Synthesis and Antitumor Activity of Methoxy-indolo[2,1-a]isoquinolines

Reinhard Ambros, Silvia von Angerer*, and Wolfgang
Wiegrebe

Institut für Pharmazie, Lehrstuhl Pharmazeutische Chemie I and Sonderforschungsbereich 234, Universität Regensburg, Universitätsstr. 31, D-8400 Regensburg, Federal Republic of Germany

Received January 19, 1988

Methoxy-indolol 2,1 -a lisoquinolines 8a-f and their dihydroderivatives 7a-f were synthesized by Bischler-Napieralski reaction of the (bromo-methoxyphenyl)-[2-(methoxyphenyl)-ethyl]acetamides 4a-f, reduction, subsequent cyclization and dehydrogenation. They were tested for cytostatic activity in vitro using P388 D_{1} leukemia and MDA MB 231 mammary tumor cells. The trimethoxy-5,6-dihydroindoloisoquinoline 7d and the tetramethoxyindoloisoquinoline $\mathbf{8 f}$ showed an inhibition of cellproliferation of about 70% at a concentration of 10^{-5} molar.

Abstract

Synthese und Antitumoraktivität von Methoxy-indolo[2,1-a]isochinolinen Die Methoxy-indolo[2,1-a]isochinoline 8a-f und deren Dihydroderivate 7a-f wurden durch Bischler-Napieralski-Ringschluß der (Brom-metho-xyphenyl)-[2-(methoxyphenyl)-ethyl]acetamide 4a-f, Reduktion, Cyclisierung und Dehydrierung gewonnen. Die cytostatische Wirkung wurde in vitro an der P388 D_{1} - und der MDA-MB 231-Zellinie getestet. Das Tri-methoxy-5,6-dihydroindoloisochinolin 7d und das Tetramethoxyindoloisochinolin 8 f zeigten eine Hemmung der Zellproliferation von 70% bei einer Konzentration von $10^{-5} \mathrm{M}$.

The aim of our investigations is the synthesis of cytostatic compounds with binding affinity for the estrogen receptor, that can be used for the selective treatment of hormone dependent mammary tumors. Suitable structures for this approach are tetracyclic N -heterocycles, which are known to intercalate into the $\mathrm{DNA}^{1)}$ and are able to bind to the estrogen receptor ${ }^{2}$).

Based on these findings, we synthesized a number of indo-lo[2,1-a]isoquinolines 8a-f and their dihydro analogues 7a-f. Cytostatic activity of these compounds was evaluated in vitro using MDA-MB 231 mammary tumor cells and P388 D 1 leukemia cells.

Chemistry

The synthesis was performed as outlined in scheme 1. The starting methyl bromophenylacetates 2a-c were synthesized by bromination of the corresponding phenylacetic acids and conversion to the methyl esters. The 2-phenylethylamine 3a was obtained directly by LiAlH_{4} reduction of the 3-meth-oxy- β-nitrostyrene ${ }^{3)}$ or, in better yield, in two steps with NaBH_{4} followed by LiAlH_{4}. The best method was the hydrogenation of the 3-methoxy-phenylacetonitrile with Rh / C.

The reaction of the bromo-phenylacetates $2 \mathbf{a}-\mathbf{c}$ with the 2phenylethylamines $\mathbf{3 a}$ and $\mathbf{3 b}$ afforded the corresponding amides 4a-f. Cyclisation to the 3,4-dihydroisoquinolines was accomplished by a modified Bischler-Napieralski method using POCl_{3} in $\mathrm{CH}_{3} \mathrm{CN}$. The crude products were treated with NaBH_{4} to give the 1,2,3,4-tetrahydro-1-benzylisoquinolines 5a-f. In the case of $\mathbf{4 c}$ (2-Bromo-4,5-dimethoxy-phenyl)-(3,4-dihydro-6-methoxyisoquinolyl-1)-ketone was formed as a byproduct, probably by air oxidation ${ }^{4)}$. The correct substitution pattern in the isoquinoline ring was confirmed by ${ }^{1} \mathrm{H}$-NMR spectroscopy.

The benzylisoquinolines $\mathbf{5 a - f}$ were converted into the tetracyclic indolo[2,1-a]isoquinolines by treatment with NaH in DMSO. This reaction must involve a benzyne intermediate ${ }^{5)}$ because both bromo compounds $5 \mathbf{a}$ and $\mathbf{5 b}$ led to the same structure. The reaction mixture contained two products

1a $R=R^{\prime}=H$
1b $\mathrm{R}=\mathrm{OCH}_{3} \mathrm{R}=\mathrm{H}$
2a $\mathrm{R}=\mathrm{H} \quad \mathrm{R}^{\prime}=\mathrm{CH}_{3}$
2b $\mathrm{R}=\mathrm{OCH}_{3} \quad \mathrm{R}=\mathrm{CH}_{3}$

1c $R=H$
2c $\mathrm{R}=\mathrm{CH}_{3}$

$$
{ }_{3} \mathrm{R}_{2}=\mathrm{H}_{3}
$$

$$
2 a-c
$$

3a $R=H$
3b $R=\mathrm{OCH}_{3}$

6b-f

4-8	R^{1}	R^{2}	R^{3}	R^{4}
a	H	OCH_{3}	H	OCH_{3}
b	H	OCH_{3}	OCH_{3}	H
c	H	OCH_{3}	OCH_{3}	OCH_{3}
d	OCH_{3}	OCH_{3}	H	OCH_{3}
e	OCH_{3}	OCH_{3}	OCH_{3}	H
f	OCH_{3}	OCH_{3}	OCH_{3}	OCH_{3}

in a ratio of $1: 4$ which can be separated by column chromatography (CC). The expected tetrahydroindoloisoquinoline was only the minor product, whereas the main fraction contained the dihydro derivative. ${ }^{1} \mathrm{H}$-NMR spectroscopy revealed, that under the reaction conditions oxidation occures to the indoles 7a-f: the double dublett for the hydrogen at $\mathrm{C}-12 \mathrm{a}$ had disappeared and two tripletts for the hydrogen atoms at C-5 and C-6 appeared instead of the complex multiplett in 6b-f.

This oxidation reaction can also be performed with DDQ or with Pd / C at a temp. just above the melting point of the tetrahydro compound. Heating the dihydro derivative in the presence of Pd / C above its melting point, which is considerably higher than that of the tetrahydro compound, afforded the aromatic indoloisoquinolines $\mathbf{8 a - f}$.

Cytostatic Activity

Two different cell lines were used for the determination of cytostatic activity. The P388 D_{1} cell line derives from a mouse leukemia, the MDA-MB 231 cells are hormone-independent mammary tumor cells of human origin. All of the new indoloisoquinolines were tested for cytostatic effects at a concentration of 10^{-5} molar. The inhibition of cell growth was measured by cell counting and ${ }^{3} \mathrm{H}$-thymidine labeling. The tetrahydro derivatives $\mathbf{6 b}-\mathbf{f}$ were devoid of activity, probably due to their nonplanar structure. The dihydro compounds 7 showed a weak inhibitory effect except compound 7d that proved to be active against MDA-MB 231 (Table 1). Going
to the aromatic indoloisoquinolines 8a-f, no significant increase of cytostatic activity was observed. The tetramethoxy derivative $\mathbf{8 f}$ was the most active compound in this series (Table 2).

These results showed, that cytostatic activity is not generally associated with a planar structure of the tetracyclic heterocycles. Compounds with a significant inhibition of cell growth possess a dimethoxyisoquinoline fragment (8d, 8f, 7d). This effect was not very marked, since a concentration of $10^{-5} \mathrm{M}$ was required for it. The rather low activity of this type of tetracycles may be due to the lack of a positive charge on the nitrogen.

The authors thank C. Braun and M. Beer for technical assistance and the Deutsche Forschungsgemeinschaft (SFB 234) for financial support.

Experimental Part

Melting points: Büchi 510 apparatus, uncorrected. - Elemental analyses: Mikroanalytisches Laboratorium, University of Regensburg. - IR-spectra: Beckman Acculab 3; KBr. - ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra: Varian EM 360 A (60 MHz); TMS as internal standard. - Temp. in ${ }^{\circ} \mathrm{C}$.

General Procedure for the Synthesis of the Bromo-phenylacetic acids 1a-c
Bromine ($17 \mathrm{ml}, 0.23 \mathrm{~mol}$) was added slowly to a solution of methoxyphenylacetic acid (0.24 mol) (Janssen) and $10.7 \mathrm{~g}(0.27 \mathrm{~mol})$ of NaOH in 400 ml water at 50°. After stirring for 30 min and cooling to room temp., the precipitate was filtered off and washed with water. Recrystallization from aqueous MeOH yielded colorless crystals.

Tab. 1: Effect of 7a-f on the growth of MDA-MB 231 and P388 D_{1} cells

Compound ${ }^{\text {a }}$	P $388 \mathrm{D}_{1}$		MDA-MB 231	
	cell no. ${ }^{\text {b) }}$ $\% \mathrm{~T} / \mathrm{C}^{\mathrm{d}}$)	${ }^{3} \mathrm{H}$-thymidine incorp. ${ }^{\text {c }}$) $\% \mathrm{~T} / \mathrm{C}^{\mathrm{d})}$	cell no. ${ }^{\text {b }}$ $\% \mathrm{~T} / \mathrm{C}^{\mathrm{d}}$)	${ }^{3} \mathrm{H}$-thymidine incorp. ${ }^{\text {c }}$) $\% \mathrm{~T} / \mathrm{C}^{\mathrm{d}}$)
7 a	95	98	90	90
7b	100	97	100	98
7c	93	93	87	90
7d	96	92	32	16
$7 d^{\text {e }}$			90	90
7 e	96	93	87	62
7 f	93	93	93	92

a) Concentration $10^{-5} \mathrm{M}$.
b) Mean of three tests with six dishes/test tubes.
c) $\mathrm{cpm} / 10^{6}$ cells.
d) $\% \mathrm{~T} / \mathrm{C}=$ test compound/control $\times 100$.
e) Concentration $10^{-6} \mathrm{M}$.

Tab. 2: Effect of 8a-f on the growth of MDA-MB 231 and P388 D_{1} cells

Compound ${ }^{\text {a }}$	P $388 \mathrm{D}_{1}$		MDA-MB 231	
	cell no. ${ }^{\text {b) }}$ \% T/C ${ }^{\text {d }}$	${ }^{3} \mathrm{H}$-thymidine incorp. ${ }^{\text {c }}$) $\% \mathrm{~T} / \mathrm{C}^{\mathrm{d}}$)	cell no. ${ }^{\text {b) }}$ $\% \mathrm{~T} / \mathrm{C}^{\mathrm{d})}$	${ }^{3} \mathrm{H}$-thymidine incorp. ${ }^{\text {c }}$) $\% \mathrm{~T} / \mathrm{C}^{\mathrm{d})}$
8a	89	92	82	85
8b	78	84	80	85
8c	88	95	84	90
8d	71	73	48	45
8 e	73	78	97	100
8 f	30	15	48	21

[^0]
2-Bromo-5-methoxy-phenylacetic acid (1a)

Yield 90%; m.p. $115^{\circ}\left(\right.$ lit. $\left.114-115^{\circ}{ }^{6}\right)$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $3.8\left(\mathrm{~s} ; 5 \mathrm{H},-\mathrm{OCH}_{3},-\mathrm{CH}_{2}\right), 6.67-6.9(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.96 (s broad; 1H, OH).

2-Bromo-4,5-dimethoxy-phenylacetic acid (1b)

Yield 90%; m.p. $115^{\circ}\left(\right.$ lit. $\left.115-116^{\circ}{ }^{6}\right)$. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $3.77\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.88\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.76(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{~s} ; 1 \mathrm{H}$, ArH), 8.16 (s broad; $1 \mathrm{H}, \mathrm{OH}$).

3-Bromo-4-methoxy-phenylacetic acid (1c)

Yield 80%; m.p. 115° (lit. $115^{\circ}{ }^{7}$). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.8$ $\left(\mathrm{s} ; 5 \mathrm{H},-\mathrm{OCH}_{3},-\mathrm{CH}_{2}-\right), 6.67-6.9(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.96 (s broad; 1H, OH).

General Procedure for the Synthesis of the Methyl Bromo-methoxyphenylacetates 2a-c

Bromo-methoxyphenylacetic acid (0.23 mol) in 180 ml absol. MeOH and 6 ml conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was boiled for 17 h . The volume of the solution was reduced to 50 ml . After addition of 100 ml of water, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The org. layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solution was evaporated.

Methyl 2-bromo-5-methoxyphenylacetate (2a)

The product was purified by Kugelrohr-distillation: colorless oil. - Yield 90%; b.p. $77-80^{\circ}, 0.2 \mathrm{~mm} .-\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$ (259.0) Calc. C 46.4 H 4.25 Found C 47.0 H 4.61 . - IR (film): $1740(\mathrm{CO}) \mathrm{cm}^{-1}$. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=3.70\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.76\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.80(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 6.6-6.9(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{ArH}), 7.43(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

Methyl 2-bromo-4,5-dimethoxyphenylacetate (2b)

The product was recrystallized from aqueous MeOH : colorless crystals. Yield 80%; m.p. 48°. $-\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4}$ (289.1) Calc. C 45.7 H 4.53 Found C 45.4 H 4.68 . - IR (KBr): $1740(\mathrm{CO}) \mathrm{cm}^{-1}$. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=3.77\left(\mathrm{~s} ; 5 \mathrm{H}, \mathrm{COOCH}_{3},-\mathrm{CH}_{2}-\right), 3.91\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.87(\mathrm{~s} ;$ $1 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH})$.

Methyl 3-bromo-4-methoxyphenylacetate (2c)

Recrystallization from aqueous MeOH yielded colorless crystals. Yield 90%; m.p. 31° (lit. $48^{\circ}{ }^{8)}$). $-\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$ (259.0) Calc. C 46.4 H 4.25 Found C 46.2 H 4.35 . - IR(KBr): $1740(\mathrm{CO}) \mathrm{cm}^{-1}$. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=3.6\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.73\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 3.9(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 6.86(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.23\left(\mathrm{dd} ; \mathrm{J}_{1,2}=9 / 2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{ArH}), 7.5(\mathrm{~d} ; \mathrm{J}=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

1-Amino-2-(3-methoxyphenyl)-ethane (3a)

$1 \mathrm{~g} \mathrm{Rh} / \mathrm{C} 10 \%$ was added to a solution of $50 \mathrm{~g}(0.34 \mathrm{~mol}) 3$-methoxy-phenylacetonitrile (Janssen) dissolved in 110 ml EtOH saturated with NH_{3}. The mixture was hydrogenated at 30 bar for 7 d . The catalyst was filtered off, washed with EtOH , and the solvent was evaporated. Pure 3a was obtained as colorless oil. Yield 98%; b.p. 122-123 ${ }^{\circ}, 7 \mathrm{~mm}$ (lit. 122-123 ${ }^{\circ}$, $\left.7 \mathrm{~mm}^{9}\right)$. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.48\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{NH}_{2}\right), 2.82(\mathrm{mc} ;$ $\left.4 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.79\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.59-7.3(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{ArH})$.

General Procedure for the Synthesis of the Acetamides 4a-f

A flask containing 0.75 mol methoxy-phenylethylamine and 0.75 mol methyl bromo-phenylacetate was placed into a hot oil bath. The temp. was
kept at $150-155^{\circ}$ for 10 h . After cooling to $35^{\circ} 10 \mathrm{ml} \mathrm{EtOAc}$ were added with stirring. The product crystallizing at 4° was filtered off and washed with ether. Acetamides, which did not crystallize spontaneously, were purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; ether/ $\left.\mathrm{CHCl}_{3} 1: 1\right)$ and crystallized from $\mathrm{EtOAc} /$ ether. The crystals of $\mathbf{4 a - f}$ are colorless.

2-(2-Bromo-5-methoxyphenyl)-N-/2-(3-methoxyphenyl-ethyl/-acetamide

 (4a)4a was synthesized from $\mathbf{2 a}$ and $\mathbf{3 a}$ and recrystallized from EtOH. Yield 50%; m.p. 91°. - $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{3}$ (378.3) Calc. C 57.2 H 5.35 Found C 57.2 H 5.28. - IR(KBr): 3300 (NH), 1650, 1555 (CO) $\mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.80\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.53(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.67\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{COCH}_{2}-\right), 3.83\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.93(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 5.53(\mathrm{~s}$ broad; $1 \mathrm{H},-\mathrm{NH}), 6.67-7.43(\mathrm{~m} ; 6 \mathrm{H}, \mathrm{ArH}), 7.77(\mathrm{~s} ; 1 \mathrm{H}$, ArH).

2-(3-Bromo-4-methoxyphenyl)-N-[2-(3-methoxyphenyl)-ethyll-acetamide

 (4b)$\mathbf{4 b}$ was synthesized from $\mathbf{2 c}$ and $\mathbf{3 a}$ and recrystallized from EtOAc/ether (7+3). Yield 55%; m.p. $63-64^{\circ}$. $-\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{3}$ (378.3) Calc. C 57.2 H 5.35 Found C 56.8 H 5.43 . - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.73(\mathrm{t} ; \mathrm{J}=$ $\left.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.3-3.53\left(\mathrm{~m} ; 4 \mathrm{H},-\mathrm{COCH}_{2}-,-\mathrm{CH}_{2}-\right), 3.77(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 5.49(\mathrm{~s}$ broad; $1 \mathrm{H},-\mathrm{NH}), 6.56-6.79(\mathrm{~m} ;$ $3 \mathrm{H}, \mathrm{ArH}), 6.86(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 7.0-7.17(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~d} ; \mathrm{J}=2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH})$.

2-(2-Bromo-4,5-dimethoxyphenyl)-N-/2-(3-methoxyphenyl)-ethyll-acetamide (4c)

$\mathbf{4 c}$ was synthesized from $\mathbf{2 b}$ and $\mathbf{3 a}$ and recrystallized from EtOH. Yield 60%; m.p. $145-146.5^{\circ}$. $-\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}_{4}$ (408.3) Calc. C 55.9 H 5.39 Found C 55.8 H 5.40 . $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.77(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.47\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.63\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{COCH}_{2}-\right), 3.82(\mathrm{~s} ;$ $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 5.50(\mathrm{~s}$ broad; $1 \mathrm{H},-\mathrm{NH}), 6.65-7.33(\mathrm{~m} ; 6 \mathrm{H}, \mathrm{ArH})$.

2-(2-Bromo-5-methoxyphenyl)-N-[2-(3,4-dimethoxyphenyl)-ethyl)-acetamide (4d)

4d was synthesized from 2a and 1-amino-2-(3,4-dimethoxyphenyl)-ethane (3b) (Janssen) and recrystallized from EtOH. Yield 55 \%; m.p. 128-129 ${ }^{\circ}$. $-\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}_{4}(408.3) \mathrm{Calc}$ C 55.9 H 5.39 Found C $55.4 \mathrm{H} 5.70 .-{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.70\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right) 3.42(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.60\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{COCH}_{2}-\right), 3.73\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.80(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 5.53(\mathrm{~s}$ broad; $1 \mathrm{H},-\mathrm{NH}), 6.63-6.85(\mathrm{~m} ;$ $5 \mathrm{H}, \mathrm{ArH}), 7.43(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

2-(3-Bromo-4-methoxyphenyl)-N-/2,-(3,4-dimethoxyphenyl)-ethyll-acetamide (4e)

$\mathbf{4 e}$ was synthesized from $\mathbf{2 c}$ and $\mathbf{3 b}$ and recrystallized from EtOH. Yield 50%; m.p. $123-124^{\circ}$. - $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}_{4}$ (408.3) Calc. C 55.9 H 5.39 Found C 55.9 H 5.44. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.73(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.42\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.47\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{COCH}_{2}-\right), 3.88(\mathrm{~s} ;$ $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 5.55(\mathrm{~s}$ broad; $1 \mathrm{H},-\mathrm{NH}), 6.67-7.0(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{ArH}), 7.18\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=9 / 2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$, $7.45(\mathrm{~d} ; \mathrm{J}=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

2-(2-Bromo-4,5-dimethoxyphenyl)-N-/2-(3,4-dimethoxyphenyl)-ethyllacetamide (4f)

$\mathbf{4 f}$ was synthesized from $\mathbf{2 b}$ and $\mathbf{3 b}$ and recrystallized from EtOH. Yield 60%; m.p. $158.5-159^{\circ} .-\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrNO}_{5}$ (438.3) Calc. C 54.8 H 5.52 Found C 54.9 H 5.53. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.73(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.47\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.63\left(\mathrm{~s} ; 2 \mathrm{H},-\mathrm{COCH}_{2}-\right), 3.87(\mathrm{~s} ;$ $12 \mathrm{H},-\mathrm{OCH}_{3}$), 5.57 (s broad; 1H, -NH), 6.67-7.07 (m; 5H, ArH).

General Procedure for the Synthesis of the 1-Benzyl-1,2,3,4-tetrahydroisoquinolines 5a-f

A mixture of 55 mmol of acetamide, 20 ml of POCl_{3} and 75 ml of absol. $\mathrm{CH}_{3} \mathrm{CN}$ was refluxed for 4 h . With cooling, 150 ml of $20 \% \mathrm{NaOH}$ solution were added, the mixture was poured onto ice water and extracted with CHCl_{3}. The CHCl_{3} solution was extracted with 150 ml 2 N HCl . The free base was liberated with $20 \% \mathrm{NaOH}$ and extracted with CHCl_{3}. The org. layer was washed with water and saline, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The 3,4-dihydroisoquinolines obtained after evaporation of the solvent were used without further purification. The yields were between 55 and 70%. Air must be excluded as far as possible during workup.
$\mathrm{NaBH}_{4}(0.11 \mathrm{~mol})$ was added slowly to a solution of 13.4 mmol of $3,4-\mathrm{di}-$ hydroisoquinoline in 100 ml MeOH and 15 ml water at 0°. The mixture was stirred for 2 h at room temp. After the solvent had been removed, the residue was treated with 100 ml water and extracted with CHCl_{3}. The org. layer was washed with water, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent the residue crystallized with aqueous EtOH or was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{CHCl}_{3}\right.$ /ether 1:1). Recrystallization from aqueous EtOH afforded colorless crystals. The yields were $58-80 \%$.

1-(2-Bromo-5-methoxybenzyl)-1,2,3,4-tetrahydro-6-methoxyisoquinoline (5a)
Yield 50 \%; m.p. $72-74^{\circ}$. - $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ (362.3) Calc. C 59.7 H 5.56 Found C 59.3 H 5.54 . - IR (KBr): $3350(\mathrm{NH}) \mathrm{cm}^{-1}$. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=1.79(\mathrm{~s}$ broad; $1 \mathrm{H},-\mathrm{NH}), 2.67-3.53\left(\mathrm{~m} ; 6 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.80(\mathrm{~s} ;$ $\left.6 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.31\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=10 / 4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}\right), 6.58-6.87(\mathrm{~m} ; 4 \mathrm{H}$, ArH), $7.26(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

1-(3-Bromo-4-methoxybenzyl)-1,2,3,4-tetrahydro-6-methoxyisoquinoline (5b)
Yield 70 \%; m.p. $97-98^{\circ}$. - $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ (362.3) Calc. C 59.7 H 5.56 Found C 59.0 H 5.68 . - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.57(\mathrm{~s}$, broad; 1 H , -NH), 2.73-3.30 (m; 6H, $-\mathrm{CH}_{2}$), $3.77\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.87(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 4.15\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=10 / 4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}\right), 6.59-6.82(\mathrm{~m} ; 3 \mathrm{H}, \mathrm{ArH})$, $6.88(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 7.1-7.28(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{~d} ; \mathrm{J}=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

1-(2-Bromo-4,5-dimethoxybenzyl)-1,2,3,4-tetrahydro-6-methoxyisoquinoline (5c)

Yield 60%; m.p. 114°. $-\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ (392.3) Calc. C 58.2 H 5.65 Found C $57.7 \mathrm{H} 5.51 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.0(\mathrm{~s}$ broad; 1 H , $-\mathrm{NH}), 2.70-3.40\left(\mathrm{~m} ; 6 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.83\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.87(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.92\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.33\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=10 / 4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}\right)$, $6.70-6.90(\mathrm{~m} ; 3 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 7.30(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

(2-Bromo-4,5-dimethoxyphenyl)-(3,4-dihydro-6-methoxyisoquinolyl-1-)-

 ketoneThis compound was formed as a byproduct of the cyclization of $\mathbf{4 c}$. It was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford colorless crystals. Yield 20%; m.p. $180-181^{\circ}$. $-\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNO}_{4}$ (404.3) Calc. C 56.4 H 4.46 Found C 56.0 H 4.62 . - IR(KBr): $1670(\mathrm{CO}) \mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $=2.80\left(\mathrm{t}: \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.80\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.90(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.80-6.97(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{ArH}), 7.27(\mathrm{~s} ; 1 \mathrm{H}$, $\mathrm{ArH}), 7.63(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

1-(2-Bromo-5-methoxybenzyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline (5d)

Yield 65%; m.p. 117°. $-\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ (392.3) Calc. C 58.2 H 5.65 Found C $58.0 \mathrm{H} 5.55 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.90(\mathrm{~s}$ broad; 1 H , $-\mathrm{NH}), 2.67-3.50\left(\mathrm{~m} ; 6 \mathrm{H},-\mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.77(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.33\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=10 / 4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}\right), 6.57$ $(\mathrm{s} ; 1 \mathrm{H}, \mathrm{ArH}), 6.58-6.83(\mathrm{~m} ; 2 \mathrm{H}, \operatorname{ArH}), 6.72(\mathrm{~s} ; 1 \mathrm{H}, \operatorname{ArH}), 7.47(\mathrm{~d} ; \mathrm{J}=$ $9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$).

1-(3-Bromo-4-methoxybenzyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline (5e)

Yield 55%; m.p. $107-109^{\circ}$. $-\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ (392.3) Calc. C 58.2 H 5.65 Found C 57.8 H 5.62 . - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.80(\mathrm{~s}$ broad; 1 H , $-\mathrm{NH}), 2.67-3.50\left(\mathrm{~m} ; 6 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.88\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.92(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.17\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=10 / 4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}\right), 6.70$ $(\mathrm{s} ; 2 \mathrm{H}, \mathrm{ArH}), 6.90(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.27\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=9 / 2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH), $7.57(\mathrm{~d} ; \mathrm{J}=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

1-(2-Bromo-4,5-dimethoxybenzyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline (5f)

Yield 80%; m.p. $107-109^{\circ}$ (lit. $111^{\circ}{ }^{10}$) .

General Procedure for the Ring Closure of the Bromo-tetrahydrobenzylisoquinolines to the Tetrahydro- and Dihydro-indolo/2,1-a/isoquinolines 6b-f and 7a-f

A solution of bromo-tetrahydro-benzylisoquinoline (10 mmol) in 40 ml DMSO was added to a solution of sodium methylsulfinylmethanide (prepared from $2.1 \mathrm{~g}(70 \mathrm{mmol}) \mathrm{NaH}(80 \%$ in oil dispersion) and 40 ml DMSO). After stirring had been continued for 15 h , the mixture was poured into 400 ml water containing excess $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with CHCl_{3}. The org. layer was washed with water and saline. After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), evaporation of the solvent afforded a brownish oil, which was chromatographed $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The first fraction (Rf 0.7) contained the dihydroindoloisoquinolines as main product. The tetrahydro-indoloisoquinolines were isolated as second fraction ($\operatorname{Rf} 0.3$). Both products were recrystallized from EtOH to afford colorless crystals. Their yields ranged from 40 to 70%. - In the case of $\mathbf{5 a}$ no tetrahydro product was isolated.

5,6,12,12a-Tetrahydro-3,9-dimethoxy-indolo[2,1-alisoquinoline (6b)

M.p. 53-54 ${ }^{\circ}$ - $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$ (281.3) Calc. C 76.8 H 6.81 Found C 76.6 H 6.77. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.53-3.66\left(\mathrm{~m} ; 6 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.76$ $\left(\mathrm{s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.69\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=8 / 3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $-\mathrm{CH}-\mathrm{N}), 6.1-7.2(\mathrm{~m} ; 6 \mathrm{H}, \mathrm{ArH})$.

5,6,12,12a-Tetrahydro-3,9,10-trimethoxy-indolo/2,1-alisoquinoline (6c)

M.p. 101°. $-\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$ (311.4) Calc. C 73.3 H 6.80 Found C 73.0 H 6.89. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.43-3.67\left(\mathrm{~m} ; 6 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.82$ $\left(\mathrm{s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.92\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=8 / 3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, -CH-N), $6.40(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 6.65-7.0(\mathrm{~m} ; 3 \mathrm{H}, \mathrm{ArH}), 7.27(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$).

5,6,12,12a-Tetrahydro-2,3,10-trimethoxy-indolo[2,1-alisoquinoline (6d)
M.p. $128-129^{\circ}$. $-\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}(311.4)$ Calc. C 73.3 H 6.80 Found C 73.2 H 6.80. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.33-3.80\left(\mathrm{~m} ; 6 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.67$ $\left(\mathrm{s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.82(\mathrm{dd} ;$ $\left.\mathrm{J}_{1 / 2}=8 / 3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}\right), 6.45(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 6.55-6.70(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{ArH})$.

5,6,12,12a-Tetrahydro-2,3,9-trimethoxy-indolo/2,1alisoquinoline (6e)
M.p. 120-121 ${ }^{\circ}$ - $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$ (311.4). - Calc. C 73.3 H 6.80 Found C 73.2 H 6.79. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.50-3.77(\mathrm{~m} ; 6 \mathrm{H}$, $\left.-\mathrm{CH}_{2}-\right), 3.77\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $4.87\left(\mathrm{dd} ; \mathrm{J}_{1 / 2}=8 / 3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{N}\right), 6.10-6.27(\mathrm{~m} ; 2 \mathrm{H}, \mathrm{ArH}), 6.50(\mathrm{~s} ;$ $1 \mathrm{H}, \mathrm{ArH}), 6.67(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

5,6,12,12a-Tetrahydro-2,3,9,10-tetramethoxy-indolol2,1alisoquinoline

 (6f)M.p. $105-107^{\circ}$ (lit. $105-107^{\circ}{ }^{11)}$).

5,6-Dihydro-3,10-dimethoxy-indolo/2,1-aJisoquinoline (7a)

M.p. 208°. $-\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ (279.3) Calc. C 77.4 H 6.13 Found C 76.9 H 6.05. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.16\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right)$, $3.83\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.19\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 6.65-7.10(\mathrm{~m} ; 6 \mathrm{H}$, ArH, vinyl-H), 7.61 (d; J $=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$).

5,6-Dihydro-3,9-dimethoxy-indolo/2,1-alisoquinoline (7b)

M.p. 176°. $-\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ (279.3) Calc. C 77.4 H 6.13 Found C 77.6 H 6.30. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.1\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.77$ $\left(\mathrm{s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.13\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right)$, 6.48-6.86 (m; 5H, ArH, vinyl-H), $7.48(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.66(\mathrm{~d} ;$ $\mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

5,6-Dihydro-3,9,10-trimethoxy-indolo/ 2,1-alisoquinoline (7c)

M.p. 212°. $-\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$ (309.4) Calc. C 73.8 H 6.19 Found C 73.9 H 6.15. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.18\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right)$, $3.87\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.20(\mathrm{t} ;$ $\left.\mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 6.70(\mathrm{~s} ; 1 \mathrm{H}$, vinyl-H), 6.83-7.02(m; 3H, ArH), 7.12 (s; 1H, ArH), $7.70(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

5,6-Dihydro-2,3,10-trimethoxy-indolo/2,1-alisoquinoline (7d)

M.p. 217°. - $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$ (309.4) Calc. C 73.8 H 6.19 Found C 73.6 H6.09. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.15\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right)$, $3.90\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.00\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.23(\mathrm{t} ;$ $\left.\mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 6.73(\mathrm{~s} ; 1 \mathrm{H}$, vinyl-H$), 6.83(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 6.93-7.37$ (m; 4H, ArH).

5,6-Dihydro-2,3,9-trimethoxy-indolo[2,1-alisoquinoline (7e)

M.p. 198°. $-\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$ (309.4) Calc. C 73.8 H 6.19 Found C 73.5 H 6.15. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.10\left(\mathrm{t} ; \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right)$, $3.88\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.17(\mathrm{t} ;$ $\left.\mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 6.73-6.83(\mathrm{~m} ; 4 \mathrm{H}$, ArH, vinyl-H$), 7.20(\mathrm{~s} ; 1 \mathrm{H}$, ArH), $7.52(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

5,6-Dihydro-2,3,9,10-tetramethoxy-indolo[2,1-alisoquinoline (7f)
M.p. 209-210 ${ }^{\circ}$ (lit. 209-210 ${ }^{\circ} 11$).

General Procedure for the Dehydrogenation of the Dihydroindoloisoquinolines to the Indolo/2,1-alisoquinolines 8a-f with Pd/C

Dihydro-indolo[2,1-a]isoquinoline (1.3 mmol) and Pd/C $10 \% ~(150 \mathrm{mg})$ were mixed thoroughly in an agate mortar. This and all of the following operations were carried out under N_{2}. A flask containing the mixture was placed in an oil bath of a temp. which was kept $10-15^{\circ}$ above the melting point of the dihydro-indoloisoquinoline. After 30 min , the mixture was stirred with a spatula. Heating was continued for 30 min . After cooling, the mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtrated. The solvent was evaporated and the residue was chromatographed $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Recrystallization from EtOH afforded colorless crystals. The yields were 80-90 \%.

3,10-Dimethoxy-indolo/2,1-alisoquinoline (8a)

Yield 80%; m.p. 255-256 ${ }^{\circ}-\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2} \times 1 / 4 \mathrm{H}_{2} \mathrm{O}$ (281.4) Calc. C 76.8 H 5.55 Found C 76.8 H 5.53 . - IR (KBr): $3420\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.93\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.62,7.67(\mathrm{AB} ; \mathrm{J}=9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 6.87-7.24 (m; 5H, ArH), 7.93-8.13 (m; 2H, ArH).

3,9-Dimethoxy-indolo[2,1-alisoquinoline (8b)

Yield 85%; m.p. $217^{\circ} .-\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2} \times 1 / 4 \mathrm{H}_{2} \mathrm{O}$ (281.4) Calc. C 76.8 H 5.55 Found $76.7 \mathrm{H} 5.69 .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.90(\mathrm{~s} ; 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.5-7.23(\mathrm{~m} ; 6 \mathrm{H}, \mathrm{ArH}), 7.58-8.07(\mathrm{~m} ; 3 \mathrm{H}$, ArH).

3,9,10-Trimethoxy-indolo[2,1-alisoquinoline (8c)

Yield 80%; m.p. 230°. $-\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \times 1 / 4 \mathrm{H}_{2} \mathrm{O}$ (311.4) Calc. C 73.2 H 5.66 Found C 73.2 H 5.85. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.92(\mathrm{~s} ;$ $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.97\left(\mathrm{~s} ; 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.58,7.93(\mathrm{AB} ;$ $\mathrm{J}=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 7.15-7.26(\mathrm{~m} ;$ $3 \mathrm{H}, \mathrm{ArH}), 7.98(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

2,3,10-Trimethoxy-indolo/2,1-alisoquinoline (8d)

Yield 55% m.p. $217-218^{\circ} .-\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \times 1 / 4 \mathrm{H}_{2} \mathrm{O}$ (311.4) Calc. C 73.2 H 5.66 Found C 73.3 H 5.75. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $3.97\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.05\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.12\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.72(\mathrm{~d} ; \mathrm{J}$ $=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.97-7.37(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~d} ; \mathrm{J}$ $=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.10(\mathrm{~d} ; \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

2,3,9-Trimethoxy-indolo[2,1-alisoquinoline (8e)

Yield 60%; m.p. 217°. $-\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \times 1 / 4 \mathrm{H}_{2} \mathrm{O}$ (311.4) Calc. C 73.2 H 5.66 Found C 73.0 H 5.66. - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.98(\mathrm{~s} ;$ $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.02\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.08\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.63,7.93(\mathrm{AB} ; \mathrm{J}$ $=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.97-7.30(\mathrm{~m} ; 4 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~s} ; 1 \mathrm{H}, \mathrm{ArH}), 7.73(\mathrm{~d} ; \mathrm{J}$ $=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

2,3,9,10-Tetramethoxy-indolo/ 2,1-a isoquinoline (8f)

Yield 75%; m.p. 210°. $-\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} \times 1 / 4 \mathrm{H}_{2} \mathrm{O}$ (341.4) Calc. C 70.3 H 5.62 Found C 70.3 H 5.68 . - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.98(\mathrm{~s} ;$ $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.02\left(\mathrm{~s} ; 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{~s} ; 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.63,7.95(\mathrm{AB} ;$ $\mathrm{J}=9 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 6.92(\mathrm{~s} ; 1 \mathrm{H}, \operatorname{ArH}), 7.0(\mathrm{~s} ; 1 \mathrm{H}, \operatorname{ArH}), 7.20(\mathrm{~s} ; 1 \mathrm{H}$, ArH), 7.28 ($\mathrm{s} ; 1 \mathrm{H}, \mathrm{ArH}$), 7.48 (s; 1H, ArH).

Biological methods

P388 D 1 Leukemia Cells ${ }^{12)}$

Murine P388 D_{1} leukemia cells were cultured in RMPI 1640 medium (Biochrom, Berlin) supplemented with 10 mM HEPES* buffer, 10% desactivated horse serum (Biochrom), 2 mM glutamine and 0.085% NaHCO_{3}. Cells were grown in an incubator in $5 \% \mathrm{CO}_{2}$ at 37°. Aliquots of 2 ml of the cell suspension containing $7-8 \times 10^{4}$ cells were plated in test tubes. Substances dissolved in 2μ of DMSO were added. The medium of control wells contained an equal volume of DMSO. After two days of incubation, cells were labeled for 2 h with $0.3 \mu \mathrm{Ci}^{3} \mathrm{H}$-thymidine (NEN) per well. 1 ml was used for determination of cell number (Coulter counter ZM). From the remaining part cells were harvested by centrifugation, washed with PBS and sonicated (Branson). After addition of 4 ml of 10% trichloroacetic acid, the acid-insoluble fraction was collected on a $0.4 \mu \mathrm{~m}$ filter (Sartorius) and counted after addition of 10 ml scintillation liquid (Quickszint 212, Zinnser) in a LS 1801 scintillation counter (Beckman).

* HEPES: 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

MDA-MB 231 Human Breast Cancer Cells ${ }^{13)}$

Cells were grown in McCoy 5 a medium (Boehringer, Mannheim) supplemented with 10% newborn calf serum (NCS) (Gibco) and gentamycine $(40 \mu \mathrm{~g} / \mathrm{ml})$. Cells were grown in a humidified incubator in $5 \% \mathrm{CO}_{2}$ at 37°. Cells were harvested with 0.05% trypsine- 0.02 \% EDTA in 0.15 M NaCl and approximately 2×10^{4} cells in 2 ml were plated in six-well dishes (Linbro). Two days later cells were switched to a medium containing 5% NCS and the substances, dissolved in $2 \mu \mathrm{DMSO}$. The medium of control wells contained an equal volume of DMSO. Two days later, cells were labeled for 2 h with $0.3 \mu \mathrm{Ci}^{3} \mathrm{H}$-thymidine per well. 1 ml was used for determination of cell number. The remaining cells were harvested by centrifugation, washed with PBS and sonicated. After addition of 4 ml of 10% trichloroacetic acid, the acid insoluble fraction was collected on a $0.4 \mu \mathrm{~m}$ filter and counted after addition of 10 ml scintillation liquid in a scintillation counter.

References

1 J. B. LePecq, Nguyen-Dat-Xuong, C. Gosse, and C. Paoletti, Proc. Nat. Acad. Sci. USA 71, 5078 (1974).
2 E. von Angerer and J. Prekajac, J. Med. Chem. 29, 380 (1986).
3 P. Chinnasamy, K. Iwasa, S. von Angerer, C. Weimar, and W. Wiegrebe, Arch. Pharm. (Weinheim) 320, 790 (1987).
4 J. S. Buck, R. D. Haworth, and W. H. Perkin jun., J. Chem. Soc. (London) 125, 2176 (1924).
5 S. Kano, E. Komiyama, K. Nawa, and S. Shibuya, Chem. Pharm. Bull. 24, 310 (1976).

6 A. Pschorr, Liebigs Ann. Chem. 391, 51 (1912).
7 R. G. Naik and T. S. Wheeler, J. Chem. Soc. 1938, 1780.
8 H. Kondo and Uyeo, J. Pharm. Soc. Japan 53, 557 (1933).
9 L. Helfer, Helv. Chim. Act. 7, 945 (1924).
10 T. Kametani and M. Ihara, J. Chem. Soc. C, 530 (1967).
1 I C. P. Mak and A. Brossi, Heterocycles 12, 1413 (1979).
12 W. Meindl, R. Laske, and M. Böhm, Arch. Pharm. (Weinheim) 320, 730 (1987).
13 E. von Angerer, J. Prekajac, and M. Berger, Eur. J. Canc. Clin. Onc. 21, 531 (1985).
[Ph 446]

[^0]: $a, b, c, d)$ see Tab. 1.

