gesture and speech generations are managed by two cascaded planners. The first is the
domain planner, which is a database of facts describing the way the world works, the goals
of the agents, the beliefs of the agents about the world, and the communicative actions the
agents will execute. The second is the discourse planner, which manages the communicative
actions the agents must take in order to agree on a domain planner and in order to
remain synchronized while executing a domain planner. The domain planner executes
by decomposing an agent’s current goals into a series of more specific goals according
to the hierarchical relationship between actions specified in the agent’s beliefs about the
world. Once decomposition resolves a plan into a sequence of communicative actions to
be performed, the discourse planner, in coordination with the domain planner, generates
proper symbolic intonation and/or gesture specifications. The intonation specification
which includes speech text, pitch accents, and phrasal melodies is converted automatically
to a form suitable for input to the AT&T Bell Laboratories TTS synthesizer. Gesture
generation is synchronized with speech output and carried out by a group of coordinated
parallel transition networks (PaTNets) [7]: parse-net parses phoneme representations and
is responsible for instantiating gest-net or beat-net; gest-net controls the generation of
iconic, deictic, and metaphoric gestures, while beat-net controls the generation of beat
gestures. The PaTNets system then issues gesture requests to the animation system,
telling the human-like figure to rest, make a beat motion, or make a gesture involving
the hand, wrist, and/or arm. Arm and wrist motions are specified by target positions and
orientations while hand motions are specified in terms of a limited but expandable library of
handshapes. Gestural movements are apparently predefined and can only be parameterized
in terms of alteration of single gesture phrases, i.e., foreshortening the relaxation phase
when the prerecorded “canonical” gesture time exceeds actual timing constraints [29], but
there seems to be no means of coherently modifying the gestural movement while preserving

natural movement features.
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The impact of this work is two-fold. First, to psycholinguistic researchers, it provides
computational simulations that gesture and speech can be generated and coordinated
through a control scheme which originates from one single mental representation. As
we mentioned earlier, many sources [64, 65, 67, 90] have already suggested that gesture
and speech are physiologically, psychologically and cognitively linked, but most of these
are descriptive and distributional and have been very difficult to evaluate and justify. This
system offers a computerized testbed in which psycholinguistic researchers can explore
the model by changing model parameters to simulate different varieties of, or breakdowns
in, communication. Secondly, and more importantly, to computer graphics researchers,
it introduces some psychological ground truth about what kind of gestures the computer
graphics and animation community should consider with higher priority in order to build
life-like communicative virtual humans.

Following Cassell’s lead, new problems in gesture generation were exposed:

1. Coarticulation: Generating a smooth transition from one gesture to the next

without returning to a specific rest pose.
2. Spatialization: Integrating a deictic gesture into the surrounding context.

3. Selection: Generating a metaphoric gesture that might be associated with an

abstract concept.

4. Expression: Modifying the performance of a gesture to reflect the agent’s manner

or personality.

Problem 1, coarticulation, refers to changes in the articulation of a motion segment
depending on preceding (backward coarticulation) and upcoming (forward coarticulation)
segments. The problem has been addressed by a number of computer graphics
researchers [106, 34, 52, 109]. Pelachaud et al. [106] use a coarticulation facial model to
integrate actions of each muscle or group of muscles on the face as well as the propagation of
their movements. Cohen and Massaro [34] present techniques to synchronize lip movement
and voice output based on the articulatory gesture model of Lofqvist [85]. They use
overlapping dominance functions to coproduce the speech segment and lip movement.

Guenter et al [52] describe a scheme using space-time constraints and inverse kinematic
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constraints to create transitions between motion segments of a human body model with
44 degrees of freedom. They use an interpreter of a motion language to allow the user to
manipulate motion data, break it into segments, and reassemble the segments into new
and more complex motions. In NYU’s Improv project, Perlin and Goldberg [109] describe
a technique called motion blending to automatically generate smooth transitions between
isolated motions without jarring discontinuities or the need to return to a “neutral” pose.
Some aspects of the issue such as preparatory and termination actions are addressed by
Badler, Palmer and Bindiganavale and their colleagues [6, 19, 18]. Although there are
other aspects of the issue that remain unresolved, the problem is relatively well explored.

Problem 2, spatialization, requires that the desired gesture is modified to point or align
the gesturing body part with the spatial referent. This problem essentially is an inverse
kinematics problem. An advantage of using analytical or hybrid analytical/numerical
methods [126] is that they generally behave consistently and are not sensitive to minor
perturbations of the starting state: when applied to the gesture spatialization problem, a
satisfactory final posture can usually be achieved rapidly.

Problem 3, selection, entails determining gestures that people would likely interpret
and accept as “representative” during a communicative act. But researchers disagree on
whether gestures are products of communicative intentions or memory representations.
The ramifications of this disagreement are two completely different approaches.

One approach accounts for what communicative intentions or conceptual information
are to be conveyed in gesture and exactly at which time. Different types of information
are expressed in different kinds of gestures, which can be predefined as a collection of
abstract gesture templates, encoding the relevant information. The template is then passed
down to a number of lower levels where the gestural movement is actually coordinated
and carried out. A number of computer graphics researchers have been working along
this line. In [97, 138], Noma, Zhao and Badler propose a representative mapping from
concepts to gestures such that they are selected based on stylized rhetorical speaking.
Olveres et al. [99] develop a system in which avatars can infer user emotions from text
input in a fuzzy-logic fashion and, based on what emotions are conceptually derived, select
appropriate facial expressions to display. The selection can be affected by some explicit

cues such as keywords, modifiers like adverbs, and emoticons such as :-( and :-). In the
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BODYCHAT project of Cassell and Vilhjalmsson [130], they develop a prototype system
that allows a user to communicate via text while avatars automatically pick up appropriate
gestures such as salutes and turn-takings, and simple body functions such as eye blinks.
Again, these gestures are predefined and each is encoded with some specific conceptual
or psychological meanings. When the linguistic context is matched, appropriate gestures
are selected and invoked. In her recent work [27], Cassell rejects the idea of the use of
a dictionary of gestures that speakers draw from to produce gestures and that listeners
draw from for gesture interpretation due to the evidence about the absence of a one-to-one
mapping between form and meaning in everyday gesture.

The other approach, in contrast, regards that gestures precede conceptualization,
taking into consideration that gestures may convey information that is not explicitly
intended [65, 67, 90]. In the gesture model introduced by Krauss and Hadar [72], they
assume a separate module to be responsible for the selection of relevant and consistent
spatial and dynamical features out of the activated representations in spatial or visual
working memory. Referring to a Kendon’s example [65] of the speaker saying “.. with a

" while making a series of circular motions of the forearm with index

big cake on it ...
finger pointing downward, they argue that the iconic gesture accompanying the word
“cake” is not part of the speaker’s communicative intention to show the cake is large
and round, but instead is reflected gesturally that the cake is represented in the speaker’s
memory as large and round. While they have not yet built a computational model to verify
their assumptions, their approach provides an alternative way of selecting representative
gestures under some linguistic circumstances. As things currently stand, there is so little
experimental data to constrain theory on when and what gesture is selected that any
processing model is considered to be tentative and speculative. Further investigations
need to be done before one or another model is confirmed or disconfirmed.

Problem 4, ezpression, is concerned with how to add expressiveness to the performance
of gestures so that an agent’s manner, emotions and personality can be vividly depicted.
The expression problem itself can be split into two subproblems: one is expressive
movement generation and the other is coherent quality attachment. There have been

an abundance of research results for generating expressive movements [136, 108, 129, 24,

2,137, 33, 84, 52, 50, 111, 7, 128, 13, 21, 55, 17], while research in finding motion qualities
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that are coherently attached to gestures is rather sparse.

2.4.2.1 Expressive Movement Generation

Techniques for the generation of expressive movement can be roughly divided into four
categories: (1) adding expressiveness to neutral motions, or providing tools to modify
motion expressions, (2) making the existing motions fit some constraints, (3) adding
secondary movements, and (4) controlling behaviors. This classification is made for
convenience of the presentation; in practice, these techniques are frequently combined

to achieve the best animation results.

e Adding expressiveness to neutral motions or providing tools to edit motion
expressions
Several researchers have suggested methods of adding expressiveness to animated
motions using such methods as stochastic noise functions [108], Fourier function

models [129], signal processing [24], or emotional transforms [2].

Perlin uses rhythmic and stochastic noise functions to define time varying parameters
that drive animated puppets [108]. The user controls the puppet through a set of
buttons, representing a set of primitive actions and discrete states of the puppet. The
system can smoothly blend the selected primitive actions into a coherent animation
if the relative contribution (weight) of each action is specified properly. The user
can tune expressions by adding a pseudorandom noise function to joint motions,
modifying joint angle frequency and amplitude, and controlling transition times for
different actions. The noise functions give the effect of subtle restlessness and weight
shifting, adding low frequency “texture” to the motion. The resulting animated
puppet is thus in constant motion and appears to have a dynamic, life-like motion
quality. However, it is hard to judge the range of expression possible with the system.
It seems the scheme only works fine for rhythmic, repetitive actions, such as walking
and dancing. Non-rhythmic motions are selected stochastically for variations. Also,
varying expressions by modifying the puppet’s scalar joint angles over time ¢ via
sine and cosine functions is non-intuitive and limits movement qualities. Setting

transition times and action weight also requires a certain artistry and skill. If these
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parameters are applied naively, the resulting animations can be disastrous.

Unuma et al. use Fourier analysis techniques to interpolate and extrapolate human
locomotion data to capture a wide variety of expressions [129]. For instance, they can
generate various degree of “tiredness” by interpolating between a normal “walk” and
a “tired” walk. In addition, by quantifying the differences between the coefficients
of a Fourier function model for a neutral locomotion and those for emotion-driven
locomotion, they can generate different Fourier characteristic functions, which can
then be, individually or in combination, applied to other neutral locomotion to
produce different variations and expressivities. However, the process of generating

Fourier functional models and characteristic functions could be very lengthy.

Bruderlin and Williams apply multiresolution filtering techniques from the image
and signal processing domain to manipulate the neutral motions by treating motion
parameters (such as joint angles and coordinates) as sampled signals [24]. When
a motion parameter signal passes through a series of filters, an animator can add
an emotional component, exaggerate the movement, or constrain joint ranges by

adjusting the amplitudes of high, middle, or low frequency bands appropriately.

Witkin and Popovic describe a technique for editing of captured or keyframed motion
by warping and blending motion parameter curves [137]. For each motion curve, the
animator chooses a few keyframes and modifies their poses using a suitable timewarp
function. The modified poses serve as constraints on a smooth deformation to be
applied to the captured motion. The new motion curve satisfies the constraints while
preserving the final details of the original curve. The animator warps each motion
curve independently. The motion clips are concatenated using Perlin’s blending
techniques [108]. A wide range of new realistic motions can be created from a
single prototype motion sequence. However, motion warping is a purely geometric
technique, not based on any deep understanding of the motion’s structure. Some

warps may appear unnatural and distorted.

Amaya et al. present a method to derive emotional transforms by taking the
differences between neutral and emotion-influenced actions [2]. They then apply

the derived emotional transforms to neutral actions to generate a wide range of
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movements with different types of expressivities. In order to express individuals’
differences in gender, age, manner, culture, and personality, this approach may
need to store and retrieve a large number of emotional transforms. As the same
individual shows different emotions under different scenarios and internal states, this
requires a clever indexing scheme if an emotional transform database is designed. The
awkwardness in the manipulation may indicate that emotional transforms, along with
the noise functions, Fourier functions and filtering functions, only capture the essence

of the movement superficially.

Making the existing motions fit some constraints

Witkin and Kass present a spacetime constraint technique to produce the optimal
motion which satisfies a set of user-specified constraints [136]. Cohen develops a
spacetime control system which allows a user to interactively guide a numerical
optimization process to find an acceptable solution in a feasible time [33]. Liu et al.
use a hierarchical wavelet representation to automatically add motion details [84].
Guenter et al. adopt this approach to generate a smooth transition between motion
clips efficiently [52]. Gleicher simplifies the spacetime problem by removing the
physics-related aspects from the objective function and constraints to achieve an

interactive performance [50].

Adding secondary movements

The use of secondary movements has been proposed as a way to enliven animated
characters and/or scenes. Although the secondary movements are not the primary
focus of the motions of an animated character, their absence can distract or disturb
the viewer, making the character unbelievable and unnatural. One approach is to add
secondary movements to the primary movements of walking characters based on user-
specified personality and mood [94]. Another approach focuses on passive motions
like the movement of clothing and hair, generated in response to environment forces
or the movements of characters and other objects [98]. The secondary movements
and the primary movements combined give a richer and more varied set of movements
capable of responding to subtle changes in an animated character’s personality,

manner, and environment.
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e Controlling behaviors
Expressive movements are also investigated with an aim to build autonomous
characters (or creatures) that are endowed with varying behaviors, personalities
or goals. The prominent work in this area is that of Reynolds [111], followed
by Badler [7], Bates [13], Tu and Terzopoulous [128], Hodgins [55], Thalmann
and Thalmann [17], and Hayes-Roth [54]. Although self-animating characters or
creatures have demonstrated more-or-less different high-level behaviors, their low-
level movements are frequently stereotyped, or clumsy and unnatural. In addition,
the expressions and their manifestations are usually hard-wired in the code and
very inflexible to reconfigure and extend. Blumberg and Galyean [21] and Funge
et al. [48] address these concerns by introducing mechanisms that give the animator
greater control to direct autonomous characters to perform specific tasks, however,
their work is at best partially successful, and the impression that one gets from
watching even the most recent effort in making autonomous agents is that their
basic movements are still fairly unexpressive, lacking the qualities that make them

look “right.”

In general, most of these techniques are valuable for generating expressive movement;
however, either these methods require an off-line modeling process for each different type
of expression, or the modification process involves nonintuitive low-level manipulations
in such a way that some artistry or expertise is demanded in order to generate natural,
expressive movements, or both. In addition, they may prove difficult or costly to use in

generating the range of expressivity of human communicative gestures.

2.4.2.2 Coherent Quality Attachment

“Movement” and “gesture” are not synonymous. Some movements, such as involuntary or
subconscious movements, are not gestures. Also, some movements are perceived as gestures
in one culture but not in another. Gesture, as a special sort of movement, links closely
to the individual’s plans, emotions, imaginations, and desires, which are embodied in the
whole body and manifested in the motion qualities during communicative acts. Gestures

produce movements but movements do not necessarily produce gestures. Actually, gestures
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of any type exist not just because they have underlying movements but also because they
have some distinctiveness in their motion qualities. Different motion qualities distributed
over the same underlying motion may produce dramatically different gestures. Suppose the
underlying motions consists of arm movements portraying a single beat gesture that would
accompany an accented speech utterance. By slowing down its time course and making
it more indirect we may turn the beat gesture into an emblematic gesture (hand wave).
Starting with a slow forward pointing motion, we can crank it up its Sudden and Direct
qualities to focus and accent the movement into a deictic gesture (“yes, I mean YOU”). By
making shoulders rise highly, making the muscles more tense, and adding more weight, we
may turn it into a metaphoric gesture (i.e., threatening somebody). Thus, motion qualities
associated with the underlying movement are essential components in a communicative
gesture. However, the nature of these components have largely been ignored in most of

the computational gesture models.

2.5 Acquisition of Communicative Gestures

We choose the word “acquisition” very deliberately here. QOur work is not gesture
recognition—we are only concerned with acquiring the motion qualities associated with the
underlying movement in communicative gestures, rather than determining the (linguistic
or psychological) meaning of the gestural movement.

As we mentioned previously, motion quality components play an indispensable role in
the process, but recognizing motion qualities is closely related to gesture recognition. Thus,
we shall briefly go through the approaches and techniques employed in gesture recognition.

Generally speaking, gesture recognition consists of two subproblems: feature
representation and classification. Thus, formally, any complete gesture recognition
framework consists of two subsystem: the representer and the classifier. The representer
takes the raw data, captured through mechanical, optical, magnetical, or acoustic sensors,
and outputs its internal representation. The internal representation, often a set of
parameters and features extracted from the data, is in the most convenient form for
the classifier, to take as input and hence output an appropriate classification, if one

exists. Approaches to gesture recognition can be classified as template matching, statistical
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methods, or neural networks, according to the classification scheme employed.

2.5.1 Template Matching

The simplest and most straightforward method of recognizing gestures is template
matching. Within this method, essentially there is no representation stage. The raw
sensor data is used as input to the classifier which typically uses an Euclidean closest-
neighbor function to measure the similarity between the input and the templates of values.
The input is either admitted as a member of the same class as the template to which it
is most similar (or nearest), or rejected as belonging to none of the possible classes if the
measurement is higher than the similarity threshold (too far from the nearest template).
Zimmerman and Lanier [141] use a template matching based method for recognizing
postures. For each posture to be recognized each sensor has a range of values that are
valid®. At each sample time, the sensor readings are compared with the values of the
posture templates. The absolute value of the difference for each sensor is summed for each
template. The gesture with the minimum sum, below a global threshold, is the one chosen.
Lipscomb [83] uses a comparatively more complex multiresolution approach. During the
recognition process, the templates are examined first at the lowest resolution and only if
successful at the level would the template proceed to matching at a higher resolution level.
Template matching is easy to develop, computationally efficient, and practically very
accurate. There are serious drawbacks with the use of templates, however. For example,
how to make the templates adaptive? Adaptability plays a critical role in the system’s
performance, since most gestures will not be reproduced even by the same user with perfect
accuracy, and when a range of users are allowed to use the system, the variation becomes
even greater. Also, template matching does not have the formal and iterative approach to

training that statistical classifiers and neural networks have.

2.5.2 Statistical Classification

Functionally, statistical classifiers operate in the same way as template matching — mapping

from an m-feature vector to a point in n-space. The mapping function, however, uses

®They also designed a calibration scheme to allow the ranges to be altered to suit different users.
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statistical techniques, such as Bayesian maximum likelihood theory [105, 62], to decide
which class the input most likely belongs to.

One of the most important works on gesture recognition using statistical methods
is that by Rubine [116]. In his work gesture comprises a 2D path of a single point
over time'®. The features chosen are geometrically based on the path and computed
incrementally. A statistically based evaluation function, computed over the features,
decides the classification.

Ball and Breese [10] use Bayesian networks to diagnose the emotions and personality
of the user from speech and a variety of observable nonlinguistic behaviors such as size
and speed of gestures. Causal links in the Bayesian networks capture the significant
dependency from components of emotion and personality to these observable effects. A

standard probabilistic inference algorithm based on [105] is used to update the estimates

of emotional state and personality given the observations.

2.5.3 Neural Networks

Neural networks have received much attention for their successes in pattern
recognition [117, 135, 92, 119]. Gesture recognition is no exception to this and several
systems have been reported in the literature [95, 15, 23].

Murakami and Taguchi [95] use a set of recurrent neural networks to recognize 42
finger-alphabet gestures taken from Japanese Sign Language (JSL) with an accuracy of up
t0 92.9%. But the system works poorly when applied to JSL word gestures which involve
free hand movements. The neural nets can distinguish any two JSL word gestures but
are not very reliable in identifying an arbitrary gesture from a learned set. Beale and
Edwards [15] employ a multilayer perceptron model [117, 92] to classify input into five
postures, taken from American Sign Language (ASL). The structure of the net includes
ten input units each associated with a sensor of a DataGlove! ™ | five output units (one
for each of a, i, e, 0, and u), and a single hidden layer which consists of three hidden
units. They reported a high recognition accuracy and found both the learning rate and
network momentum [117, 92] had a negligible effect on the final effectiveness. This may

indicate that their data set is very simple and the learning task is very straightforward.

10The gesture is also called 2D mouse-based gesture.
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Both systems only apply to discrete gestures instead of continuous gestures, so this clearly
affects the naturalness of the gestures their systems are eligible to recognize [134].

Brooks [23] reports use of a neural net to control a mobile robot by interpreting
DataGlove motion. In order to incorporate dynamic gestures into the system’s vocabulary,
Kohonen nets!![70] are employed to recognize paths traced by degrees of freedom in n-
dimensional space. Each Kohonen net, typically as small as 20 units, is trained to recognize
a single gesture. However, the system is only an early prototype since the experiments
conducted are very simple such as opening the thumb and index finger simultaneously and

moving from a neutral posture to a grasping posture.

2.6 Summary and Our Approach

In terms of techniques, template matching, statistical classification, and neural network
matching can be combined or mixed, depending on specific systems and applications. What
differentiates these approaches from one to another is the feature extraction: almost every
approach we investigated chooses a special feature extraction method, either for practical
usefulness or for empirical purposes. What is missing is that the whole body of current
approaches does not clearly point to a set of relevant features which are consistent, and
less susceptible to noise and other external, environmental factors.

Our approach is unique in that we are working towards such a set of relevant features:
Effort and Shape qualities. As we mentioned before, Effort and Shape qualities are a set
of high-level parameters that describe qualitative aspects of human movement that relate
to individual predisposition and characteristics. Furthermore, Effort and Shape qualities
or their combinations, when they are involved in a communicative gesture, are observable.

If we look at the problem from an even broader context, it is clear that gesture
recognition (or acquisition) is closely related to handwriting and speech recognition.
Indeed, they can be viewed from a signal processing point of view as a time-variance
analysis. In handwriting recognition research, it has long been known that the most

important theoretical problem is to find a set of extractable features which are hardly

1Kohonen nets are formally defined in linear algebra, thus, strict linear algebraic relationship between
gestural patterns can be learned, however, much analysis needs to be done to ensure the gestural patterns
are algebraically suitable for training.
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affected by handwriting distortions [71]. In the recognition of speech, the same thing holds
true, that is, to find features of the speech waveform that are at higher levels where they
are more insensitive to noise without losing details such as stress and intonation [82]. We
believe this applies to gesture recognition (or acquisition), too.

Badler originally proposed the use of Effort as a higher level of control for human
figure animation [8]. Bishko suggested analogies between the “Twelve Principles of
Animation” [124] and Laban Movement Analysis. She showed that there is an abstract
relationship between LMA and traditional animation techniques [20], but did not provide
any computational means to exploit the relationship. Others [123] have done work with
computerizing Labanotation but primarily focused on automation of the dance recoding
rather than qualitative aspects of movement. Chi [31] created and implemented a kinematic
analog to the Effort component. We, including Monica Costa'?, have extended her system
to include the Shape qualities, the torso, and the legs for the gesture synthesis. We further
use Effort qualities and their combinations as a set of higher level features to be extracted

for gesture acquisition.

2During her sabbatical at University of Pennsylvania on a fellowship from National Scientific and
Technological Development Council (CNPq) of Brazil.
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Chapter 3

Laban Movement Analysis

Laban Movement Analysis (LMA) is a method for observing, describing, notating, and
interpreting human movement for the purpose of improving awareness, efficiency, and ease
of movement and to enhance communication and expression in everyday and professional
life!. Originated in Germany at the beginning of the 20th century by Rudolf Laban
(1879-1958), pioneer of European modern dance and proponent and theorist of movement
education, LMA today is a creative synthesis that has been considerably expanded
and enriched by concepts developed by Laban’s colleagues and later students of human
movement working within the Laban tradition. This method of movement study focuses on
the interdependence of thinking, feeling, and action by developing awareness and activating
the relationship between personal intention, attention, and action in all that we do and say.
In the perspective of what we have investigated about the relationships between gesture
and speech, gesture and thought, and gesture and emotional state and personality, we find
the principles of this study perfectly mesh to our needs in synthesizing communicative
gestures and acquiring motion qualities of communicative gestures.

A wide variety of researchers have applied the LMA theories in many movement-related
fields such as acting, drama, choreography, psychology, ergonomics, anthropology, clinical
and physical therapy, verbal and nonverbal communication and presentational skills, and

management behavior [35, 11, 36, 79].

'"LMA is not the same as Labanotation [60]. The former focuses on the movement qualities while the
latter focuses on the structural aspects of movement and provides a means to record movement directions,
places, positions, and involved body parts by means of symbols.
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3.1 General Principles of the LMA

Moore and Yamamoto list five general principles that underlie Laban’s conception of human

movement [93]:

1. Movement is a process of change. Commonly, movement is defined as a change in
place or position. That is, an action begins in one place and ends in another and,
through the perception of this change, we know that movement has occurred. But
while the difference between the beginning and ending locations of an action may
be indicative of motion, movement itself is not a fixed position or even a change of
positions. Rather, movement is the process of the changing. Furthermore, human
movement involves not merely a change in position, but also a change in the activation
and involvement of the body and in the quantity and quality of energy necessary to
affect the motion. In other words, human movement is a fluid, dynamic transiency

of simultaneous changes in spatial positioning, body activation, and energy usage.

2. The change is patterned and orderly. At first glance the spatial pathways traced by a
body in motion may appear random and disorderly. But closer study reveals that a
series of natural sequences of movement exists. Laws of sequencing, the alternating
rhythms of stability and mobility and exertion and recuperation — all these provide

a governing pattern and order that prevents movement from being chaotic.

3. Human movement is intentional. The human being moves to satisfy a need. Actions
are guided and purposeful, and the intentions are made clear by the way in which
the person moves. Moreover, the manner that the person moves allows an observer
to penetrate the “inner world in which impulses continually surge and seek an outlet
in doing ...” ([76], pp. 17). While individuals do show habitual predilections for
certain effort configurations, human beings also possess the capacity to comprehend

the nature of effort qualities and their patterning in dynamic sequences.

4. The basic elements of human movement may be articulated and studied. Through
his scrutiny of human movement in a variety of contexts, Laban discovered basic

elements of physical action that are common to all human motion (see Section 3.2).
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5. Movement must be approached at multiple levels if it is to be properly understood. As
noted above, movement is a dynamic, fluid process involving simultaneous changes
in spatial positioning, body activation, and energy usage; movement study, as Laban
envisioned it, should incorporate multiple levels of analysis. The analysis should
consider not only what the movement is made of (the basic elements that comprise
the action), but also how it is put together (the laws of sequencing and rhythmic

patterns).

3.2 Basic Components of LMA

LMA is composed of five major components: Body, Space, Effort, Shape, and
Relationship?. Together these components constitute a textual and symbolic language
for describing movement. Body deals with which body parts move, where the movement
initiates, and how the movement spreads through the body. Space describes how large the
mover’s kinesphere, and what crystalline form is being revealed by the spatial pathways of
the movement. Shape describes the changing forms that the body makes in space, while
Effort involves the ”dynamic” qualities of the movement and the inner attitude towards
using energy. Relationship describes modes of interaction with oneself, others, and the
environment. Each individual has his/her own unique repertoire of and preferences for
combinations of these basic elements, which can be sequenced, phrased, patterned, and
orderly organized together in a particular personal, artistic, or cultural way. Our work
focuses on the Effort and Shape components of LMA, because these two are the major

direct specifications or indications of expressive human movements.

3.3 Effort and Shape

Effort comprises four motion factors: Space, Weight, Time, and Flow. Each motion
factor is a continuum between two extremes: (1) indulging in the quality and (2)
fighting against the quality. In LMA these extreme Effort Elements are seen as basic,

“irreducible” qualities, meaning that they are the smallest units needed in describing

2Throughout this document we capitalize key terms defined by LMA to distinguish them from their
common English language usage.
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an observed movement. These eight Effort Elements are: Indirect/Direct, Light/Strong,
Sustained/Sudden, and Free/Bound. The eight elements can be combined and sequenced
for many variations of phrasings and expressions. Table 3.1 illustrates the motion factors,

listing their opposing Effort Elements with textual descriptions and examples.

Space — attention to the surroundings

Indirect spiraling, deviating, flexible, wandering, multiple focus
examples: waving away bugs, surveying a crowd of people,
scanning a room for misplaced keys

Direct straight, undeviating, channeled, single focus
ezamples: threading a needle, pointing to a particular
spot, describing the exact outline of an object

Weight — attitude to the movement impact

Light buoyant, weightless, easily overcoming gravity,
marked by decreasing pressure
ezamples: dabbing paint on a canvas, pulling out a splinter,
describing the movement of a feather

Strong powerful, forceful, vigorous, having an impact
increasing pressure into the movement
ezamples: punching, pushing a heavy object, wringing a towel,
expressing a firmly held opinion

Time — lack or sense of urgency
Sustained leisurely, lingering, indulging in time
examples: stretching to yawn, stroking a pet
Sudden hurried, urgent, quick, fleeting
examples: swatting a fly, lunging to catch a ball, grabbing
a child from the path of danger, making a snap move
Flow — amount of control and bodily tension
Free uncontrolled, abandoned, unable to stop in the course
of the movement
examples: waving wildly, shaking off water, flinging a rock
into a pond
Bound controlled, restrained, rigid
ezamples: moving in slow motion, tai chi, fighting back
tears, carrying a cup of hot tea

Table 3.1: Motion Factors and Effort Elements ([31, 32])

The Shape component involves three distinct qualities of change in the form of
movement: Shape Flow, Directional Movement, and Shaping. A Shape Flow attitude

primarily reflects the mover’s concern with the changing relationship among body parts.
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These changes can be sensed as the increasing or decreasing volume of the body’s form or
a moving toward or away from the body center. Shape Flow can be seen from these two
different perspectives: the first one emphasizes the torso, which can be said to Grow or
Shrink. A continuous breathing pattern reveals changes in Shape Flow as seen from the
torso perspective. The other perspective stresses the limbs, which are said to be Opening
or Closing with respect to the horizontal axis. Shrinking from the cold or stretching to
wake up would be characterized as having a Shape Flow quality.

While Shape Flow is mainly concerned with sensing the body’s shape changes within
itself, Directional Movement describes the mover’s intent to bridge the action to a point in
the environment. These movements can be simple spoke-like or arc-like actions to reach a
direction or object, such as a reach to shake a hand or to touch an object or to move to a
specific location.

Shaping Movement depicts the changes in movement form that demonstrate a carving
or molding attitude as the body interacts with the environment. This form can be dictated
by objects in space or simply created by the mover. An active adapting of the body shape
in order to move through a crowd, or a gesture describing an elaborately carved sculpture
might illustrate a Shaping mode.

Shape changes in movement can be described in terms of three dimensions: Horizontal,
Vertical, and Sagittal. Each one of these dimensions is in fact associated with one of the
three main dimensions (Length, Width, and Depth) as well as one of three main planes
(Horizontal, Vertical, and Sagittal) related to the human body. Changes in Shape in
the Horizontal dimension occur mainly in the side-open and side-across directions; as the
movement becomes planar there would be more of a forward-backward component added to
the primary side component. Changes in the Vertical dimension are manifested primarily
in the upward-downward directions; the plane would add more sideward component to the
up-down. Finally, changes in the Sagittal dimension are more evident in the body’s depth
or the forward-backward direction; planar movement would add an upward-downward
component.

We note that while there is distinct vocabulary for each quality — Shape Flow,
Directional Movement, and Shaping — in the various dimensions, we have merged these

three concepts (using them interchangeably) and chosen to use the Shaping terminology.
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The terms we are using to describe the opposing changes in these dimensions are Spreading
and Enclosing, Rising and Sinking, Advancing and Retreating. It is important to point out
that limbs and torso movements are not required to involve the same Shape qualities at a
given time. In this way, Shape Flow functions as a breathing baseline to support Directional
and Shaping movement of the limbs. In another example, a traffic officer might hold up
one arm with a Directional reach, while the other arm gestures in a circular Shaping mode,
and the head does small tilting Shape Flow actions to accompany the Shaping arm.

Another LMA concept is Reach Space in the Kinesphere (near, middle, and far). Our
current approach regards Reach Space only from the perspective of the limbs in relation to
the distance from the body center. Though this is a simplified view, it adds an important
feature to the limb range of movement.

Shape changes can occur in affinity with corresponding Effort Elements [11, 79].
Table 3.2 shows the opposing attitudes towards Shape, some examples, and their affinities

with Effort Elements.

Horizontal
Spreading  affinity with Indirect (i.e., deviating, circling)
eramples: opening arms to embrace, sprawling in a chair, smoothing
the wrinkles of a table cloth, a fisherman throwing out a net
Enclosing  affinity with Direct (i.e., undeviating, pointing)
examples: clasping someone in a hug, crossing one’s arms as when
feeling cold

Vertical

Rising affinity with Light (decreasing pressure)
ezamples: reaching for something in a high shelf, showing off with a
pompous bearing, looking over the shoulder

Sinking affinity with Strong (increasing pressure)
examples: stamping the floor with indignation, pulling down a
shade, a boxer ducking to avoid a punch

Sagittal

Advancing affinity with Sustained (i.e., decelerating)
examples: reaching forward to shake hands, reaching forward to
listen more carefully

Retreating  affinity with Sudden (i.e., accelerating)
examples: darting back, avoiding a punch, pulling one’s hand back
from a hot stove, shocked by a sad or surprising news

Table 3.2: Shaping Dimensions and Affinities
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Chapter 4

Gesture Synthesis

Generating communicative gestures may involve synthesizing information from multiple
channels such as facial expression, eye gaze, intonation, and muscle tension. Our current
research focuses on the gesture synthesis that chiefly involves limb and torso movements.
We use EMOTE, a 3D animation control module for expressive limb and torso movements,
to create communicative gestures that convey naturalness and expressiveness. EMOTE
starts with basic movements specified through key time and pose information. We could
also start with motion defined by some other methods, for example, keyframe data, a
procedurally generated motion, motion capture data, or a gesture in a motion library, and
then extract the necessary information. More importantly, EMOTE provides a flexible and
powerful tool that allows the user to specify motion qualities in an intuitive way. Gestures
exist not just because they have underlying movements but also because they have some
distinctiveness in their motion qualities. Different motion qualities distributed over the
same underlying motion may convey different meaning and therefore produce different

gestures.

4.1 Expressive Limbs

EMOTE uses a limb model with a 1 degree-of-freedom (DOF) elbow/knee joint and
spherical (3 DOF) shoulder/pelvis and wrist/ankle joints, as shown in Figure 4.1 1. The

!The human model is fully articulated, and commercially available through Unigraphics Solutions
Inc. [44]. For more information about the model, check the web site http://www.eai.com/products/jack/
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Figure 4.1: Human model

underlying key poses are defined as end-effector positions of the bases of the wrist/ankle
(we call an end-effector key pose a keypoint). Keypoints can be defined as being global
or local. Specifically for the arms, local keypoints are defined relative to the human’s
shoulders. Global keypoints, on the other hand, establish a constraint relative to the
global environment. Keypoints can also be classified into Goal and Via points. Goal points
define a general movement path; the hand follows this path, stopping at each Goal point.
Via points direct the motion between keyframes without pausing. For instance, a Via
point might be used to generate a semi-circular path between two Goal points.

The determination of arm/leg posture given a 3D keypoint is under-specified, however.
A simple physical interpretation is based on the observation that if the hand is held fixed,
the elbow is still free to swivel about a circular arc whose normal vector is parallel to the
shoulder-to-wrist axis. Tolani [126] uses the swivel angle to solve this problem. Figure 4.2
shows the basic idea about how to use swivel angle to constrain the arm posture 2. In the

figure, S, E, and W define the positions of the shoulder, elbow, and the goal location of

2The rationale applies to the ankle similarly.
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the wrist, respectively. S is chosen as the origin of the coordinate system. The normal

vector i of plane P that contains the circular arc can be computed as:

s

(4.1)

n=

b3

The two unit vectors @ and v that form a local coordinate system for plane P are given

by

=

N —&a-
u = =
|a—a-a]

w

o
=

(4.2)

=13

vV = nx
where & is an arbitrary axis selected by the user 3. The center of the circle & and its radius

R can be computed from simple trigonometry

(& = cos(a)||é]|n
R = sin(a)|é||

% WR+E-8—8y-8 (43)
cos(a) = TR

| sin(a) = +/1—cos(a)?

Finally the elbow position and therefore the arm posture can be uniquely specified by
e(f) = &+ R(cos (0) t+sin (0) V)

Given a goal specified by three-dimensional position coordinates and an elbow/knee
swivel angle, an analytical inverse kinematics algorithm (IKAN) [126, 127] computes the
shoulder/pelvis and elbow/knee rotations. Wrist/ankle rotations are determined according
to Effort settings [31]. Reflecting Effort and Shape definitions provided by the LMA system,
Shape parameters are used to modify the keypoints that specify limb movements, while
Effort parameters affect the execution of those movements resulting from the modified

keypoints.

4.1.1 Applying Shape to Limb Movements

As described in Chapter 3, Shape comprises four parameters: Horizontal, Vertical, Sagittal
and Flow (or Reach Space). A Shape Flow primarily reflects the mover’s concern with the

changing relationship among body parts. These changes can be sensed as the increasing or

8In EMOTE system we chose & such that it is lying in the plane that contains the circular arc, and
pointing downward.
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Figure 4.2: The arm posture constrained by the swivel angle (After Tolani [126])

decreasing volume of the body’s form or a moving toward or away from the body center.
Shape changes in movement can be additionally described in terms of three dimensions:
Horizontal, Vertical, and Sagittal. Each one of these dimensions is in fact associated with
one of the three main dimensions (Length, Width, and Depth) as well as one of three
main planes (Horizontal, Vertical, and Sagittal) related to the human body. We describe

mathematically how they work when applied to the underlying keypoints in the following.

4.1.1.1 Keypoints Modified by Horizontal, Vertical and Sagittal Parameters

In order to simulate volume-like changes in the movement, we associate Shape changes
more with planar action than with strictly dimensional movement. Presently we expand
or contract key points along ellipses oriented according to the Shape parameter values.
For a particular keypoint, let the variables wer, hor, and sag in the interval
[—1,+1] represent the parameters corresponding to the Horizontal, Vertical, and Sagittal
dimensions, respectively. We define two constants abratio (always > 1) and maxdf *. For
each one of the above dimensions, we find an ellipse containing the keypoint and lying in
a plane parallel to the plane associated with the dimension. The center of the ellipse is

the projection of the shoulder/pelvis joint position on that plane (see the top figure in

“These constants can be changed by the user through a provided Graphical User Interface (GUI). The
default values are 2.5 for abratio and § for maxd®.
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vdz

Figure 4.3: Using Vertical parameter to modify keypoints ( Top: the shoulder projection
to the parallel Y-Z plane, Bottom: the ellipse lying on the Y-Z plane.)
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Figure 4.3). The major axis of the ellipse is parallel to the direction mostly affected by
changes in that dimension and its minor axis is parallel to the other direction affected by
such changes. The quotient between its major radius a and its minor radius b is abratio.
We find the contributions of that dimension to the modified keypoint by rotating the
keypoint by df, a fraction of maxdf determined by the numeric parameter associated with
the dimension in consideration. Figure 4.3 and 4.4 illustrate how we calculate vdy and
vdz, the contributions of the Vertical parameter ver to a particular keypoint.

Let (x,y,z) be the original coordinate of the keypoint w. We find 6 such that

0= atan(_iz * abratio) (4.4)

The calculated 6 is in the range (—%,%). We do the simple transformation

0=0+n if —2<0

(4.5)
0=0+2r if <0
to make it lie in the range [0, 27).
The major axis a of the ellipse is calculated by the following equation:
—z
= 4.6
¢ sin (@) (4.6)

The angle ¢ formed by the rotated keypoint and the major axis of the ellipse is given by
(see Figure 4.4):

0 ver =0
min(f — ver x mazrdf, ) wver <0,0<<m

@ =19 max(0+ ver x mazxdd, w) wver < 0,7 <l <27 (4.7
maz (0 — ver * maxdd,0) wver >0,0<0 <7

| min(f + ver x mazdf,2r) wver > 0,7 < 6§ < 2rm

Finally, the contributions vdy and vdz are calculated as follows:

vdz = —(ax*cos(p)) —z
) (4.8)

vdy = (a* o % sin(p)) —y

Similarly we find the Horizontal contribution (hdy,hdx) and the Sagittal contribution

(sdx,sdz). We compute the new keypoint w (whose coordinate is (x,y,z)) by
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superimposing these contributions on the original keypoint:

T = x4+ hdz+ sdr
y = y+uvdy+ hdy (4.9)
Z = z+4wvdz+ sdz

4.1.1.2 Keypoints Modified by a Kinespheric Reach Space Parameter

Let us now consider how the Kinespheric Reach Space parameter (also called Flow
parameter) affects a particular keypoint. As stated before, when considered from the
perspective of the limbs, Reach Space design describes the limb relationship with the body
as it moves toward or away from the body center. Therefore, our Shape model modifies a
particular keypoint by moving it along the direction that passes through the keypoint and
the center of mass (henceforth, COM) of the human figure. As shown in Figure 4.5, vectors
w and & represent the positions of the wrist and the COM in the global coordinate system
originated at o, while vector t represents the position of the wrist in the local coordinate
system originated at the shoulder s. Suppose the matrix of the shoulder is MY in the global
coordinate system, the matrix of the wrist is Mfu in the local coordinate system and M,

in global coordinate system. We can compute the vector W in the following way:

MY, = ML, «MJ

(4.10)
w = xya1|M

where * represents the operation of homogeneous transformation multiplication and X, ¥, 2
are the unit vectors of the global transformation system.

We use Reach Space parameter flo to calculate the amount by which the keypoint is
moved toward or away from the center of mass. In Figure 4.5, w is the original position
of the wrist. It is first moved by the Horizontal, Vertical, and Sagittal parameter to w ,
and then modified further by the Reach Space parameter to w'. Let ¥ denote the vector
V\/f'\C, and let vectors 1t and § denote the new position in the local transformation system
with respect to the shoulder s and to the wrist w', respectively. The two vectors are given

by

<

(=33
I

=5 (4.11)

+1

(v

w
Il
>
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where

&—w

<>
Il

(4.12)
f = flo-maxds

The parameter maxds is a constant value which specifies the maximum incremental
distance for keypoints towards the COM that can be affected by the Reach Space
parameter. Note that the Reach Space modifier is considered after the keypoint has been

modified according to its associated Horizontal, Vertical, and Sagittal parameters.

s Shoulder
Joint

Center
of Mass

o origin

X

Figure 4.5: Using Flow parameter to modify keypoints

Additionally, when the achievement of the modified keypoint requires any of the angles
beyond the human body limits, stored joint limits avoid unattainable configurations of the
body. Furthermore, global keypoints are not affected by the Shape parameters as they

establish a constraint relative to the environment instead of local joints.
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4.1.2 Applying Effort to Limb Movements

Using high level qualitative Effort parameters for human animation control was first
proposed by Badler [8] and later implemented by Chi [31]. Our EMOTE system is based
on Chi’s Effort module. For the sake of consistency and continuity, we briefly describe
her methods that are relevant to our discussion. Refer to her thesis for more technical

materials.

The key component of the Effort module is to translate the qualitative Effort parameters
into a set of low-level quantitative parameters that are directly related to the control of the
characteristics of the movement. There are three types of low-level movement parameters:
(1) parameters that affect the limb trajectory; (2) parameters that affect timing, and (3)

flourishes that add to the expressiveness of the movement.

The trajectory parameters include path curvature, which determines the straightness or
roundness of the path segments between keypoints, and interpolation space, which defines
the space in which the interpolation is performed. The path curvature is controlled through
the tension parameter introduced by Kochanek and Bartels for interpolating splines [69].
There are three different kinds of interpolation space: end-effector position, joint angle,
and elbow/knee position. Which interpolation space to use is determined by Effort
settings. The default interpolation space is end-effector position. Free movements use
angular interpolation to achieve a less path-driven and less controlled movement. Indirect
movements tend to be driven by the elbow/knee, and thus are interpolated in elbow/knee

position space.

Parameterized timing control is achieved by using a variation of the double interpolant
method introduced by Steketee and Badler [121]. The interpolating splines that define the
trajectory compute values between keypoints using an interpolation parameter that varies
from 0 to 1 over the interval from keypoint i to keypoint 2 + 1 [69]. A frame number-
to-time function is defined and can be parameterized by a set of low-level variables, such
as number of frames between keypoints, inflection time, time exponent, start velocity and
end velocity, to achieve various timing effects. Flourishes are miscellaneous parameters,
such as squash and stretch, wrist bend, arm twist, that add to the expressiveness of the

movements.
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4.2 Expressive Torso

The underlying key poses of the torso involve, in fact, the neck joint, the spine, the pelvis,
and the two clavicle joints. The neck has 3 DOF, the spine has 17 joints with 3 DOF each,
the pelvis has 3 DOF and each clavicle has 2 DOF. A key pose consists of neck, pelvis,
and clavicle angles, and spine configuration [44]. When, for a particular keyframe, no pose

information is provided, the system assumes a neutral posture, where all the angles are 0.

Figure 4.6: Expressive torso examples (left: Advancing and Rising, right: Enclosing and
Retreating)

4.2.1 Applying Shape to Torso Movements

The association of Shape and body parts is based on the suitability of each body part
in producing changes in the form of the body in given directions (upward or downward,
sideways-open or sideways-across, and forward or backward). Thus, the upward/downward
direction is associated with the neck and the spine; the sideways direction is associated
with the clavicles, and the forward/backward direction is associated with the pelvis and

the hips. Therefore, changes in Horizontal dimension, which occur mainly in the sideways
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direction but also have a forward/backward component as the movement becomes planar,
affect mostly the angles of the clavicles but also slightly alter the pelvis rotations. Changes
in Vertical dimension, which occur mainly in the upward /downward direction but also have
a sideways component in planar movement, affect mostly the angles of the neck and the
spine but also change clavicle angles. Finally, changes in Sagittal dimension, which are
more evident in the forward/backward direction but also involve an upward/downward
component in planar movement, mainly affect the pelvis and hip rotations but also change
the angles of the neck and spine.

The Shape model was designed considering the available control of the articulated
figure model [44]. The present approach adjusts spine, pelvis, hip, and clavicle angles to
approximate Shape volume changes. Fig. 4.6 illustrates two examples of the expressive

torso model. Fig. 4.7 shows a sample keypoint file defining Effort and Shape parameters.

Buffers Files Tools Edit Search Mule Help Buffers Files Tools Edit Search Mule Help
FHRLSE FILE IkShframe 100: 0 0.0 0.0 -0.8 0.0
/™ right hand IkShframe 127: 0 -0.1 -0.5 0. (4]

0 0.
Ikframe 1: 0 33.7440 25.9920 32.3760 -1.3600 0 IkShframe 145: 0 0.8 0.0 0.0 0.0

Ikframe 10: @ 24,6240 30.3240 -27.3600 -0.6300 1 IkShframe 173: 0 -0.% 0.0 0.0 0.0
Ikframs 16: 0 38.5320 41.0400 6.8400 -1.3000 0 /* left hand

Ikframs 36: 0 24.6240 30.3240 -22.5720 -0.6300 1 IkShframes 1: 1 0.0 0.0 0.0 0.0
Ikframs 39: 0 38.5320 41.0400 6.8400 -1.3000 0 Mkshframe 10: 1 0.0 0.0 0.0 0.0
Ikframe 66: 24,6240 25.0800 -34.2000 -0.6300 1 IkShframe 16: 1 0.0 0.0 0.0 0.0Q
Ikframs 83: 0 38.5320 45.3720 6.8400 -1.5400 1 IkShframe 36: 1 0.0 0.0 0.0 0.0
Ikframs 100: 0 38.5320 50.3720 10.8400 -1.5400 1 IkShframe 39: 1 0.0 0.0 0.0 0.0
Ikframe 127: 0 33.7440 25.9920 32.3760 -1.3600 1 IkShframe 66: 1 0.0 0.0 -0.5 0.0
Ikframe 145: 0 25.3080 -2.7880 10.8400 -1.5500 1 IkShframe 83: 1 0.0 0.0 -0.5 0.0
Ikframs 173 0 39.9000 -4.5760 26.6760 -1.3000 1 IkShframe 100: 1 0.0 0.0 -0.8 0.0
/* left han TIkShframe 127: 1 -0.1 -0.5 0.0 0.0
Ikframs 1: l 33.7440 -25.9920 32.3760 1.3600 0 IkShframe 145: 1 0.8 0.0 0.0 0.0

Ikframe 10:

Ikframe 16:
Ikframs 36:
Ikframe 39:

24.6240 -30.3240 -27.3600 0.6300
356.5520 -41.0400 6.8400 1.3000 0
24,6240 -30.3240 -22.5720 0.6300
35.5320 -41.0400 6.8400 1.3000 Q
Ikframe 66: 24,6240 -25.0800 -34.2000 0.6300
Ikframe §3: 356.5520 -45.3720 6.8400 1.5400 1
Ikframe 100: 1 38.5320 -50.3720 10.8400 1.5400

Ikshframe 173: 1 -0.8 0.0 0.0 0.0

/* Torso frames
Tsframe 1:

neck: 0.0 0.0 0.0
Tsframe 10:

neck: 10.0 -15.0.0 0.0

el i

FPROOROROROR O00OROR SRR
N

Ikframe 127: 1 33.7440 -25.9920 32.3760 1.3600 Tsframe 16:
Ikframe 145: 1 25.3080 2.7880 10.8400 1.5500 0 neck: 10.0 -15.0 0.0
Ikframs 173: 1 39.9000 4.5760 26.6760 1.3000 0 Tsframs
neck: 10025000
/* space diresct += indirect Tsframe 39:
/* weight strong + - light neck: 8.0 30.0 0.0
/* time guick += sustained Tsframe 66:
/* flow bound += neck: 8.0 10.0 0.0
Tsframe 83:
[[* starting point neck: 8.0 0.0 0.0
IkEfframe 1: 0 0.0 -0.5 0.5 -0.3 Tsframs 100:
IkEfframs 10: 0.0 0.5 0.3 neck: 5.0 0.0 0.0
IkEfframe 16: -0.5 0.5 -0.3 Tsframe 127:
IkEfframe 36: 0.0 0.5 0 neck: 15.0 -15.0 0.0

5 -0.5 Tsframs 145:
-0.3 neck: 0.0 -15.0 0.0
0.0 Tsframe 173:

0.2 neclk: 20.0 10.0 0.0

0.
[4]
IkEfframs 39: 4]
IkEfframs 66: 0
IkEfframe 83: 1
IkEfframe 100: 0 0.0 0.0 0.5 -
IkEfframe 127: 0 1.0 1.0 0.7 1.0
IkEfframe 145: 0 0.2 1.0 0.9 1.0 /* Shape frames
01.01.00.51.0
0.0 3
0
Q
4]
4]
0
1

cooooo

IkEfframe 173: /* Vertical, Horizontal, Sagittal, Flow
TsShframe 1: 0.1 0.0 0.0 0.0

IREfframes 1: 1 -0.5 0.5 -0. TeShframe 10: -0.1 0.2 -0.1 0.0
IkEfframe 10: 1 0 0.0 0.5 0.3 TeShframe 16: 0.1 0.4 0.1 0.0
IkEfframe 16: 1 0 -0.50.5 -0.3 Tsihframe 36: -0.1 0.6 -0.3 0.0
IkEfframe 36: 1 0.0 0.0 0.5 0.4 TsShframe 39: 0.1 0.0 0.5 0.0
IkEfframe 39: 1 0.0 -0.5 0.5 -0.3 TsShframe 66: -0.1 1.0 -0.8 0.0
IkEfframe 66: 1 0 0.7 0.5 -0.3 TeShframe 83: 0.6 0.8 0.9 0.0
IkEfframe 83: 1 0 0.0 0.50.0 Ts3hframe 100: 0.6 0.8 1.0 0.0
IkEfframe 100: 1 0.0 0.0 0.5 -0.2 TsShframe 127: 0.1 0.0 0.9 0.0
IkEfframe 127: 1 1.0 1.0 0.7 1.0 TsShframe 14 0.5 -1.0 -0.1 0.0
IkEfframe 145: 1 0.2 1.0 0.9 1.0 Teshframe 17 -0.5 0.6 0.6 0.0
--Buzz: ff £ (Tex i ap (Tex

Figure 4.7: A sample keypoint file defining Effort and Shape parameters
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4.3 Animation Examples

Using the EMOTE system, we have done some experiments and created (1) a virtual actor,
(2) a virtual ASL signer, (3) a virtual salesperson, and (4) a virtual tour guide. In this
section, we use the virtual actor animation as an example to demonstrate the power and
flexibility of the EMOTE system in synthesizing gestures, in particular, we focus on how
to interactively add or adjust Effort and Shape parameters to accomplish the improvement
and variations in motion qualities.

In the example, the virtual actor performs a line from Shakespeare 5. The original
performance includes three opening gestures. The first two are Bound and Sudden, while
the third is Free, Sudden, and Strong. This is followed by a Free and Sudden lifting
of the arms, ending in a Strong, Sudden and Direct emphatic end. To demonstrate the
usefulness of motion quality, we first define the basic upper body movement as a sequence
of keypoints and a simple linear interpolation is employed to generate a neutral animation
without Effort or Shape settings involved. Then we apply appropriate Effort and Shape
parameters to mimic the original performance. Applying Effort and Shape parameters
can be done easily and interactively, taking advantage of the graphical user interfaces
provided by the EMOTE system. For example, instead of using Sudden, Strong and
Bound qualities, users can simply move the sliding bars towards the reverse extremes
to make the movements considerably more Sustained, Light and Free. In such a case, a
dramatically different performance from the original one is produced. If an Enclosing Shape
parameter is applied, a more confined gesture will be generated. Similarly, if a Rising and
a Spreading Shape parameter are used instead, a bigger and more opening gesture will be
produced. Finally, the experiments also demonstrate that the torso plays an important
role in life-like animated movements. If we keep the original Effort and Shape settings for
the limbs, but remove all Shape specifications for the torso, the animations lose conviction
and naturalness. Figures 4.8-4.13 demonstrate the sample performance and its variations.
The animations are recorded in AVI files, which can be found in the CD-ROM attached to

this document (also available at http://www.cis.upenn.edu/~lwzhao/thesis).

5The line is “Love me, why? It must be requited” from the play Much Ado About Nothing.
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4.4 Agent Model and Communicative Gesture Performance

We commonly use actions and non-verbal communicative movements to try to infer
affective states, attitudes, and ultimately intents in the person we are observing. Our
EMOTE model has a demonstrated capability of producing a wide range of expressive
movements on a fully articulated human body. We believe that connecting EMOTE
parameters to the agent model may therefore link personality and affective state with

appropriate and communicative gesture performance.

Based on a Parameterized Action Representation (PAR), our agent model includes
explicit slots for manner, role, culture, and capabilities as well as rules and standing orders
linking PAR execution to specific conditions in the world [6, 4, 19]. Detailed description
of the PAR components is too lengthy for this document, instead we focus on one aspect

of the agent model that is well activated by the EMOTE model — the motion manner.

Motion manner describes the way an agent carries out an action. Although how the
action is carried out also depends on the agent’s skills and personality, motion manner
stresses the specifications of the characteristics being used in carrying out a specific action.

bYINA3

For examples, “open the door quickly,” “move the vase carefully,” and “walk along the shore
leisurely.” These manner terms can be transformed into Effort and Shape parameters that
affect low-level motion generation [31, 139]. To see the importance of the motion manner
component consider the differences between actions with essentially the same participants
and path: ease, slide, push, tap, shove, wedge, force and slam. All vary in when and how
much force is applied. The motion of the object involved is clearly affected differently,
but so is the agent’s movement. The general form of the action is stored as key poses,

constraints, or even captured motion in a PAR, but the actual performance is mediated

through the chosen EMOTE settings.

Modifying motion manners by changing Effort and Shape parameters is demonstrated in
the following MPEG movies (also available at http://www.cis.upenn.edu/~lwzhao/thesis).
The agent system has an incorporated natural language interface where the user can
dynamically direct and refine the agent’s behavior by issuing directions and instructions.
Connecting the EMOTE parameters with the agent model enables us to instruct the agent

to generate movements with appropriate manners from linguistic adverb constructs.
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Figure 4.16. Force touch
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4.5 Applying EMOTE Parameters to Motion Capture

Although the EMOTE system is capable of procedurally generating a great variety of
expressive and natural movements, it suffers from three drawbacks: (1) it requires the
manual specification of key points for constructing the underlying movements; (2) the
current human model does not allow us to deform the body properly; and (3) an external
LMA notator is needed to provide appropriate motion qualities in terms of Effort and
Shape parameters. In this section, we attack the first problem by connecting a motion
capture system with the EMOTE system and calculate the key points as well as other key
parameters required by the IK module automatically. In the next section, we implement an
EMOTE plug-in in Alias|Wavefront’s Maya 3.0 to partially solve the second problem. The
automatic acquisition of EMOTE Effort parameters is addressed in the next two chapters,
one using motion capture data and the other using video capture data, respectively.

We use the methods described in [18] to solve the problems of motion calibration and
motion retargeting. The important parameter that is still missing in the motion data is
the swivel angle. The angle is required in order to uniquely define a limb posture. What
we have in the data is only the 3D positions and orientations of the elbow/ankle. Given
the coordinates of the end-effector, we can in fact compute the corresponding swivel angle
that gives us the elbow/ankle position which is closest to the coordinates. The algorithm
is shown below.

Suppose the origin of the coordinate system is located at ¢, and the actual position of
the elbow given by motion capture is P.. The elbow position on the circular arc (swept out
by swiveling around the shoulder-to-wrist axis) is represented as Py. We chose subscript
@ to show that the position is subject to change according to the value of the swivel angle
0, see Figure 4.20. To make the arm movement fit the motion capture data as much as
possible, we need to find the shortest distance from Py to P, That means we need to find
a swivel angle 6 that minimizes ||P. — Py||.

Let us define two vectors P and P such that

P=P.,—c

. (4.13)
P=P_(

v}

- h)h

The angle that minimizes |P. — Py|| is the angle between the unit vector @ and vector P,
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Figure 4.20: Find the closest possible elbow position to a motion captured position

and it satisfies

(4.14)

By extracting keypoints from motion capture data and then varying Effort and Shape
parameters, we have achieved interesting variations in movements. For example, we
collected 3D upper-body motion capture data of a person throwing a ball, then we extracted
every ten frames and used them as direct input to the EMOTE system. Using the
same keypoint input, we generated three dramatically different motions by merely picking

different Effort and Shape parameter settings.
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4.6 Applying EMOTE to Deformable Human Models

We chose a commercially available package, Maya 3.0 from Alias|Wavefront”™ | as the
visualization environment. Maya is used for modeling, animation, rendering and special
effects applications and has been very popular in broadcasting, film making, multimedia
and game development. It features a full range of deformation functions such as bend,
squash, twist and warp nonlinear deformers [1]. In our experiments we find that these
deformers are very powerful and flexible to apply to human characters. Moreover, these
deformers can leverage more subtle changes without destroying the motion qualities
specified by EMOTE parameters. For example, by passing warping parameters generated

by EMOTE parameters to the Trax Editor, we can explore more variations.

IHandShape

Figure 4.21: The Maya environment and the deformable human model

Furthermore, Maya has an open architecture and is customizable through two ways:

the Maya Embedded Language (MEL) and the Maya Application Programmer Interface
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(API). MEL is a powerful high-level command and scripting language that offers direct
control over Maya’s features, processes and workflows. It allows easy creation of custom
graphical user interfaces and procedures to carry out modeling, animation, dynamics, and
rendering tasks. The Maya API allows low-level direct access to internal data structures
and therefore offers significantly fast execution of the tasks.

In the current implementation of the EMOTE plug-in %, a simplified upper-body model
was created based on a wooden mannequin (see Figure 4.21). A shoulder-elbow-wrist bone
structure was inserted into each arm to help move the arm kinematically. The biceps
contraction is simulated by inserting an ellipse sculpt deformer into the upper arm that
moves arm vertices in their vicinities regularly. The limb volume is affected by a YZ-
direction scaling factor, which is linearly correlated with factors such as the elbow angles
and the Effort Weight parameters: the stronger a movement and the further bend the
elbow, the larger the resulting scaling deformations. Figures 4.22, 4.23, and 4.25 display
the limb deformation affected by no deformer, YZ-direction scaling deformer, and ellipsoid
sculpting deformer, respectively. Note that these deformations are purely artistic and do
not represent anatomical shapes, nor are they meant to be accurate. The deformation of
the torso can be simulated using a similar but more complex deformer and it requires the
deformation be affected by not only the Effort factors but also the Shape factors and the
breath pattern as well.

At the heart of the EMOTE plug-in is a DG (Dependency Graph) node called
emoteNode. It is written in C++4+ and Maya API and is responsible for the actual
interpolation of animation parameters. Its accompanying MEL script plays two roles:
one is an administrative role for loading, executing, and unloading the EMOTE plug-
in module; the other role is communicative for supplying the motion data to the DG
node, and manipulating the shape nodes that store the model’s geometry. Maya’s built-in
inverse kinematic (IK) solver, rather than an independent IK solver, is used as it is faster
and more consistent. The swivel angles output from EMOTE are connected to attributes
that help define the twist of the Maya IK chain. Experiments carried out based on the
simplified human model successfully generated the anticipated expressive arm gestures

with deformation (see Figures 4.22-4.27).

®Bjoern Hartmann made a considerable contribution to the design and implementation of the plug-in.
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Figure 4.24. The virtual salesman in Maya
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4.7 Summary

In summary, EMOTE has four features which we believe are essential for creating

communicative gestures that convey naturalness and expressiveness.

1. A given movement may have Effort and Shape parameters applied to it independent

of its geometrical definition.

2. A movement’s Effort and Shape parameters may be varied along distinct numerical

scales.

3. Different Effort and Shape parameters may be specified for different parts of the

body involved in the same movement. 7

4. The Effort and Shape parameters may be phrased (coordinated) across a set of

movements.

The underlying movements of a gesture are specified through key time and pose information
defined for the torso and all the limbs. With the key pose information, the EMOTE
parameters can then be applied to vary the original performance (property 1). Effort and
Shape qualities are expressed using numeric parameters that can vary along distinct scales
(property 2). Each Effort and Shape factor is associated with a scale ranging from —1
to +1. The extreme values in these scales correspond to the extreme attitudes of the
corresponding factors. For example, a +1 value in Effort’s Weight factor corresponds to a
very Strong movement; a —1 value in Shape’s Vertical dimension corresponds to a Sinking
movement. FEffort parameters are translated into low-level movement parameters, while
Shape parameters are used to modify key pose information. By using combinations of
one or many of the Effort and Shape parameters, we can search for the desired quality of
a particular movement. EMOTE parameters create kinematic changes in the underlying
movements. During gesture synthesis, EMOTE parameters can be applied directly based
on parameter values dependent on a character’s particular utterance, reactions, personality,

or emotions.

"Some movements (for example, those in the virtual actor examples) are symmetric in both arms,
however, the hit/touch and ball-throwing motions are not symmetric due to the different specifications of
Effort and Shape parameters as well as the different key poses.
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Factors/ Right Arm | Left Arm | Right Leg | Left Leg | Torso
Dimensions
Space yes yes yes yes no
Weight yes yes yes yes no
Effort | Time yes yes yes yes no
Flow yes yes yes yes no
Horizontal yes yes yes yes yes
Vertical yes yes yes yes yes
Shape | Sagittal yes yes yes yes yes
Reach Space yes yes yes yes no

Table 4.1: Body parts and Effort and Shape Dimensions

EMOTE permits independent specification of Effort and Shape parameters for each part

of the body (property 3). In its current implementation however, Effort parameters do not

apply to torso movements. Although Shape parameters are effective in the specification

of expressive torso movements, further investigation should be carried out to identify how

Effort qualities are manifested in the torso. Table 4.1 summarizes which dimensions of

Effort and Shape can be used to modify the movements of the different parts of the human

body. Furthermore, our approach allows the specification of different sets of values for the

Effort and Shape parameters across any series of keys that define the underlying motion

(property 4). By property 3, this can be done separately for each part of the body.

Finally, we have developed the EMOTE system in several new ways:

e Connect EMOTE with an agent model so that agent affect and communicative needs

can set appropriate EMOTE parameters for gesture performance.

Currently the

setting is achieved through a manually defined mapping table. Further investigation

need to be carried out to build a more coherent and automatic mapping, particularly

when a natural language interface bridging the natural language instructions and

agent affect states is to be experimented based on the extended EMOTE system [140).

e The manual key specification is averted by connecting a motion capture system with

EMOTE and automatically extracting the key point definitions.

e Experiment porting EMOTE to a commercially available visualization package

(Alias|Wavefront Maya 3.0) where deformable human models are supported.
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In the following two chapters, we shall investigate motion analysis techniques for extracting
EMOTE Effort parameters from live input, both in 3D motion capture and 2D video data.

Extracting EMOTE Shape parameters is beyond the scope of this work.
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Chapter 5

Gesture Acquisition from Motion

Capture

So far we have examined EMOTE as a motion quality generation system. Now we consider
the inverse problem: deriving the Effort qualities from a live performance automatically

via motion capture or video projections. The inverse problem is much harder to solve:

e Humans can synthesize multiple factors (such as speech intonation, muscle volume
and tension, and facial expressions) from multiple channels simultaneously to analyze
an action, however, a computerized system often limits available data to one or two

channels.

e Mathematically, the inverse problem is often harder. Formulating a set of
mathematical formulas and tweaking their parameters to generate the visual
“impression” of some particular motion patterns is relatively easy, however,
recovering a formula and its parameters that are functioning behind the patterns

is more complicated, ambiguous, and sometimes even intractable.

The problem is challenging but not infeasible. Our approach is to build a computational
model to simulate the LMA recognition and classification process. We first derive a set
of relevant motion features based on the motion capture data or video projections and
then use a three-layered feedforward neural network with a stochastic gradient descent

backpropagation to estimate the relationships between the motion features and the motion
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qualities in terms of Effort factors. Training and validation data sets created for this specific
study with the assistance of professional LM A notators, are used as the ground truth for
training, validating, and testing the neural networks.

In this chapter, we focus on gesture acquisition from motion capture data. The next
chapter addresses the issues of learning motion qualities from video projections. The
remainder of this chapter is organized as follows. Section 5.1 describes the motion
capture system we use for acquiring the position and orientation data. Section 5.2
discusses a choreography plan we have designed to ensure the diversity of the baselines.
Section 5.3 illustrates the smoothing methods we use to suppress noise in the captured data.
Section 5.4 gives a high-level description about the relationships between the two major
components of the system: feature extraction and quality recognition, which are covered
in Section 5.5 and Section 5.7, respectively. Section 5.6 describes a simple but reliable

segmentation method. Feature extraction and quality recognition are both segment-based.

5.1 Motion Capture System

Figure 5.1: Trajectories of sensors (including the shoulder, the elbow, and the hand)

Our approach to estimating the Effort qualities from motion capture starts by using
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the MotionStar system from Ascension Technology, which consists of one Extended Range
Controller (ERC), one Extended Range Transmitter, and 12 Bird units, each controlling
a single receiver (referred to as a sensor throughout the paper). Position and orientation
sensors collect 6D motion trajectory data for the head, neck, sternum, back, and the right
shoulder, right elbow, and right hand. The sampling frequency is 103.3 Hz. While the
system is cost-effective and efficient in capturing data, it has a major drawback—it requires
fastening the electro-magnetic sensors to the body. Also, preprocessing is necessary to filter
noise (see Section 5.3). After the preprocessing, motion calibration and retargeting [18] are
used to map all of the sensors to the human models in the Jack environment. Figure 5.1

shows the trajectories of sensors attached to the right arm in an action of throwing a ball.

‘ # ‘ direction ‘ space ‘ form ‘ handshape ‘
1 | forward mid-reach spoke-like point
2 | downward mid-reach spoke-like closed
3 | upward mid-reach spoke-like neutral
4 | downward near-reach spoke-like fist
5 | horizontal mid-left arc-like claw
6 | horizontal mid-right circular fist
7 | diagonal mid-left arc-like neutral
8 | diagonal mid-right arc-like open
9 | sagittal mid-reach arc-like claw
10 | sagittal mid-reach spoke-like neutral
11 | backward far-reach circular neutral
12 | “glide” far-reach transverse open

Table 5.1: Twelve simple and short movements

5.2 Choreography Plan

Because the whole inference system is trained and validated on the baselines of LMA
notators, it is crucial to make the baseline motions as diversified as possible to cover
different spatial directions/planes/dimensions and have different forms. With the help of
two professional LMA notators, we carefully designed a “choreograph plan.” Table 5.1
shows the twelve actions chosen and performed by our professional LMA notators.

(Figure 5.2 illustrates these actions.) Each of the two LMA notators performs the twelve
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Figure 5.2: Motion plan
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motions with one of the twelve Effort factors. In all we captured 288 samples with basic
Effort elements. In addition, we captured 64 samples with Effort combinations. We focused
on simple and short actions, usually consisting of one or two motion segments. Although

we focused on the right arm only, one of our professional LM A notators is left-handed.
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Figure 5.3: The comparison of smoothing algorithms (top-left: original trajectory, top-
right: median smoothing, bottom-left: average smoothing, bottom-right: Gaussian

smoothing)

5.3 Noise Filtering

As the motion capture system we use is an electro-magnetic tracker system, it is susceptible
to interference from neighboring external sources such as metals and the power supply. A
noise filtering process is employed to suppress irrelevant details in the captured data. We
use a popular zero-phase digital filtering method [100] by processing the captured data
in both the forward and reverse directions. Before filtering in the forward direction, it

first generates a small extrapolation array at each end of the sequence. After filtering in
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the forward direction, it reverses the filtered sequence and runs it back through the filter.
Finally, the extrapolation arrays are discarded and the resulting sequence has precisely
zero phase distortion. At the kernel of the filtering process is a neighborhood smoothing
algorithm. We conducted experiments using Median, Average, and Gaussian smoothing.
Figure 5.3 shows the filtering results for a sample action with these smoothing algorithms,
respectively. Our experiments show that the Gaussian smoothes out the trajectories while
maintaining the original profile. Therefore Gaussian is used as the smoothing filter in our
system.

To assure that it is noise not motion quality features that are removed by the smoothing
filters, we did experiments by comparing the original motions with the motions played along
the smoothed trajectories. Our empirical study showed that a smoothing window size of

10 frames consistently gave us good results.

5.4 Hierarchical Abstraction

Hierarchical abstraction enables one to construct a model layer by layer in a constrained
context and by a set of constrained elements and relations. Such an approach effectively
reduces the search space of the interpretation using heuristics while still maintaining the
essential relational structures. In the following, we give a mathematical description about

how to abstract motion qualities from observation data hierarchically.

L :  Total number of abstraction layers
N;  : Number of motion features at abstraction layer [ (1 <[ < L)
fij : Motion feature i at abstraction layer j (1 <i < N;, 1 <j <L)
S : A set of motion features at layer j or below
Fy; : Abstraction function at layer j for computing feature k& (1 < k < Nj)
where
Sj = Ui<k<j fik
1<i<Ny, (5.1)

frgr1 = Fij+(S))
The abstraction function F} ; can be linear or nonlinear (i.e., polynomial, exponential, or

logarithmic). It can be derived from some statistical, neural network models, or simply an

empirical function based on experiments.

73



Eq. 5.1 specifies that the abstracting relations only take the lower level features as
arguments, which means that the higher level motion factors are abstracted from the
lower level motion factors. Specifically in our abstraction architecture, the lowest layer
contains motion capture data while the highest layer contains motion factors specified
by Effort qualities (Space, Weight, Time, and Flow). What are covered in between are
two additional abstraction layers: one is the motion feature extraction layer (MFEL) and
the other is the neural network abstraction layer (NNAL). The output from the MFEL
are the direct input to the NNAL. As we go up in the architecture, low-level data are
filtered away and high-level analytic data are filled in. Moreover, the complex motion
factors encoded in the observation data, which are hard for the neural networks to discern
directly, are computed mathematically. On the other hand, the coherent relationships
among the extracted motion factors and Effort motion qualities, which cannot be directly
computed due to the unknown mathematical equations, can be estimated by the neural

networks. In the following, we describe MFEL first, then discuss the NNAL.

5.5 Motion Feature Extraction

The decision of which motion features to compute is mostly an art, since there are an
unlimited number of possibilities and much more research is needed to determine which
features are best for motion quality recognition. A variety of motion features had been
employed [22, 116, 110, 120]. Features used by Rubine [116] to recognize simple pen
gestures are mainly geometrically based. Segen and Kumar [120] use some local features
such as “peaks” and “valleys” on the contour of the hand shape to help classify gestures.
In our experiments, we have employed five categories of motion features that we believe are

helpful in the acquisition process. Features are chosen according to the following criteria:

e Efficiently computable: each feature should be geometrically, algebraically, or

incrementally computable, using only data available from the motion capture process.
e Meaningful: features should be correlated to the motion qualities.

e Minimum coverage: there should be sufficient features to capture and differentiate

the motion qualities, but the feature set should not be redundant.
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All the features are extracted within a motion segment. Section 5.6 discusses how to break

a motion trajectory into motion segments.

5.5.1 Basic Motion Features

From the motion capture data, we know the displacement d; and the timestamp t; at each
frame. For a given segment, we can easily compute the total time:

T=t,—t (5.2)

and the total displacement:

Z

=1

i+1 (53)

Also, we can compute the velocity and acceleration at each frame. The average velocity
over the time interval At is defined as the quotient of the displacement Ad and the time
interval At. When the time interval At is very small, we can assume that the instantaneous

velocity at the frame is the average velocity over At.

S _ d2—d;

Vi = to—1t1

~ _ dn—dn_1 4
vﬂ - tn*tn—l (5 )
o digg—dig

Vi = tir1—ti—1

Similarly, the instantaneous acceleration can be approximated by the average acceleration

over a small time interval At.

A, — Va—V1
a = to—1t1
A n—Vn_1
fn = Pt (5.5)
A, _ Vig1—Vi1
ai tiv1—ti—1
The average velocity and acceleration of the segment can be computed as:
n ~
v = Zl:éHVnH
n s (5.6)
= Dl
a— &=L —

n

All these features are very basic but important, and our acquisition process is based
on these features. For example, our experimental study shows that there is a strong
correlation between Free Flow and “spontaneity,” which is manifested in the abundance
of accelerations and decelerations in a motion. Bound Flow shows few such fluctuations
(see Figure 5.4). We therefore defined a feature called PAD, which is the percentage of

accelerations and decelerations arising in a specific motion segment.
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Figure 5.4: PAD in Bound, Neutral, and Free Flow

5.5.2 Curvature and Torsion

Curvature and torsion are two important geometric properties of the motion trajectory.
Curvature (x) is a measurement of the rate at which the tangent vector T turns as the
trajectory bends, while torsion (7) is a measurement of how much the trajectory rotates
or twists as it moves along.

Curvature can be computed as the cross product of vectors v and a

i j k
K=V Xa= T Yy =z
T Yy Z
and torsion
v(z) v(y) v(2)
a(z) a(y) a(z)
T a(z) Aa(yA) Qé(Z) (57
1 x &

where v(z), v(y) and v(z) are components of velocity vector v on the z, y and z dimensions
respectively. The sign (+) is chosen to make 7 always > 0.

The remarkable property that both curvature and torsion have is no matter how variable
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the motion may be, the curvature and torsion seem to be independent of the way the

trajectory is traversed.
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Figure 5.5: Path curvatures (left) and corner curvatures (right)

Our investigation over 288 motion samples finds that, in general, the curvature is
prominently high when the motion starts from rest, comes to a stop, or changes its
direction (see the right column in Figure 5.5). To analyze this feature more carefully,
we break the curvature into two categories: one is the curvatures at the direction-changing
proximities, the other is the curvatures that are not in the proximities of the direction-
changing locations. We call them corner curvature and path curvature, respectively.

As shown in Figure 5.5, corner curvatures of Direct and Strong motions are eminently
higher than those of Indirect and Light motions. However, path curvatures of Indirect and

Light motions are noticeably higher than those of Direct and Strong motions.
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5.5.3 Swivel Angles

Empirical studies [32] show that Indirect and Free movements tend to be driven by the
elbow, which implies that there may be some significant swivel changes during Indirect
and Free movements. Our approach is to first estimate the swivel angles (see Figure 5.6)
given the known positions of the shoulder, elbow, and wrist, and then compute a group of
parameters associated with the swivel angles, which are in turn used to help discern the

motion qualities.

Shoulder
Joint

s f

Figure 5.6: Swivel angle in an arm posture

Let b be the vector from the center of the swivel plane ¢ to the elbow position E. Then
the swivel angle is the angle formed between b and 4, which is chosen to be lying in the

swivel plane and pointing downward.
b = é6-¢ = &—cos(a)|e|n

where @i is the normal vector of the swivel plane, and « can be decided from simple

trigonometry

. _ |laxb]|

sin(0) = EIE
_ _ab

cos (0) = RITET



It immediately follows

sin(6)

0 = atan(— 0 ,a-b) (5.8)

)= atanZ(Hﬁ X 13|

Careful examination of 288 motion samples proves the empirical studies [32] are
statistically correct. Figure 5.7 shows some of the comparisons among Indirect, Direct,
and Neutral movements in the Space dimension.

We observed that Indirect movements tend to have larger changes in swivel angles
than Direct and Neutral movements and such changes often occur in the high frequency
spectrum. We also observed that Direct and Neutral movements may have large absolute
swivel angles depending on particular movements. To make our analysis independent of
the peculiarities of the movements and focus on the regions in which differences appear
more often and larger, we use a discrete Fast Fourier Transformation (FFT) to filter out
the low frequencies and only compare the differences in the high frequencies. Figure 5.8
shows the transformations on an Indirect and a Neutral movement (The filtering threshold
value is set to 5).

We have identified five parameters to quantify the spatial and temporal differences
among these movements: (1) the average swivel angle changing rate (or velocity), (2)
the total summation of the swivel angle velocities (3) the number of zero-crossings of the
second derivative, (4) the total pendulum distances (swivel angle changes between all the
neighboring zero-crossings), and (5) the difference between the maximum and minimum

swivel angles.

5.5.4 Wrist Angles

Wrist angle is another important index for showing motion qualities. Careful human
movement observation reveals that Indirect and Free movements tend to have more frequent
wrist angle changes than Direct, Bound, and Sudden movements. Wrist angle is easily
computable from the 6D (position and orientation) motion capture data.

Suppose é is the vector from the elbow to the wrist, and i is the normal vector of the

palm, which can be captured by the sensor attached to the hand. Then, the wrist angle ¢
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Figure 5.9 shows the changes of the wrist angle during the same corresponding motions

shown in Fig 5.7. Again we can clearly tell the differences among the Indirect, Direct and

Neutral movements.

We have chosen five variables to quantitatively measure these differences: (1) the total

summation of the wrist angles, (2) the maximum wrist angle, (3) the total summation

of the wrist angle changing rate (or velocity), (4) the number of zero-crossings of the

second derivatives, and (5) the total pendulum distances (wrist angle changes between

Z€ro-crossings).
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5.5.5 Sternum Height

Sternum height is one of the motion features that we use to estimate Weight qualities and
to help discern between different Effort qualities.

In a Weight motion, “the prevailing effort is of muscular tension.”( [93], p. 199)
However, the motion capture system cannot directly measure muscular tension. We use
the sternum height as an indirect indicator of muscular tension. According to the Effort-
Shape affinities [12], a Light Weight motion generally corresponds to a Rising Shape while
a Strong Weight motion usually appears in tandem with a Sinking Shape. A sensor,
attached to the body near the sternum, is used to track the ups and downs of the body.
The sternum height is measured as the distance between the lowest and the highest point

in a movement.

Il Sudden-Time Il Sustained-Time
I Strong-Weight 9| I Light-Weight

sternum height
[}

sternum height
(9]

Al
0 J|JL||JJ‘

0
1234567 89101112 12345678 9101112

motion samples motion samples

Figure 5.10: Sternum height differences between Strong Weight and Sudden Time (left),
and between Light Weight and Sustained Time motions (right)

Sometimes notators fail to recognize the actual presence of the Weight element when
Sudden Time and Strong Weight are simultaneously active in the same movement, or
mistake Sudden Time as Strong Weight and vice visa when only one of them is actually
present in a movement. The addition of sternum height to form a combination of motion
factors can help to discriminate between such cases. Although the correlation between

muscular tension and the sternum height does not always hold up, particularly in some
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subtle gestures, our experimental data shows that the sternum heights are prominently
higher in Strong Weight and Light Weight motions than those in motions with other

Effort qualities (see Figure 5.10 for a comparison between Weight and Time dimensions).

4za7¥)

Figure 5.11: Zero-crossing and curvature

5.6 Segmentation

Bindiganavale [18] uses the zero-crossings of the second derivative of the motion data to
detect the descriptive changes in the motion. However, we find the approach does not work
well in our case because it is hard to find a consistent threshold value that can reliably

detect all the significant changes over a variety of motions—if the threshold is set low there
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are many zero-crossing points detected in some Indirect, Sudden, and/or Strong motions;
if the threshold is set high there are few, and sometimes no zero-crossing points detected
in some Indirect, Sustained, and/or Free motions.

We use a combined zero-crossing and curvature method. Digital examination of 288
motion samples shows that the motion curvature is prominently high when the motion
starts from rest, comes to a stop, or changes its direction. We skip the noisy periods that
are shortly after the start and shortly before the end, and focus on the turning points:
ones where significant motion quality changes frequently arise [12, 9]. The method gives
us consistently good results over the 288 samples. The top row in Figure 5.11 shows the
breakpoints produced by the zero-crossing method with threshold set to 1.0; the points
shown in the bottom row are detected by our method with the zero-crossing threshold set
to 1.0 and the curvature threshold set to 0.5. Motions on the left column use Indirect and

Light while those on the right use Sudden and Direct.

5.7 Backpropagation Networks

We use a one-hidden-layered feedforward neural network with error backpropagation to
estimate the relationships among the motion features and the Effort qualities that are
associated with the movements. Figure 5.12 shows the architecture of a backpropagation
neural network with one hidden layer.

The input to the jth hidden neuron is a linear projection of the input vector Z,

I
uj = Z wiwij
=0

where zj is the bias (equal to 1), and w;; is the weight connecting input neuron i and
hidden neuron j. The output of the hidden neuron is

I
hj = o(uj) = O'(Z Tiw;j)
=0

where o(+) is a nonlinear activation function. The most commonly used activation function

is the sigmoid function
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Figure 5.12: Backpropagation neural network with one hidden layer

The input to output neuron is

H
vk = ) Tk
Jj=0

and the output is

H

o =o(vg) = O'(Z hjw;i)
k=0

where wjj, is the weight connecting hidden neuron j and output neuron k.

The sum-of-squares error function has been frequently used as a measurement of
training errors. Backpropagation employs gradient descent to attempt to minimize this
error term:

E= % > (tk—op)®
keED
where D is the set of training samples, t; is the target output and oy, is the network output
for training sample k. (more details are presented in Section 5.7.3.)
Instead of using one network for all Effort dimensions (Space, Weight, Time, and Flow),

we use one network for each dimension. This provides more degrees of freedom to the
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networks for learning the hidden classification functions. It also provides more flexibility

in choosing a variable number of motion features for different dimensions.

5.7.1 Input Encoding

As explained in Section 5.5, motion capture data is preprocessed and motion features
are extracted. These features serve as different dimensions in the sample space where a
nonlinear decision surface will be learned by the neural network. Multiple input features
used for the Space network are shown and compared in Figure 5.13. They are extracted
from 38 sample motions performed by our professional LM A notators.

Before the input features are fed into the network, they must be first scaled and
normalized because they are in different measurement units. We use a simple linear

mapping of the motion features’ practical extremes to the acceptable neural network

extremes:
X = s(F— Fpin) + Xmin (5.10)
where
s Xmaz — Xmin
Frnaz — Fmin

Fioe and Fp;, are maximum and minimum limits of the motion feature, respectively,
depending on the whole data set. X4z and X, are the scaled maximum and minimum

limits, which are assigned to 1.0 and 0.0, respectively.

5.7.2 Output Encoding

We could output the three-way classification using a single output neuron, assigning
outputs of, say 0.1, 0.5, and 0.9, to encode the three possible values. Instead we use
three distinct output neurons, each representing one of the three possible qualities. Also,
rather than using 0 and 1 values, we use values of 0.1 and 0.9. The reason for avoiding the
use of 0 and 1 is that the sigmoid function cannot produce them given any finite weights.
The gradient descent will force the weights to grow without bound but the target can never

be reached.
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Figure 5.13: Some input features to the Space Network
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5.7.3 Training Algorithm

The training vectors consist of pairs of the form <#,0>, where Z is the vector of network

input values including the derived motion features such as velocity and acceleration that

are computed from motion segments, and & is the vector of target network output values,

which are numerical settings for the Effort Elements provided by an LMA notator. The

training algorithm is as follows:

e Construct a three-layered feedforward network with N; inputs, Np hidden neurons,

and N, output neurons.

e Initialize all network weights to small random numbers. (see Section 5.7.5 for an

explanation and justification.)

e Until the termination condition is satisfied, Do

— For each <Z, 0> in the training vectors, Do

1. Propagate the input forward through the network

(a)

Feed the input vector # to the network and compute the hidden output

h; (for hidden neuron j) and target output o (for output neuron k).

2. Propagate the errors backward through the network

(a)

For each network output neuron k, calculate its error item d:
Ok < (tk — ox)ok(1 — o)

O is the (t;,—oy) from the delta rule !, multiplied by the factor og (1—o),
which is the derivative of the sigmoid function.
For each hidden neuron h, calculate its error term dp:

Shon(l—on) > whkbk
k€outputs

The error term for hidden neuron A is calculated by summing the error
terms J; for each output neuron influenced by h, weighting each of the
0r’s by wpg, which characterizes the degree to which hidden neuron A

is responsible for the error in output neuron k.

!The delta rule is a method that uses gradient descent to search for possible weight factors to find the
weights that best fit the training vectors.
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(c) Update each network weight w;;:
wij — wij + Aw;j
where
Aw;j = nd;jTi; + aAw;;

where 7 is the learning rate, which is the factor that determines the
size of the steps that the network takes in navigating the weight space
in order to minimize the magnitude of the training error; and « is
the momentum that increases the size of a step when the direction
in the weight space is the same as the direction of the previous step,
and decreases the size of a step when the directions of the current and

previous step are not the same.

After the network has been trained, it can be used to predict motion qualities of new

motions.

5.7.4 Network Structure Determination

We use a one-hidden-layered network structure. Although the two-hidden-layered network
is more flexible in describing a complicated relationship, it has a drawback—a significant
increase in processing time. Hornik [58] proves that the one-hidden-layered network with
a sufficiently large number of hidden neurons can represent any functional relationship
between the input variables and the output variables. Therefore, we concentrate on the
second issue: how many hidden neurons are preferred to achieve the optimal classification
in a one-hidden-layered structure. We do not address the problem of whether or not a
network of more than one hidden layer may have a smaller total number of neurons in the
hidden layer, however.

The method we use is based on [104]: check whether there is any redundant information
on the outputs of the hidden neurons and, if any exists, the redundancy is eliminated using

principal component analysis (PCA).
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5.7.4.1 Principal Component Analysis

The goal of using PCA is to identify as few as possible hidden neurons that can explain all
(or nearly all) of the total variance. Since each hidden neuron has as input the linear sum
of the input variables and produces as output the sigmoidal transformation of the input.
If there is any redundant information (for example, a hidden neuron can be represented by
another hidden neuron or a set of hidden neurons), the “rank” of the correlated coefficient
matrix of outputs of the hidden neurons will be less than the number of hidden neurons 2.

The steps of the PCA method that we use to narrow down the hidden neurons are as

follows:

1. Initially train the network with an arbitrarily large number of hidden neurons. 3

2. Obtain the correlated coefficient matrix (p x p) of outputs of the hidden neurons,

where p is the number of hidden neurons previously chosen.
3. Compute the eigenvalues of the matrix.
4. Count the number (p*) of eigenvalues whose value is greater than one.

5. (a) If p* is less than p, choose p* as the number of hidden neurons. The process
may repeat on the new structure to ensure that the optimal number of hidden

neurons is actually obtained.

(b) Otherwise, no redundant information is confirmed; however, it is not guaranteed
that the current network has the optimal number of hidden neurons. The
network may need more hidden neurons to improve its performance. This should
not happen as long as the initial network has a sufficiently large number of

hidden neurons.

After determining the optimal number of hidden neurons, the network is retrained with

the new structure.

2Because the real-world data has a component of random variations, mathematically, the rank of the
matrix will never be less than the number of hidden neurons. Here we donot count the eigenvalues that
are very close to zero.

3In our experiments we arbitrarily picked a number between 8 and 16 as the initial number of hidden
neurons. Starting with different numbers does not have a significant effect on the computation results of
the optimal number of hidden neurons.
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5.7.4.2 Space Network

Fourteen motion features are chosen to feed into the input layer. These features are
the average velocity and acceleration, corner curvature and torsion, and a set of swivel
angle and wrist angle parameters (see Sections 5.5.3 and 5.5.4). As to which features or
combination of features are the best to use, we base our decision on observation, logical
design, and the PCA method. A feature that can be represented by another feature or a
set of other features is excluded.

We start to train the Space Network by initially setting the number of hidden neurons
to eight. The eigenvalues of the correlated coefficient matrix of outputs of the hidden
neurons are: <6.4164, 1.1015, 0.2899, 0.0858, 0.0523, 0.0266, 0.0172, 0.0105>. The two
principal components 4 can explain up to 93.97% of the total variation. Therefore, two
hidden neurons are used as an optimal size for the hidden layer and the network is retrained.
For comparison the same data set is trained by four other different network models as well.
All networks are trained with a momentum factor of 0.3 and a learning rate of 0.3. The
experiment is repeated twenty times, each time with different initial weights. Table 5.2
shows that the network with a structure of 14 x 2 x 3 has the smallest validation error (all

the errors are computed based on the scaled input).

Network | Training Mean | Training Mean | Validation Mean | Validation Mean
Structure Square Error | Absolute Error Square Error Absolute Error
(TMSE) (TMAE) (VMSE) (VMAE)

14 x14 x 3 0.0018 0.0458 0.1124 0.3518

14 x 8 x 3 0.0020 0.0551 0.0960 0.3105

14 x 3 x 3 0.0057 0.0796 0.0801 0.2580

14 x 2 x 3 0.0183 0.0881 0.0550 0.2044
14x1x3 0.1390 0.4124 0.2921 0.6204

Table 5.2: Training and validating results from different structures of the Space network

Note that networks with more than two hidden units have a lower MSE and MAE over
the training samples, but a higher MSE and MAE over the validation samples. It shows

that, with increasing hidden neurons, the weights are being tuned to fit idiosyncrasies

16.4164 and 1.1015, which are greater than one.
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(or noise) of the training examples that are not representative of the general distribution
of examples. (This leads to the so-called owerfitting or overtraining problem, which is
discussed in Section 5.7.6.) The network structure with two hidden neurons gives the best

generalization performance for the Space network.

5.7.4.3 Time Network

Four motion features—total time (7), total distance (D), average velocity (7), and average
acceleration (a)—are used for the Time network.

We start with twelve hidden neurons. The eigenvalues of the correlated coefficient
matrix of outputs of the hidden neurons are: <6.9384, 2.7981, 1.8804, 0.2028, 0.1067,
0.0331, 0.0267, 0.0069, 0.0027, 0.0022, 0.0019, 0.0001>. The three principal components
can explain up to 96.81% of the total variation. Therefore, a structure of 4 x 3 x 3 is used for
the Time Network. The training and validating results from different network structures
are shown in Table 5.3. Although the performance of networks with more hidden neurons

is not degraded quickly, the training time is increasingly longer.

Network | Training Mean | Training Mean | Validation Mean | Validation Mean
Structure | Square Error | Absolute Error Square Error Absolute Error
(TMSE) (TMAE) (VMSE) (VMAE)
4x8x3 0.0014 0.0459 0.0169 0.1168
4x4x3 0.0020 0.0435 0.0142 0.1126
4x3x3 0.0025 0.0476 0.0133 0.1075
4x2x%x3 0.0032 0.0521 0.0179 0.1217
4x1x3 0.1298 0.3961 0.1311 0.4183

Table 5.3: Training and validating results from different structures of the Time network

5.7.4.4 Weight Network

In the Weight network, we use as input six motion features: total time, total distance,
average velocity, average acceleration, corner curvature, and sternum height.

Initially the network is trained with sixteen hidden neurons. The eigenvalues of the
correlated coefficient matrix of outputs of the hidden neurons are: <6.2793, 4.5634, 2.8555,
0.7646, 0.5021, 0.3923, 0.2480, 0.1758, 0.0965, 0.0472, 0.0360, 0.0199, 0.0123, 0.0041,
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0.0018, 0.0011>. We choose to use 6 x 3% 3 as the network structure. The validating results
from different network structures (shown in Table 5.4) prove that the structure gives the
optimal performance on previously unseen samples, and therefore the best generalization

accuracy.

Network | Training Mean | Training Mean | Validation Mean | Validation Mean
Structure | Absolute Error | Absolute Error Square Error Absolute Error
(TMSE) (TMAE) (VMSE) (VMAE)
6 x8x3 0.0372 0.1992 0.1760 0.4260
6 x6x3 0.0234 0.1780 0.1672 0.4179
6x4x3 0.0280 0.2053 0.1636 0.4311
6 x3x3 0.0593 0.2774 0.1358 0.3984
6 x2x3 0.0891 0.2778 0.1941 0.4142
6x1x3 0.2524 0.6438 0.4872 0.8896

Table 5.4: Training and validating results from different structures of the Weight network

5.7.4.5 Flow Network

Seven motion features are selected as the input to the Flow network. They are the total
time, total distance, average velocity, average acceleration, corner curvature, number of
wrist angle zero-crossings and the PAD (the percentage of accelerations and decelerations
in a motion as discussed in Section 5.5.1).

We arbitrarily set the initial number of hidden neurons to twelve. The eigenvalues of
the correlated coefficient matrix of outputs of the hidden neurons are: <8.5278, 2.3050,
0.5340, 0.3535, 0.1571, 0.0501, 0.0386, 0.0234, 0.0035, 0.0033, 0.0024, 0.0014>. Since the
two principal components can explain up to 90.27% of the total variations, we choose
7 x 2 x 3 as the flow network structure. In the experiments where a momentum factor of
0.3 and a learning rate of 0.3 are used, this structure has the best performance over the
validation data set.

Examining the lists of eigenvalues (including the ones computed in previous sections)
reveals that, while the size of the eigenvalues decreases steadily, it almost never drops to
zero. This makes sense, because the real-world data has a component of random variation

in the data that never can be linearly represented by one another.
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Network | Training Mean | Training Mean | Validation Mean | Validation Mean
Structure | Square Error | Absolute Error Square Error Absolute Error
(TMSE) (TMAE) (VMSE) (VMAE)
Tx14x3 0.0092 0.1178 0.2405 0.4321
TXT7Tx3 0.0095 0.1200 0.2574 0.4409
7Tx3x3 0.0130 0.1324 0.2499 0.4525
7TxX2x%x3 0.0189 0.1296 0.2232 0.4143
7x1x3 0.1434 0.4454 0.3034 0.5445

Table 5.5: Training and validating results from different structures of the Flow network

5.7.5 Convergence and Local Minima

Theoretically, the backpropagation classifier is an optimization of a criterion function with
respect to a set of parameters (weights), and the gradient descent is a local optimization
technique, therefore, only local minima can be converged upon. In practical applications,
local minima have not been found to be as severe as one might fear [92]. If carefully
designed, the classifier can be a highly effective function approximation method, despite
the lack of assured convergence to a global minimum. We use several heuristics to alleviate

the problem of local minima:

e We try to use as many features as possible that can be reliably derived from the
motion capture data, without incurring a significant increase in the processing time
of the network. For example, we use 14 motion features for the Space network.
This generates many input-to-hidden connections and therefore many weights in the
network. Since the gradient descent process traverses a weight-error surface in a high
dimensional space (one dimension per weight), the more weights in the network, the
more dimensions that might provide “escape routes” for the gradient descent to fall
away from a local minimum. When the gradient descent falls into a local minimum
with respect to one weight, it is not necessarily in a local minimum with respect to

all other weights.

e A momentum factor is used in the weight-update rule. The momentum factor can
sometimes carry the gradient descent through narrow local minima, although it can

also carry it through narrow global minima, into other local minima. Local minima in
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the region very close to a global minimum are generally considered to be acceptable.

A method introduced in [133] of initializing the connection weights to small random
values is used to avoid false local minima. The sigmoid function is approximately
linear when the weights are close to zero. Only after the weights have had time to
grow will they make the weight-error surfaces highly nonlinear and generate more
local minima. By then we can expect weights have already moved to a region very

close to a global minimum.

A stochastic gradient descent rather than a true gradient descent is used during the
learning process . Since each training sample usually has different local minima, it

is less likely for a stochastic gradient descent to get stuck in any of them.

Multiple networks are trained using the same data but with different random starting
weights. Since the different training efforts lead to different local minima, the network
with the best performance over a separate validation data set may converge to the
local minima closest to the global minimum. Iyer and Rhinehart [61] present a
method to determine how many networks need to be trained to ensure that the
best of those is within a desirable performance within a certain level of confidence.
According to the method, twenty networks need to be trained with different initial
weights in order to be 99% confident that the best performance of them will result

in one of the best 20% values for the sum-of-squared errors over the validation set.

Alternatively, all the networks can form a voting committee and the final decision is

based on the majority of the voting and their past voting credibilities (see Fig. 5.14).

All the heuristics described above are employed in our neural networks.

5.7.6 Generalization and Cross-validation

As mentioned in previous sections, when there are too many weight-tuning iterations during

the training process, backpropagation tends to create overly complex decision surfaces that

5The difference between the two lies in when to update the weights. A stochastic gradient descent
updates the weights after seeing each training sample, while a true gradient descent alters the weights after
seeing all the training samples.

96



uffers Files Tools Edit Search Mule Helj

[ |#wvision8-1.data {Free)

[ 0.8923 0.0786 0.1057 ]

[ 0. 8331 0.0765 0.1061 ]

[ 0.3007 0.0778 0.1030 ]

[ 0.3038 0.0934 0.1035 ]

[ 0.9034 0.0930 0.1031 ]

Voting: =» Free
$vision2-2.data (Bound)

[ 0.00869 0.0564 0.9628 ]
0.0178 0.0455 0.9776
0.0744 0.0144 0.9929
0.0000 0.0633 0.9337
0.0001 0.0644 0.9331

YVoting: => Bound.
0.0041 0.0096 0.9948
0.0102 0.0031 0.9991
0.0842 0.0001 1.0000
0. 0000 0.0271 0.9698
0.0001 0.0266 0.9705

Voting: =» Bound.

$visiond-2.data (Free)
0.8923 0.0786 0.1057
0. 8931 0.0765 0.1061
0.3007 0.0778 0.1030

[ 0.3038 0.0934 0.1035 ]

[ 0.9034 0.0930 0.1031 ]

Voting: =» Free.

#test-free-direct-You.data (Free)

[ 0.8923 0.0786 0.1057 ]

[ 0.8931 0.0765 0.1061 ]

[ 0.9007 0.0778 0.1030 ]

[ 0.3038 0.0934 0.1035 ]

[ 0.9034 0.0930 0.1031 ]

YVoting: =» Free.

[ 0.8923 0.0786 0.1057 ]

[ 0.8931 0.0765 0.1061 ]

[ 0.3007 0.0778 0.1030 ]

[ 0.3038 0.0934 0.1035 ]

[ 0.9034 0.0930 0.1031 ]

Voting: =» Free.

$test-indirect-free-well.data

[ 0.8922 0.0787 0.1058 ]

[ 0.8930 0.07686 0.1081 ]

[ 0.9007 0.0778 0.1030
0.3035 0.0939 0.1032
0.9032 0.03933 0.1030
g =>» Free.[]

(Free)

#glidel.data (Light)
0.5113 0.0763 0.5375
0.3915 0.0015 0.0601
0.9931 0.0005 0.0826
0.9955 0.0003 0.0280
0.2996 0.0000 0.7001
0.65804 0.0617 0.3882
0.6028 0.0743 0.4805
0.9898 0.0010 0.0569
0.9738 0.0008 0.2062
0.5120 0.0895 0.5202
0.5498 0.0883 0.4861
Voting: =» Light.
$slash0.data {2trong)
0.5120 0.0762 0.5376
0.4515 0.1103 0.5630
0.4537 0.1125 0.5537
0.3960 0.1233 0.6066
0.0001 0.0819 0.9939
0.2397 0.0972 0.7432
0.4803 0.0947 0.5415
0.4465 0.1131 0. 5660
0.44738 0.1302 0.5338
0.4834 0.0913 0.5414
[ 0.5757 0.0913 0.4444
Voting: =» Ztrondg.
ftest-quick-strong-Ho. data
[ 0.5028 0.0781 0.5348
[ 0.4378 0.1100 0.5761
[ 0.4303 0.1118 0.5818
[ 0.33958 0.1234 0. 6065
[ 0.3058 0.1007 0.7021
[ 0.2338 0.0975 0.7553
[ 0.45851 0.0947 0.5556
[ 0.4382 0.1128 0.5739
[ 0.4476 0.1303 0.5338
[ 0.4754 0.0914 0.5434
[ 0.58571 0.0916 0.4623
Voting: =» Ztrondg.
$test-gquick-strong-Yes.data
[ 0.5120 0.0762 0.5376
[ 0.45397 0.1105 0.5551
[ 0.4577 0.1125 0.5559
[ 0.3973 0.1228 0. 6057
[ 0.4247 0.1014 0.5942
[ 0.2754 0.0945 0.715¢6
[ 0.4383 0.0347 0.5339
--2linkv: weight-testing.result

Figure 5.14: Network voting results
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fit noise or unrepresentative characteristics of the particular training samples. This is the

overtraining problem, which affects negatively the generalization accuracy of the network.

To avoid the overfitting problem, we use a set of validation data, independent of the
training data set, to measure the generalization accuracy. The network monitors the error
with respect to the validation set while using the training set to drive the gradient descent
search. Once the trained weights reach a significantly higher error over the validation set,
implying that the networks starting to learn the unimportant details of the training set,

the training is terminated. Figure 5.15 shows the cross-validation process in the Space

network.
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Figure 5.15: Overcoming the overfitting with cross-validation
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5.8 Experimental Results

For each Effort dimension, we have constructed a dedicated neural network. Each network

is trained, validated, and tested over a number of motion samples.

Every motion sample is created through trial and error. We have two professional LMA
notators (a female and a male) working with us. They serve as a subject and an observer
in one session and in another session they switch their roles. This makes the observation
independent of performance and gender bias. Moreover, the subject and the observer are in
the loop. The subject can exploit the immediate visual feedback from the observer, as well
as the feedback that is felt kinesthetically by herself during the performance, to change the
motion, if necessary, to ensure that the desired quality is reflected both kinesthetically and
visually. The process may be repeated multiple times until a consensus between the LMA
notators is reached. Furthermore, each of the captured motions is replayed in the Jack
environment and an off-line labeling process is undertaken with the help of LM A notators

to prune the samples that donot accurately reflect their desired motion qualities.

The entire set of motion samples can be divided into three groups. One group consists
of “pure” Effort motions. The motion quality in this group is “pure” in the sense that
one particular Effort element is prominently evident while other elements are not readily
apparent. In general, pure, isolated Weight, Time, and Space Effort elements rarely, if ever,
appear spontaneously; motions with one single isolated Effort element are not only very
difficult to perform, but are also very unnatural. In our experiments, instead of trying to
capture purely isolated Effort elements, our LMA notators try to demonstrate one Effort
dimension as kinesthetically and visually as possible while making other dimensions as
neutral as possible.

The second group is composed of motions in which Effort elements are in “mixed”
form. We use the principal combinations that have been long identified and well studied
in the LMA theory. These combinations are Action Drives, Passion Drives, Vision Drives,
and Spell Drives (see [12], pp. 57-68). Action Drives are the combinations of Effort
Space, Weight, and Time. They include the basic Effort actions: Punch, Float and their
modifications: Glide, Slash, Dab, Wring, Flick and Press (see Table 5.6). Combinations

of three Effort elements in which Flow is active at the expense of either Space, Weight or
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Time are identified as Passion Drives (Spaceless), Vision Drives (Weightless), and Spell
Drives (Timeless). These combinations are shown in Table 5.7, 5.8, and 5.9, respectively.

The third group includes some simple gestures that people consciously do in everyday
life, such as waving, touching or hitting a balloon.

Each of the motion samples is then visualized in our motion capture system and
examined against the video sequences of the same motion that are captured during the
live performance. Motions that do not have a visually distinguishable Effort element
are removed from the data set. Motions that remain are labeled and used as training,
validation, and/or testing samples with known Effort qualities. Table 5.10 shows the

partitions of the motion samples for each of the networks 6.

Action Space Weight Time Flow
Drive | Indirect | Direct | Light | Strong | Sustained | Sudden | Free | Bound
Punch X X X

Float X X X

Glide X X X

Slash X X X

Wring X X X

Dab X X X

Flick X X X

Press X X X

Table 5.6: Effort combinations in the Action Drive

Our testing strategy was chosen considering the following criteria:

e Each network is only responsible for recognizing the Effort elements in its dimension.
During the labeling process we only mark down the prominent Effort elements, but
the motion may have more-or-less other Effort elements in it. Thus, if a motion being
labeled as a Strong Weight, for instance, is fed into the Time network, no matter
what the Time network concludes, we do not count it as a failure, nor as a success,

for the Time network. This implies that we do not test using Neutral samples.

A k-fold cross-validation method as described in [92] is used to determine how many gradient descent
iterations should be performed before the training is forced to terminate. After the optimal number of
iterations has been found, a final run of backpropagation is performed training on all the training and
validation samples—we do not lose any training samples when validating the network.
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Passion Space Weight Time Flow
Drive Indirect | Direct | Light | Strong | Sustained | Sudden | Free | Bound
Passion 1 X X X
Passion 2 X X X
Passion 3 X X X
Passion 4 X X X
Passion 5 X X X
Passion 6 X X X
Passion 7 X X X
Passion 8 X X X
Table 5.7: Effort combinations in the Passion Drive
Vision Space— Weight Time Flow
Drive | Indirect | Direct | Light | Strong | Sustained | Sudden | Free | Bound
Vision 1 X X X
Vision 2 X X X
Vision 3 X X X
Vision 4 X X X
Vision 5 X X X
Vision 6 X X X
Vision 7 X X X
Vision 8 X X X
Table 5.8: Effort combinations in the Vision Drive
Spell Space Weight Time Flow
Drive | Indirect | Direct | Light | Strong | Sustained | Sudden | Free | Bound
Spell 1 X X X
Spell 2 X X X
Spell 3 X X X
Spell 4 X X X
Spell 5 X X X
Spell 6 X X X
Spell 7 X X X
Spell 8 X X X

Table 5.9: Effort combinations in the Spell Drive
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Network | Network Total | # Training | # Validation k-fold # Testing
Name Structure | Samples Samples Samples Validation | Samples
Space | 14x2x3 117 91 9 10-fold 26
Weight | 6 x 3 x 3 114 80 5 16-fold 34
Time 4x3x3 199 101 7 14-fold 98
Flow 7Tx2x3 96 47 5 9-fold 44

Table 5.10: Partitions of the available motion samples

e However, if the Strong Weight motion in the previous example is fed into the Weight
network but the Weight network predicts Light, it counts as a mistake for the Weight

network; if a conclusion of Strong is reached, a success is counted.

e Motions with Effort factors in combination are fed to corresponding networks and
tested separately. For example, a Strong and Quick motion is fed into the Weight
and Time networks. If the Weight network returns a Strong, a success is counted for
the Weight network, otherwise a failure is counted. Similar testing is done for the

Time network as well.

The testing data set for the Time network contains 98 motion samples, each of which
encodes an Effort Time factor, either as an isolated or as a combined component. The
confusion matrix (in Table 1.7) shows that the trained Time network only mistakes
4 Sustained samples as Neutral and predicts perfectly on Sudden samples. Further
investigation finds that each of the four Sustained samples occurs at the finishing segment
of a motion. We suspect that the Sustained factor perhaps has not been well manifested by
our LMA notators in some of the original motions. In the experiments the LMA notators
always return to a resting pose and maintain a neutral readiness after finishing each motion;
they may transit to the neutral readiness a little too early in some of the four cases.

The experimental results reveal that the Weight network generally predicts motion
qualities successfully over a number of motion samples but may get confused when a
Strong motion is performed very slowly, or when a Light motion is done very rapidly.
As we mentioned before, the network does not have information such as muscle tension
and volume changes, instead it makes its decision primarily on the geometric information

computed from the motion trajectories. The feature of sternum height can help in some
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cases to distinguish between a Strong and a Light motion, but the feature is not always
able to draw the line. In some cases, the Weight network may mistakenly interpret a
Strong motion that is performed very slowly as a Light motion, and a Light motion that
is performed very quickly as a Strong motion. This is certainly a bad interpretation.
However, humans cannot do better in such cases, given the data currently available in
the system. It would be unrealistic to expect the network to accurately and precisely
recognize motion qualities 100 percent of all the time. If additional information such as

muscle tension and volume changes can be somehow acquired, this kind of confusion can

very probably be avoided.

Time Actual Weight Actual
Network S |N| Q Network L|N|S
S 144101 0 L|12|0]| 2
Predicted | N | 4 | 0| O Predicted 01]0]0
Q| 0| 0/50 S 2 0|18
Table 5.11. Confusion matrix Table 5.13. Confusion matrix
Flow Actual Space Actual
Network F |N| B Network I |N|D
F |27 0| 2 I 13]0] 0
Predicted 1100 Predicted | N | 1 | 0 | 1
B| 0 ]|0]|14 D| 0| 0|11
Table 5.12. Confusion matrix Table 5.14. Confusion matrix

Among the 44 testing samples which have either Bound or Free Flow, 41 are recognized
correctly by the Flow network. However, the network twice mistakes the Bound component
in a Quick and Bound motion as a Free Flow, and misinterprets the Free component in a
Free and Sustained motion as a Neutral Flow. The overall recognition rate is 93.18%. There
are several possible reasons for the misinterpretations: (1) A Quick and Bound motion has
sort of “contradicting” qualities, comprising a quality of impact with an increasing speed

and a quality of holding back. This may result in spontaneous changes of the velocity,
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misleading the Flow networks to predict Free. In addition, the Flow networks may have
relatively larger weights on the input feature of velocity, outweighing the quality of holding
back in this case. (2) Additional features, in particular those that can capture the subtleties
as the motion ends, may be needed to further separate the dimensions. (3) The networks
might have not seen sufficiently enough training samples, particularly those that encode
some “contradicting” qualities. Therefore the boundaries formed in the weight space are
not fine enough to discriminate the samples that are very close to the boundaries.

The Space network functions very well, as it uses fourteen motion features as input and
these features can be very distinctive between Direct and Indirect motions, as shown in
Figure 5.13. However, the network does not recognize the Effort quality 100 percent of the
time either, particularly when the Indirect component is encoded in an Indirect-Strong-
Sudden motion, or when the Direct is mixed with Light and Sustained components, the
Space network might be confused.

In summary, all the trained networks have a demonstrated accuracy of about 90%
in recognizing Effort motion qualities for a group of people who deliberately made these
expressions. The recognition accuracy is equal to or slightly better than an LMA notator,
and significantly higher than a naive observer. According to our experiments, the naive
observer frequently miss one or two Effort factors in motions that involve a combination
of Effort factors. In addition, in order to recognize or realize the subtleties of a particular
movement pattern, careful and repetitive observations are often required. QOur neural
network based systems do much better in such cases. The performance of the acquisition
systems could be further improved if more diversified training samples are available,
however, whenever computers are asked to make decisions related to problems that cannot
be solved with rigorous rules, pure logic, or exhaustive search of a space of all possibilities,
they are always subject to errors of judgment. The training based recognizer described in

this chapter is no exception.
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Chapter 6

Gesture Acquisition from Video

Motion capture provides good accuracy and quick measurements, but attaching electro-
magnetic or optical sensors and devices limits applications and is too cumbersome and
restricting for natural gestures. Markerless video processing and analysis can in fact
be used to recover motion structure and styles directly from 2D images. The recovered
image positions of a specific location (i.e, the right hand) can be transformed into
3D trajectories via triangulation of the measurements from multiple cameras and a

parameterized representation of the actor’s movements can be calculated [57].

Our major goal in this chapter is to extract the four Effort parameters from 2D
image projections. Our vision-based motion estimation algorithms will provide the low-
level motion parameters such as 2D (image) position, velocity, and acceleration data and
our 3D analysis will provide correlated 3D motion factors. The neural network model
trained to recognize EMOTE qualities in the previous chapter can clearly be applied to
the reconstructed 3D factors. Like the motion capture model developed in the previous
chapter, the video model is essentially a low-to-medium level transformation which involves
capturing spatiotemporal patterns and signals of both local and global changes in a
movement, and relating these patterns to a category of motion quality, namely the Effort
quality.

Figure 6.1 shows the architecture of the whole system, incorporating both the
acquisition and the synthesis process. The synthesis part is chiefly used to re-animate the

data in graphical output for the purpose of visual evaluation. The acquisition part, which
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Figure 6.1: The system architecture

we concentrate on in this chapter, comprises three major components: image analysis,
feature extraction, and the neural network. The remainder of the chapter is organized as
follows. Section 6.1 describes the video system we used to capture motion images. A variety
of computer vision techniques are employed to extract the image features in Section 6.2.
Section 6.3 briefly describes the algorithm used to estimate the 3D position of the hand
and the head. Finally, Section 6.4 presents the sample space used in the experiments, the
motion features extracted from the reconstructed motion trajectories, and the experimental

results based on the trained neural networks.

6.1 Video Capture System

The video capture system we used is from Vision 17™ with two Kodak ES310 cameras.
The cameras run in a continuous mode and collect images at frame rate of 43 fps. The
cameras and the capture devices (installed on two PCs) are synchronized with an external
pulse signal.

To make the acquisition process fast and reliable, we impose some requirements that

can be easily satisfied in practice. First, we require the background be of uniformly low
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intensity, and the performing person wear dark-color clothes. This enables us in efficient
and reliable extraction of the moving hand from the background. Second, the two cameras
are pre-calibrated and remain stationary. A planar checkerboard with 13 x 15 square
pattern (each 30mmx30mm) placed at twelve different locations and orientations is used
for the calibration. Figure 6.2 shows two different locations and orientations out of the

twelve.

Figure 6.2: The checkboard used for the camera calibration (left column: images captured
by the left camera; right column: images captured by the right camera)

6.2 Image Analysis

Upon receipt of each image, the system first processes the image by applying a threshold

function

B(i. ) 1 1I(i,j) > threshold
%]) =
0 otherwise

where I(i,j) represents the intensity of pixel at (4, j). The resulting image can be regarded

as a black and white binary image. The two white regions in the image are the head and

107



the hand. We use a sequential connected component algorithm [118] to extract and label

the two regions. Then, we use a simple heuristic to distinguish the two:

A, < Ay

where Ay and Ay represent the area covered by the head and the hand, respectively. The

area of a region is measured by the total number of pixels it covers in the image.
A=Y Y BG.))
i g
To make the detection algorithm simpler and faster, we assume the hand always starts from
a resting position before any motion occurs. A Cartesian coordinate system is defined with
its origin fixed at the center of the body and the x-axis going horizontally from the right to

the left and the y-axis going upwards. The initial position of the hand in such a coordinate

system is supposed to be either in the third or fourth quadrant.

e Centroid of the hand
The coordinates of the centroid are determined by simply averaging the coordinates

of each pixel in the hand’s area.

» — Mg
T = My
7 — Mo
Y = Mo

where Myy, Mg and My, are the image moments.

Mo = 32;251(i,9)

Moy = 3 Zj yI(i, 4)

My = 3, 2;21(i,7)
The harder problem is how to locate the centroid on the next image (or the following
images)—the well-known inter-frame point/feature correspondence problem. In our
approach, a simple heuristic is used to determine which point represents the centroid
of the hand. The first image is used as the referencing template to locate the hand

and compute its centroid. A 3 x 3 grid around the centroid is initially calculated:

Iyo Ipyx Iop
Ly Ins Ios

Lye Io7 Iog
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For the next image, we use the 3 X 3 grid as a convolution mask to check each pixel ¢
in the most promising area and determine if it is the centroid according to the least

squares matching criterion:

Si=olliy —To)* = min
where I; ; is the intensity of pixel j, a neighbor of pixel 7 in the 3 x 3 grid.

Centroid of the head

The centroid of the head can be similarly estimated as well. The locations of the
hand and the head are shown in a bounding box, respectively (see Figure 6.4).
In our experiments, the head rarely makes any big movement, therefore the 3D
position of the head can be well approximated most of the time. The hand moves
throughout the near-body and mid-body space, however, and its estimated position
can be temporarily deviated from its normal trajectory when the bounding box of
the hand collides with the one of the head. Under such circumstances, the estimated
position of the hand is adjusted using a simple continuity/discontinuity algorithm

described in [57].

Orientation of the hand

Define the intermediate variables a, b, and ¢,

— My _ =2
a —MOO X
_ My _ =5
b = 2(1\/[00 zy)
— Mo _ 22
C = Mo Y

where Myy and My, are the second order moments with respect to the pixel at 7 and
j, respectively.

My = 3;3;4°1(i,5)

Moy = 3;%;5%1(i,5)
The orientation of the hand can be determined by

arctan2(b, (a — ¢))
Y= 9
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6.3 3D Estimation

Given 2D positions in two camera perspective system, we can estimate the 3D positions of

the hand and the head.

Ty : transformation matrix from global to local at camera 1
T, : transformation matrix from global to local at camera 2
f1 : focal length of camera 1

f2 : focal length of camera 2
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Figure 6.3: The two camera imaging geometry
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O : origin of the world coordinate system
O : origin of the coordinate system fixed at camera 1
Oy : origin of the coordinate system fixed at camera 2

Q= (XY, Z)T : spatial vector Q w.r.t O at time #;

Q1= (X1, Y1, Zl)T : spatial vector Q w.r.t O; at time t;
"= (X1,Y{,Z))T : spatial vector Q w.r.t O; at time to

Qo= (X2,Ys, Z5)" : spatial vector Q w.r.t O at time #;
b= (X},Y], Z5)T . spatial vector Q w.r.t Oy at time ty

P = (ml,yl)T : image vector P; w.r.t Op at time ¢;

Py= (mg,yg)T : image vector P, w.r.t Oy at time 4

P = («},9})7 : image vector P; w.r.t O; at time t,

Py= (xh,45)T : image vector P, w.r.t Oy at time t,

Assuming that the projection planes are parallel to the zy-plane at z = f; (for camera 1)
and z = fy (for camera 2), the coordinates of points P, and P» in the camera coordinate

system are given by perspective transformation:

(3713 yl) = le)l(l ) le};l (6 1)
(we,y0) = (L2, L%

The points 1 and Q)2 are two different representations of the same point @) under different

camera coordinate systems.

(X,Y,Z) = (X17Y1;Z1)T1_1

(6.2)
(X7Y7 Z) = (X27Y§;Z2)T2_1

Combining Eq. 6.1 and Eq. 6.2 ends up with 7 equations in 6 unknowns, therefore, the
determination of (X,Y, Z)" at time ¢, is to find the solution of a set of simultaneous linear

equations [57, 118]. We can compute (X', Y’, Z’) at time t2 in the same fashion.

6.4 Experimental Results

Compared with the motion capture model, where we have a fairly large sample space of

motions that cover different spatial directions, planes, and dimensions and have different
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forms, the video model has a rather limited sample space. So far 24 complete motions
have been performed by our professional LM A notators and captured through two cameras.
Although the sample space is not general enough to be used as a training data set, it might
suffice to form a testing data set. On the other hand, the samples that were captured in the
motion capture model can actually be re-used in the video model. Indeed, the two models
merely differ in how the motions are actually acquired and constructed: the underlying
structure and styles of the motion are essentially the same. Some motion factors available
or computable through the motion capture system, such as the swivel angles, may not be
readily computable through the video capture system. An important hypothesis in our
research, however, is that the reduced data set of image motion factors still suffices to
provide the essential triggers for the recognition of distinct EMOTE Effort parameters.
Based on this assumption, we do not have to bother to capture many motion samples in
video, which are often subject to noise and inaccuracies, rather, we re-use the samples that
were already captured through the motion capture system, which can provide the good
accuracy that a training algorithm requires. Thus, the combined approach enables us to
take advantage of both motion capture and video capture system while avoiding some of
their disadvantages.

All the motion samples captured through the two cameras are reconstructed in a real-
time fashion based on a video capture system developed by Shan Lu ! (see Figure 6.4).
The recovered 3D motion trajectories are then retargeted to the human figure that is
geometrically similar to the performing person in the Jack Toolkit environment (see
Figure 6.5).

Derived from each 3D motion trajectory are ten motion features: the total traversing
time (t), total traversing distance (d), average velocity (v), average acceleration (a), number
of zero-crossings of the second derivative (nZC) (or the weaving rate), average path
curvature (pk), average corner curvature (ck), average torsion (7), number of zero-crossings
of the first derivative of the wrist orientation (wf), and head height (hh). Comparing this
motion feature set with the one used before in the motion capture model yields some

minor discrepancies. However, the wrist orientation and head height can be used as an

'He is a researcher working in the Vision, Analysis and Simulation Technology Lab directed by Dimitris
Metaxas. He is on a fellowship from Keihanna Human Info-Communication Research Center, Japan.
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Figure 6.4: 3D estimation from two 2D images

Figure 6.5: Trajectories of different motion styles (left: Sustained, middle: Neutral, right:
Sudden)
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approximation to the wrist angle and the sternum height, respectively, although they have
to be first scaled before they can be actually used in the neural networks. The only neural
network used in the motion capture model that has to be restructured to fit to the video
capture data is the Space network, since some motion features such as swivel angles are
unavailable from the video model. Therefore, the Space network has to be re-trained based
on a subset of the motion features that it was previously trained upon. Other networks
stay the same.

Although extensive testing with a large set of video captured motion samples has not
yet been fully explored, we find that the experiments over the samples we currently have 2
give us quite satisfying results. Comparing the motion qualities automatically recognized
by the neural networks with the ones manually specified by our LM A notators yields very
few disagreements. Tables 6.1-6.4 show the experimental results. Note that the results are

based on motion segments rather than whole motions.

Table 6.1. Confusion matrix

Table 6.2. Confusion matrix

Compared with the recognition rates we had in the motion capture model, the

Time Actual Weight Actual

Network S|IN|Q Network L|INJ|S
S|8]0|0 L1200

Predicted | N [ 1 | 0 | 1 Predicted 1107 2
Q1|06 S|{1]0/|10

Table 6.3. Confusion matrix

Flow Actual Space Actual

Network F|N|B Network I |N|D
F|710]0 I |13]0] 0

Predicted 20| 2 Predicted | N | 2 | 0 | 1
B{0o|0]11 D0 |0]10

Table 6.4. Confusion matrix

?We have one or two motion samples for each Effort factor captured on the video.
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recognition rates of the video model are a little lower, however, the sample space is not
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Figure 6.6: Original motion performed by our LMA notator

Figure 6.7: Motion trajectory recovered in the video capture system
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Figure 6.9: Animation generated using learned qualities
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big and diversified enough to conclude so. There are several possible reasons for the lower
recognition rates: (1) we use some features that are actually approximation of the features
that we used in the motion capture model, the estimated features may not be correspond
very closely to the ones we used to train the networks; (2) the video data is more noisy than
the motion capture data, for example, at some pionts the hand may be very briefly out of
the capturing window, and at some other points the bounding box of the hand may collide
temporarily with the bounding box of the head. Both cases may cause miscalculation
of the actual positions of the hand. Although we used an inertia and coherence based
estimation heuristic to smooth the trajectory, it still can not be as accurate and precise as

the motion data.

On the other side, closer scrutiny at the disagreement points shows our networks
sometimes work even better. For example, in a Sustained movement our LMA notators
tried to perform Sustained Time to every segment of the movement, but they did not really
do so (but just thought so) at some points, particularly when the motion starts, ends, and
transits. Our neural networks successfully recognize the different (or additional) qualities
encoded at these points. Examining the animations generated by expert set qualities and
by learned qualities, with the original motions shows that the learned qualities make the

animation more natural (see Figures 6.8 and 6.9 3).

Finally, we also carried out some experiments to determine Effort qualities from single-
camera, video projections. Although the depth information cannot be uniquely determined
by monocular vision, our experiments show that the 3D trajectories projected onto 2D
images (from the single camera view) still, in many cases, preserve the presence of many
low level motion factors. Trajectories of motion samples in Weight and Space dimensions

are shown in monocular and stereo views, respectively (see Figure 6.10 and Figure 6.11).

Comparing the 2D trajectories with the 3D trajectories reveals that the first-order
(relative velocity) and second-order features (relative accelerations and zero-crossings)
are preserved in most of the motion segments. This implies that single-camera video
projections may suffice to provide the many factors that characterize Effort parameters.

However, in cases when the depth information plays a crucial role, the first-order and

3All the animation files are available in the CD-ROM attached to this document.
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Figure 6.10: Motion trajectories in monocular and stereo views (Space dimension)
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second-order features may be distorted in the 2D projections.

The path of a Sudden-

Direct motion towards the single camera, for instance, may be recovered as a very short,

slow moving trajectory (or a single point in the worst case). Although the size of the

bounding box (of the hand) may change, the camera we used is not so sensitive, making

it hard to accurately measure the difference of the size of the bounding box.

2D Data (Neutral Weight)

y coordinates

100 150 200 250 300 350

x coordinates

2D Data (Strong Weight)

w w
o o
i L = =
R RS -
e

n
a
o

n
=]
2.

y coordinates

200 250 300 350 400

x coordinates

3D Data (Neutral Weight)

200

100

0

-100

-200

600
400

200

) 0
y coordinates -200 x coordinates

3D Data (Strong Weight)

200
100

-100
-200
-300

600

400
200

y coordinates

x coordinates

Figure 6.11: Motion trajectories in monocular and stereo views (Weight dimension)

Furthermore, the neural networks trained with 3D data are not directly applicable to

single-camera projections. Instead, a separate data set comprising 2D video projections

should be acquired from extensive experiments. To train the networks, a more careful

approach should be considered, as the ground truth provided by the LMA notators are

based on 3D data while the first-order and second-order features are computed based

on 2D data. When the first-order and second-order features are distorted, the training

data samples can become noisy. Therefore, additional information need to be employed.

Possible considerations include the blurriness [107] and optic flow [37], or the redundancies



in a kinematic limb model [110, 56, 114, 49]. However, none of these approaches is
without problems, and their computational complexity may prevent from a real-time
implementation for the time being. Determining Effort qualities from a single-camera

reliably and consistently is yet to be further explored.
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Chapter 7

Conclusions and Future Work

In this thesis we have developed a framework for the procedural generation of expressive
and natural-looking gestures for computerized communicating agents. This approach goes
beyond the realm of psychology and linguistics based approaches by exploring the domain
of movement observation science, specifically Laban Movement Analysis and its Effort and
Shape components. This approach uncovers movement qualities which can be combined
together to reveal different manners. We have also worked the opposite approach where the
observable characteristics of gestures, including key poses, timing, and Effort parameters,
can be extracted from live 3D and 2D data inputs. The two approaches combined give us
the capability of automating the process and producing realistic and natural gestures for

virtual agents from a sequence of video images.

7.1 Future Work

e Although Shape parameters have proven to be effective in animating expressive
torso movements, further investigations should be carried out to identify how Effort
qualities are manifested in the torso. A highly detailed, life-like human model with a

deformable torso structure in particular should be used to further enhance realism.

e Recovering Shape parameters from live inputs has been essentially ignored in
this work. There has recently been a series of efforts on the three-dimensional

shape estimation of a moving human body [110, 56, 114, 49]. However, most of
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the approaches used approximate rigid models of the human body, for instance,
generalized cylinders. An immediate difficulty employing such models is that the rigid
models can not easily adapt to different body sizes. To overcome problems that stem
from using approximate models for the estimation of 3D human motion, Kakadiaris
and Metaxas [63] have developed a method for the estimation of the parts of human
body and their shape from multiple cameras based on a set of controlled motions,
designed to reveal the body structure. This method allows the accurate estimation of
the shape of the body parts of a particular subject and can be subsequently used for
tracking the motion in 3D. DeCarlo and Metaxas [38] have developed a framework
for the integration of edges and optic flow within a deformable model. The first step
towards Shape parameter recovery would be to apply these aforementioned methods

to the torso.

Experiments of neural network based motion quality learning on subjects other than
the training subjects should also be carried out to further evaluate the networks’

generalization performance.

Through Effort and Shape parameters and our agent model we suggest a plan for
modeling the effects of agent mood, affect and personality. In the views of LMA
researchers, an extroverted individual has a predisposition for some active Effort and
Shape parameters—she uses the Effort and Shape exertions for affective functions
and expressions more frequently, and perhaps to a larger degree, than an introverted
person does. A key aspect of this approach is that the relationships between
personality and LMA Effort and Shape qualities are not numerically fixed. A shy
person may still yell a warning to a person in imminent danger. People without such
ranges of expressive behavior may be (or appear to be) psychologically ill [12]. So it
is more reasonable that personality defines certain set-points or statistical means for
EMOTE parameters, and that the communicative context sets the variance and bias
from the mean. During communicative acts, the actual EMOTE parameters used
for gesture generation may vary within skew distributions defined by these means,
biases, variances, and possibly weights. Agent mood may be represented by short

duration repositionings of the means, but they gravitate to the personality means
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over time and situations. The initial step toward this approach would be to identify
the emotion/personality related variables described in the OCC model [101] and

quantify these qualitative variables in terms of the EMOTE parameters.

e Finally we believe the video-based gesture acquisition system could be utilized
in some behavioral or psychological experiments. The system could be further
incorporated with an EMOTE based facial expression recognition system. The
integrated system may prove to be effective in studies such as deception detection
and discrepancy interpretation. According to the study done by Ekman [42], liars
control the signals judged more informative and for which speakers are judged more
responsible (mostly speech content and facial expression) but they pay little attention
to vocal intonation and body movement. Thus, deception can be detected more often
from bodily and vocal cues than from facial and verbal cues. For instance, due to the
anxiety and worry of being caught, subjects may display more Indirect and Bound
gestures and postural shifts than facial expressions while lying, and such discrepancies
may not be very obvious while the subjects are telling the truth. Extracting EMOTE
qualities from the gestural movements and correlating them with the ones extracted
from the facial expressions may help to reveal the contrast between the “contrived”

and the “spontaneous” in the subject’s behavior.

7.2 Contributions

This thesis is not a simple elaboration of ongoing traditional work, but a new direction
that may broaden our approaches to gestures, introduce a variety of complexities, and
generate some new results. In the thesis, gesture synthesis is cast as a procedural animation
problem, and gesture acquisition as pattern recognition. The two processes are then
combined together through an agent model so that an engaging, expressive, believable
virtual agent can be created. Most of the tools employed in this work can be found in
textbooks on computer graphics and computer vision, however, very little work has been
done so far to apply these tools to analyze patterns manifested in communicative gestures.
In particular, very little is known about what kinds of observable patterns tend to be the

“constant core” in communicative gestures. We believe our approach, based on Laban
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Movement Analysis (LMA) and its Effort and Shape components, has made a significant
contribution in that the lessons learned in human movement science over the past seventy
years can be computerized to capture and analyze the patterns so that a higher level of
understanding of communicative gestures can be achieved. Experiments of this sort have
not been conducted before and should be of interest not only to the computer animation
and computer vision community but would be a powerful and valuable methodological tool

for creating personalized agents.
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Appendix A

Experimental Data

The process of acquiring, processing, and analyzing the motion data to select a set of
motion features is quite tedious. All the data is original, being acquired through the live
performance of our professional LMA notators. We have implemented a MotionCap Plug-

in in Jack Toolkit”™ to visualize, process, and analyze the data. Fig. A.1 shows the system

GUL
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Figure A.1: Processing and analyzing the experimental data

The experimental data with basic Effort elements are listed in the following.
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|Q|F1 [F2 |F3 |F4 | |Q|F1 [F2 |F3 |F4 |
1.67 | 44.44 | 26.42 | 46.31 3.21 | 51.58 | 15.99 | 17.90
1.65 | 47.61 | 28.66 | 50.77 3.14 | 53.40 | 16.95 | 15.53
2.23 | 41.66 | 18.60 | 24.64 3.56 | 125.75 | 35.14 | 68.97
2.59 | 45.43 | 17.42 | 21.02 0.50 | 33.62 | 65.83 | 297.98
0.48 | 38.55 | 76.90 | 303.98 0.74 | 51.91 | 69.07 | 280.24
0.46 | 36.04 | 74.98 | 287.27 0.77 | 64.93 | 82.32 | 341.65
1.74 | 65.64 | 37.31 | 67.37 0.58 | 34.66 | 58.97 | 261.24
1.63 | 63.99 | 38.96 | 77.25 1.49 | 41.18 | 27.46 | 58.15
0.41 | 35.47 | 83.65 | 352.50 0.41 | 27.32 | 66.43 | 203.03
0.39 | 37.16 | 92.28 | 347.22 3.15 | 44.69 | 14.12 | 15.34
4.26 | 68.88 | 16.12 | 13.24 2.46 | 78.45 | 31.70 | 57.27
4.41 ] 59.55 | 13.45 | 9.58 4.49 1 86.24 | 19.13 | 22.99
3.08 | 122.22 | 39.49 | 57.08 1.70 | 51.42 | 29.93 | 45.21
0.81 | 92.40 | 111.43 | 394.18 0.60 | 47.55 | 77.09 | 256.21
4.55 | 110.55 | 24.21 | 21.86 3.06 | 51.65 | 16.81 | 14.33
1.90 | 54.85 | 28.73 | 38.56 2.03 | 43.23 | 21.23 | 17.95
2.15 | 63.21 | 29.22 | 36.08 2.19 | 50.55 | 22.94 | 30.46
0.62 | 56.37 | 88.54 | 334.89 0.56 | 46.23 | 79.96 | 300.92
0.56 | 47.57 | 82.53 | 297.41 0.54 | 42.48 | 76.26 | 267.42
4.67 | 70.34 | 15.03 | 12.87 3.56 | 70.02 | 19.58 | 21.63
4.92 | 63.64 |12.91 |8.74 3.85 | 68.11 | 17.61 | 17.06
1.22 | 34.37 | 27.98 | 42.95 2.96 | 50.98 | 17.13 | 19.37
1.80 | 51.94 | 28.62 | 47.55 3.02 | 52.52 | 17.31 | 17.27
0.39 | 28.19 | 69.73 | 280.00 3.93 | 67.76 | 17.18 | 16.16
0.46 | 33.70 | 70.06 | 284.08 5.09 | 70.32 | 13.78 | 12.76

OO 2| 2| | n|O|O| 2| 2| O] 2| OO 2| Z2|0|0|wn|wn 2| =2
IROIROIROIRGIR S SIZA ARSI SIARGI ARG IF Sl A sl F sl E sl Fo] 1Za koI R

Table A.3: Experimental data used for training, validating and testing the Time network
(S, N, Q are Effort Time quality Sustained, Neutral, and Sudden (Quick), respectively;
Motion features used are, F1: total time, F2: total distance, F3: average velocity, and F4:
average acceleration)

128



|Q|F1 [F2 |F3 |F4 |F5 |F6 |
2.03 [ 54.17 [26.46 [ 37.38 [ 0.39 | 1.61
2.21 [ 68.11 | 30.67 | 42.94 | 0.13 | 1.03
0.54 | 7.43 13.49 | 34.67 | 0.52 | 1.60
2.03 | 43.82 | 21.41[31.20 |0.32|0.24
1.97 | 63.02 | 31.73 | 53.38 | 0.26 | 4.70
1.72 | 71.85 | 41.38 | 51.36 | 0.33 | 6.41
1.82 | 56.50 | 30.82 | 42.96 | 0.57 | 2.68
1.90 | 54.93 | 28.74 | 35.30 | 0.48 | 3.57
1.67 | 63.15 | 37.57 | 68.50 | 0.35 | 0.21
1.51 | 66.90 | 43.87 [ 83.67 | 0.20 | 0.35
1.34 | 69.13 | 51.20 | 129.04 | 0.25 | 4.11
1.49 | 64.81 | 43.08 | 96.46 | 0.34 | 3.77
0.17 | 1.65 9.37 | 30.08 |0.41]1.65
0.21 | 1.35 6.27 | 15.19 | 0.69 | 1.50
4.38 | 157.31 | 35.83 | 35.49 | 0.08 | 5.96
2.69 | 118.25 | 43.66 | 71.83 | 0.33 | 0.90
1.92 | 133.72 | 69.14 | 143.75 | 0.54 | 9.08
2.09 | 53.25 | 25.42]22.84 [0.19 | 2.56
3.41]79.50 | 23.27]20.76 |0.12 | 4.16
1.30 | 27.44 | 21.15 | 28.13 | 0.11 | 0.42
2.30 | 65.23 | 28.12 [ 37.12 | 0.51 | 0.41
1.16 | 52.63 | 45.14 | 70.68 | 1.20 | 3.36
1.78 | 70.05 | 39.02 | 64.86 | 0.13 | 3.46
1.51 | 36.24 | 23.94 | 25.06 | 1.20 | 1.08
2.17 [ 58.80 | 26.92 | 37.05 | 0.49 | 1.44
1.82 | 42.38 | 23.18 | 26.92 | 0.41 | 0.17
1.86 | 58.91 | 31.43 | 53.44 | 0.49 | 0.04
2.34 [ 66.15 | 28.07 | 35.69 | 1.20 | 9.01

W Z|ZI0| w2 Z| 00 w22 0T w2 2 5 |t 2] e e

Table A.4: Experimental data used for training, validating and testing the Weight network
(L, N, S are Effort Weight quality Light, Neutral, and Strong, respectively; Motion features
used are, F1: total time, F2: total distance, F3: average velocity, F4: average acceleration,
F5: corner curvature, F6: sternum height)
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|Q|F1 |F2 |F3 |F4 |F5 |[F6 |
1.92 [ 65.56 | 33.94 | 48.60 | 0.46 | 8.77
6.10 | 125.59 | 20.55 | 25.95 | 0.07 | 6.58
3.04 | 108.17 | 35.50 | 62.24 | 0.05 | 0.61
2.23 | 127.74 | 56.95 | 168.39 | 0.11 | 6.22
3.47 | 83.63 | 24.05 | 40.86 | 0.06 | 7.97
2.28 | 56.87 | 24.77 | 38.65 | 0.15 | 0.20
1.72 | 113.59 | 65.26 | 230.02 | 0.15 | 10.96
2.19 | 88.98 | 20.61 | 21.36 | 0.03 | 2.17
2.05 | 73.17 | 35.53 | 46.67 | 0.03 | 0.25
1.88 | 93.14 | 49.21 | 143.65 | 0.17 | 2.51
240 | 55.24 | 22.91 [ 23.18 | 0.03 | 1.65
1.90 | 53.19 | 27.81 | 41.96 | 0.41 | 0.42
1.16 | 57.84 | 49.13 | 103.43 | 0.69 | 10.47
3.06 | 92.45 |30.09 | 31.67 | 0.32 | 8.73
2.71 1 94.94 |34.91 (2998 |0.13|9.91
2.34 | 55.10 | 23.38 | 27.62 | 0.44 | 0.27
1.76 | 55.63 | 31.32 | 44.76 | 0.67 | 0.82
1.53 | 64.66 | 42.17 | 51.01 | 0.24 | 2.61
1.97 | 84.87 | 42.66 | 57.55 | 0.55 | 2.13
3.04 | 54.88 | 17.97 | 21.07 | 0.42 | 1.54
3.00 | 52.06 | 17.27 | 21.57 | 0.38 | 1.64
4.12 [ 101.73 | 24.61 | 38.93 | 0.09 | 5.28
2.34 | 74.43 ]31.60 | 39.17 | 0.35 | 4.58
2.23 | 71.69 | 32.00 | 38.90 | 0.55 | 4.08
3.50 | 107.43 | 30.56 | 57.46 | 0.07 | 1.13
242 14240 |17.41 [ 24.04 | 0.530.31
2.52 [ 4451 | 17.59 | 22.82 | 0.44 | 0.20
1.99 | 58.09 | 28.95 | 45.09 | 0.33 | 3.49
1.92 | 55.29 | 28.66 | 31.87 | 0.36 | 2.89
0.50 | 45.14 | 87.01 | 271.65 | 1.20 | 5.53

W Z Z ey 2 Z e w2 | Z | w2 || Z| | »;e

Table A.5: Experimental data used for training, validating and testing the Weight network
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[Q]F1 [F2 |F3 |F4 |F5 |F6 |F7|
2.32 [ 46.87 [20.04 12699 [0.73[10.02]0
2.23 | 50.21 | 22.41 [ 24.91 | 0.43 | 0.01
1.01 | 46.39 | 45.43 | 126.90 | 0.32 | 0.75
1.01 | 52.13 | 51.09 | 126.43 | 0.22 | 0.70
2.17 | 45.51 | 20.85 | 28.47 | 0.52 | 0.12
2.15 | 46.75 | 21.62 | 27.20 | 0.53 | 0.12
3.17 | 68.10 | 21.34 | 25.35 | 0.42 | 0.08
2.79 | 67.46 | 24.07 | 29.55 | 0.42 | 0.10
1.12 | 79.23 | 69.59 | 185.67 | 0.27 | 0.63
1.06 | 77.30 | 71.78 | 159.20 | 0.10 | 0.82
4.51 | 126.78 | 28.00 | 33.26 | 0.33 | 0.05
2.83 | 57.17 ] 20.11 | 23.58 | 1.20 | 0.08
2.46 | 59.68 | 24.12 [ 29.45 | 0.48 | 0.12
3.39 | 134.55 | 39.53 | 50.98 | 0.09 | 0.08
4.74 1 59.41 | 12.49 | 9.66 0.30 | 0.00
3.17 | 62.31 | 19.55 | 17.80 | 0.50 | 0.05
1.36 | 62.42 | 45.70 | 84.60 | 0.16 | 0.77
1.47 | 63.42 | 42.77 | 59.95 | 0.10 | 0.40
3.17 | 59.49 | 18.65 | 19.11 | 0.29 | 0.13
3.54 [ 60.11 | 16.90 | 15.91 | 0.45 | 0.11
2.46 | 49.08 |19.88 | 19.72 | 0.36 | 0.05
248 | 56.45 | 22.65 | 30.59 | 0.23 | 0.02
1.14 | 65.10 | 56.21 | 147.09 | 0.53 | 0.88
1.70 | 43.20 | 25.27 | 27.87 | 0.54 | 0.14
2.01 | 58.04 | 28.60 | 43.00 | 0.44 | 0.14
422 | 133.44 | 31.50 | 51.95 | 0.13 | 0.03
2.25 | 119.35 | 52.86 | 140.71 | 0.13 | 0.46

MW 221 WE 22" E W 2220 H " T2 2w W
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Table A.6: Experimental data used for training, validating and testing the Flow network
(F, N, B are Free, Neutral, and Bound Flow Effort, respectively; Motion features used
are, F1: total time, F2: total distance, F3: average velocity, F4: average acceleration, F5:
corner curvature, F6: PAD (percentage of accelerations and decelerations), F7: number of
wrist angle zero-crossings)
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|Q|F1L [F2 |F3 |F4 |F5 |F6 |F7|
4.92 1153.03 [ 31.02 [ 46.06 [ 0.26 [ 0.11 | 1
1.82 [ 29.92 | 16.43 | 16.80 | 0.44 | 0.07
2.32 | 47.03 |20.14 | 31.45 | 0.32 | 0.10
2.92 | 82.97 |28.23 | 48.50 | 0.23 | 0.04
1.32 | 87.20 | 65.91 | 140.60 | 0.04 | 0.62
2.11 | 47.39 | 22.31 | 24.69 | 0.32 | 0.01
0.74 | 41.16 | 55.70 | 103.92 | 0.40 | 0.79
2.03 | 50.37 | 24.63 | 24.45 | 0.07 | 0.20
2.77 | 45.49 ]16.41 | 11.13 | 0.32 | 0.01
3.52 | 62.34 | 17.63 | 15.45 | 0.55 | 0.01
1.49 | 69.12 | 45.90 | 95.97 | 0.35 | 0.59
1.51 | 79.40 | 52.06 | 101.17 | 0.23 | 0.76
1.68 | 32.74 | 19.42 [ 17.88 | 0.25 | 0.11
2.96 | 59.75 | 20.07 | 22.74 | 0.51 | 0.11
3.16 | 41.97 | 13.25 | 13.47 | 0.47 | 0.01
2.88 | 46.14 | 15.92 | 15.08 | 0.28 | 0.03
1.39 | 49.09 | 34.86 | 75.53 | 0.42 | 0.52
1.49 | 56.31 | 37.39 | 71.51 | 0.39 | 0.33
0.72 | 32.69 | 45.49 | 104.71 | 0.24 | 0.68
1.61 | 65.06 | 40.16 | 55.65 | 0.48 | 0.45
1.69 | 105.35 | 62.12 | 163.36 | 0.04 | 0.76
0.85 | 56.54 | 65.30 | 163.08 | 0.45 | 0.89
0.47 | 14.46 | 30.95 | 93.39 | 0.45 | 0.52
1.74 | 64.98 | 37.01 | 54.58 | 0.45 | 0.23
2.59 | 40.54 | 15.54 | 20.27 | 0.57 | 0.11
2.17 | 44.36 | 20.33 | 27.11 | 0.28 | 0.16
1.61 | 38.76 | 23.99 | 31.37 | 0.26 | 0.20

A 4 Res | s Resl Reslies1Res] et Resl Neel i el iZa iz Rest o] Neel N vl B2 les1 Ros] Res | Ruel R ve e
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Table A.7: Experimental data used for training, validating and testing the Flow network
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