Synthesis and Biological Evaluation of

Tetrahydropyridinepyrazoles ('PFPs') as

Inhibitors of STAT3 Phosphorylation

Revanna C $\mathrm{N}^{1,2, \#}$, Basappa ${ }^{3,4, \#}$, Srinivasa V^{3}, Feng Li^{5}, Kodappully Sivaraman Siveen ${ }^{5}$, Xiaoyun Dai ${ }^{5}$, Shivananju Nanjunda Swamy ${ }^{6}$, Bhadregowda D G ${ }^{1}$, Gautam Sethi ${ }^{5,7}$, Mantelingu K, ${ }^{8,{ }^{*}}$ Andreas Bender, ${ }^{4, *}$ and Rangappa $\mathrm{KS}^{8, *}$

${ }^{1}$ Department of Chemistry, Yuvarajas college, University of Mysore, Mysore-560005, India, ${ }^{2}$ Syngene International Limited, Jigini Link Road, Bangalore-560009, India ${ }^{3}$ Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Palace Road, Bangalore560001, India, ${ }^{4}$ Unilever Centre, Department of Chemistry, Cambridge, CB2 1EW, UK, ${ }^{5}$ Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, ${ }^{6}$ Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Technical Institutions Campus, Mysore 570006 Karnataka, India, ${ }^{7}$ Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, ${ }^{8}$ Department of Chemistry, University of Mysore, Manasgangotri, Mysore-560006, India

[^0]
Supplementary Methods

Synthesis of 3-(allylamino)propanenitrile (2). To a solution of acrylonitrile (23.2 g, 438 mmol) in ethanol (250 mL) at $0{ }^{\circ} \mathrm{C}$ under nitrogen, allyl amine ($25 \mathrm{~g}, 438 \mathrm{mmol}$) in ethanol was added slowly and stirred at room temperature overnight. The reaction was monitored by LCMS, after completion of the reaction the reaction mass was concentrated completely to yield the product pale yellow colored oil, $45 \mathrm{~g}(93.7 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, 400 \mathrm{MHz}$): δ $5.75-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=1.36 \mathrm{~Hz}$ and $15.72 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=0.52 \mathrm{~Hz}$ and 10.12 $\mathrm{Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=5.72 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=6.48 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of $3-(N-((2 H-B e n z o[d][1,2,3] t r i a z o l-2-y l)(4-m e t h o x y p h e n y l) m e t h y l)-N-~$ allylamino)propane nitrile (5). To the solution of 3-(allylamino) propanenitrile $2(45 \mathrm{~g}$, $408.5 \mathrm{mmol})$ in methanol $(450 \mathrm{~mL})$ under nitrogen benzotriazole was added $(48.6 \mathrm{~g}, 408.5$ mmol) followed by 4-methoxy benzaldehdye ($61.15 \mathrm{~g}, 449.5 \mathrm{mmol}$). The reaction mixture was stirred at room temperature overnight. The reaction was monitored by TLC and upon completion the reaction mass was concentrated. The reaction product was used without further purification due to stability issues. Crude yield 135 g (95.0\%) light brown color oil.

Synthesis of ethyl 3-(allyl)2-cyanoethyl)amino)-2,2-difluro-3-(4-methoxyphenyl) propanate (7). To a suspension of zinc dust (18.4 g , 288 mmol) in dry THF (350 mL) under nitrogen Trimethylsilyl chloride was added ($16.3 \mathrm{~g}, 151 \mathrm{mmol}$). After 10 minutes ethyl bromodifluoro acetate ($32 \mathrm{~g}, 158 \mathrm{mmol}$) was slowly added and the mixture was stirred for 10 minutes. A solution of $3-(N-((2 H-B e n z o[d][1,2,3]$ triazol-2-yl)(4-methoxyphenyl)methyl)- N-allylamino)propanenitrile $5(50 \mathrm{~g}, 144 \mathrm{mmol})$ in THF (150 mL) was added slowly. The reaction mass was stirred at room temperature for 12 hours. Then reaction mixture was poured on 5% aqueous NaHCO_{3} and filtered on celite bed. The layers were separated and the aqueous phase was extracted with ethyl acetate. The combined organic layer was washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The
crude obtained was purified by flash column chromatography by using hexane:ethyl acetate as eluent to yield the product. 31 g (61%); Pale yellow colored oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$): $\delta 7.41(\mathrm{~d}, J=8.64 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H}), 5.60-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.12-$ $5.21(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{dd}, J=8.16 \mathrm{~Hz}$ and $26.44 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.46-3.50 (m, 1H), 2.77-2.82 (m, 1H), 2.69-2.75 (m, 1H), 2.53-2.68 (m, 2H), 2.40-2.49 (s, 1H), 1.27 ($\mathrm{t}, \mathrm{J}=7.12 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 114.6,101.4{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO): $8163.2,159.4,135.7,131.5,122.2,119.3,118.1,117.0,113.8,62.9,53.7$, 46.0, 16.3, 13.6; MS(ESI + ion): m/z 353.2; Elemental Composition calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{C}, 61.35 ; \mathrm{H}, 6.29 ; \mathrm{N}, 7.95$. Found: C, 61.36; H, 6.15; N, 7.90.

Synthesis of 1-allyl-5,5-difluro-6-(4-methoxyphenyl)-4-oxopiperidine-3-carbonitrile (8). To a solution of diisopropylamine ($20.7 \mathrm{~g}, 408 \mathrm{mmol}$) in THF (1Litre) under nitrogen at $-78^{\circ} \mathrm{C} n$-butyl lithium was added $(12.15 \mathrm{~g}, 187 \mathrm{mmol})$ and stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. Then a solution of ethyl 3-(allyl)2-cyanoethyl)amino)-2,2-difluro-3-(4-methoxyphenyl) propionate $7(30 \mathrm{~g}, 85 \mathrm{mmol})$ in THF was added slowly at $-78{ }^{\circ} \mathrm{C}$ over one hour. The reaction mixture was slowly brought to room temperature and stirred for 12 hours. After completion of the reaction, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (250 mL) at $0^{\circ} \mathrm{C}$ and extracted with ethyl acetate. The combined organic layer was washed with water, brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude obtained was purified by column chromatography by using hexane: ethyl acetate (1:1) as eluent to get 8. Yield $16.5 \mathrm{~g}(63.46 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(\mathrm{~d}, \mathrm{~J}=8.36 \mathrm{~Hz}$, $2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.48(\mathrm{~m}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.63(\mathrm{~m}$, 2H) ${ }^{13}{ }^{1} \mathrm{C}$ NMR (100 MHz, DMSO): $8159.9,135.5,134.4,131.5,121.9,119.7,118.6,114.0$, 76.7, 64.6, 55.2, 53.4, 46.5, 17.1; MS (ESI + ion): m/z 307.2; Elemental Composition
calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{C}, 62.74 ; \mathrm{H}, 5.26 ; \mathrm{N}, 9.15$; Found: C, 62.81; H, 5.21; N, 9.19.

Synthesis of 5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-6-(4-methoxyphenyl)-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridin-3-amine (10).

The solution of 1-allyl-5,5-difluro-6-(4-methoxyphenyl)-4-oxopiperidine-3-carbonitrile $\mathbf{8}$ ($15 \mathrm{~g}, 49 \mathrm{mmol}$), 2,4-dichloro phenyl hydrazine ($9.5 \mathrm{~g}, 53.7 \mathrm{mmol}$) in ethanol (450 mL) was refluxed to overnight under N_{2} atmosphere. After completion of the reaction, the reaction mixture was concentrated completely and the crude product was purified by column chromatography by using hexane:ethyl acetate (1:1) as eluent to yield the product as off white colored solid, $\mathrm{mp} 98-100{ }^{\circ} \mathrm{C}$. Yield 7.5 g (32\%);IR (neat) vmax 3220 (br), 3440.5, 3303.0, 3169.4, 1639.6, 1616.4, 1506.4, 1493.5, 1298.2, 1245.1, 1178.9, 1140.5, 1037.4, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$): $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), 6.93 (d, $J=8.68 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 5.14-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.27$ $(\mathrm{m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.00$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz): $159.0,143.2,135.4,134.6,133.0,131.1,129.9$, 128.3, 123.5, 117.7, 115.4, 113.5, 97.1, 68.3, 56.5, 55.0, 44.0; MS (ESI+ion): m/z 467.0; Elemental Composition calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O} ; \mathrm{C}, 56.79 ; \mathrm{H}, 4.33 ; \mathrm{N}, 12.04$; Found: C, 56.83; H, 4.29; N, 12.09.

General procedure for the synthesis of 12(a-c). To a solution of 5-allyl-7,7-difluoro-2-(2,4-dichlorophenyl)-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridine-3amine (10) in pyridine at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, acid chloride was added and stirred at room temperature overnight. After completion of the reaction, $10 \% \mathrm{NaHCO}_{3}$ solution was added and extracted with ethyl acetate. Then combined organic layer was washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude
obtained was purified by column chromatography by using hexane:ethyl acetate (1:1) to yield the pure product.

N-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridin-3-yl)acetamide(12a). IR (neat) vmax, 3389.4, 3307.3, 2927.8, $1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3,997.0, \mathrm{~cm}^{-1} ; \mathrm{Mp} 98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.64(\mathrm{~m} .1 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.76-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.19$ (m, 2H), $4.33(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$. $\mathrm{m} / \mathrm{z}=507.1$; Elemental Composition calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$; C, 56.82; H, 4.37; N,11.04. Found: C, 56.85; H, 4.40; N,11.01.

N-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridin-3-yl)benzamide (12b). IR (neat) vmax, 3389.4, 3307.3, 2927.8, $1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3,997.0, \mathrm{~cm}^{1} ; \mathrm{Mp} 98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.60$ (m,3H), $7.20(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.18$ (m, $2 \mathrm{H}), 4.38(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.50(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{m} / \mathrm{z}=568.2 ;$ Elemental Composition calculated for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} ; \mathrm{C}, 61.17 ; \mathrm{H}, .4 .25 ; \mathrm{N}, 9.84$, Found: C, 61.19; H, .4.30; N, 9.76.

N-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridin-3-yl)-4-fluorobenzamide (12c). IR (neat) vmax, 3389.4, $3307.3,2927.8,1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3,997.0, \mathrm{~cm}^{1}$; Mp 98$100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right): \delta 10.5(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 2 \mathrm{H})$,
7.31-7.35 (m, 2H), 7.20(d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.12-$ $5.18(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.08(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI + ion): $m / z=586$; Elemental Composition calculated for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$; C, 59.29; H, 3.95; N 9.54. Found: C, 59.25; H, 3.97; N 9.51.

General procedure for the synthesis of 12 (d-e). To a solution of 5-allyl-7,7-difluoro-2-(2,4-dichlorophenyl)-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridine-3amine (10) in pyridine at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere, phenyl or 4-fluorophenyl sulfonyl chlorides were added and stirred at room temperature overnight. After completion of the reaction, $10 \% \mathrm{NaHCO}_{3}$ solution was added and extracted with ethyl acetate. Then combined organic layer was washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude obtained was purified by column chromatography by using hexane:ethyl acetate ($1: 1$) to yield the pure product.

N -(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-

2H-pyrazolo[4,3-c]pyridin-3-yl)benzene sulfonamide (12d). IR (neat) vmax, 3389.4, $3307.3,2927.8,1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3,997.0, \mathrm{~cm}^{1} ; \mathrm{Mp} 98-$ $100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta 10.66(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.66(\mathrm{~m}, 3 \mathrm{H})$, $7.51-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 1 \mathrm{H}) 7.04(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 2 \mathrm{H}), 5.58-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.12$ (m, 2H), $4.22(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.89-$ $2.94(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 2 \mathrm{H}) . \quad(\mathrm{m} / \mathrm{z}=605.54$; Elemental Composition calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ C, 55.54; H, 4.0; N 9.25. Found: C, 55.58; H, 4.03\%; N 9.26.

N-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-6-(4-methoxyphenyl)-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridin-3-yl)-4-fluorobenzenesulfonamide (12e). IR (neat) vmax,
3389.4, 3307.3, 2927.8, 1685.5, 1640.0, 1608.4, 1513.9, 1274.1, 1091.1, 1037.3, 997.0, cm^{1}; Mp 98-100 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta 10.7(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.73$ $(\mathrm{m}, 2 \mathrm{H}), 7.58-7.59 \mathrm{~m}, 1 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.95 (d, $J=8.68 \mathrm{~Hz}, 2 \mathrm{H}), 5.62-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.03-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.41(\mathrm{~m}, \mathrm{H}), 3.75(\mathrm{~s}$, $3 H)$, 2.93-2.99 (m, 2H), 2.77-2.82 (m, 2H). : m/z =623.49; Elemental Composition calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$. C, 53.94; H, .3.72; N 8.99. Found: C, 53.90; H, 3.80; N 8.92.

General procedure for the synthesis of $\mathbf{1 2}$ (f-h). To a solution of 5-allyl-7,7-difluoro-2-(2,4-dichlorophenyl)-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridine-3amine (10) in Tetrahydrofuran at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere, LHMDS (1M solution in THF) was added and stirred at $-20^{\circ} \mathrm{C}$ for 15 minutes. Cyclohexyl-, phenyl- or 4trifluoromethylphenyl isocyanates were added at $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for 30 minutes. After completion of the reaction, saturated ammonium chloride solution was added and extracted with ethyl acetate. The combined organic layer was washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude obtained was purified by column chromatography by using hexane:ethyl acetate (1:1) to yield the pure product.

1-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-

 2H-pyrazolo[4,3-c]pyridin-3-yl)-3-cyclohexylurea (12f). IR (neat) vmax, 3389.4, 3307.3, $2927.8,1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3,997.0, \mathrm{~cm}^{1} ; \mathrm{Mp} 98-100{ }^{\circ} \mathrm{C}$; ${ }^{1}{ }^{\text {H N NMR (}}$ DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta 7.95-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.67$ (m, 2H), 7.18 (d, J=8.8 Hz, 2H), $6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.23-6.25(\mathrm{~m}, \mathrm{H}), 5.80-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}$, $J=10.12 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.52(\mathrm{~m}, \mathrm{H}), 3.31-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.05(\mathrm{~m}, 2 \mathrm{H}), 1.67-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.04-1.25(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{m} / \mathrm{z}=590.2$;Elemental Composition calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$. C, 58.99; H, 5.29; N 11.86. Found: C, 58.95; H, 5.32; N 11.86.

1-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridin-3-yl)-3-phenylurea (12g). IR (neat) vmax, 3389.4, 3307.3, $2927.8,1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3,997.0, \mathrm{~cm}-1 ; \mathrm{Mp} 98-100{ }^{\circ} \mathrm{C}$; ${ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta 8.78$ (s, 1H), $8.43(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 2 \mathrm{H}), 7.34-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.78-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.20(\mathrm{~m}, 2 \mathrm{H})$, $4.35(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.57(\mathrm{~m}, 2 \mathrm{H}), \mathrm{m} / \mathrm{z}=584.46$; Elemental Composition calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$. C, $59.60 ; \mathrm{H}, 4.31$; N 11.98. Found C, 59.63; H, 4.35; N 11.97.

1-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridin-3-yl)-3-(4-(trifluoromethyl)phenyl)urea (12h).

IR (neat) vmax, 3389.4, 3307.3, 2927.8, 1685.5, 1640.0, 1608.4, 1513.9, 1274.1, 1091.1, 1037.3, 997.0, $\mathrm{cm}^{1}{ }^{1}$; Mp 98-100 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}^{\left.-\mathrm{d}_{6}, 400 \mathrm{MHz}\right): ~} \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.89$ (s, $1 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.78-5.82$ (m, 1H), 5.13-5.20 (m, 2H), 4.35 (t, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.06-$ $3.07(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{m} / \mathrm{z}=652$; Elemental Composition calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$. C, 55.23; H, 3.71; N 10.73. Found C, 55.26; H, 3.74; N 10.71.

General procedure for the synthesis of $\mathbf{1 2}$ (i-k). To a solution of 5-allyl-7,7-difluoro-2-(2,4-dichlorophenyl)-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridine-3amine (10) in Tetrahydrofuran at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere, $\operatorname{LHMDS}(1 \mathrm{M}$ solution in THF) was added and stirred at $-20^{\circ} \mathrm{C}$ for 15 minutes. Cyclohexyl-, phenyl- or 4-
trifluoromethylphenyl isothiocyanates were added at $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for 30 minutes. After completion of the reaction, saturated ammonium chloride solution was added and extracted with ethyl acetate. The combined organic layer was washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude obtained was purified by column chromatography by using hexane:ethyl acetate (1:1) to yield the pure product.

1-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-

 2H-pyrazolo[4,3-c]pyridin-3-yl)-3-cyclohexylthiourea (12i). IR (neat) vmax, 3389.4, $3307.3,2927.8,1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3,997.0, \mathrm{~cm}^{1}$; Mp^{-1} 98-100 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{t}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.99-3.09(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.61-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.41(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{m} / \mathrm{z}=606$; Elemental Composition calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{OS}$. C, 57.42; H, 5.15; N, 11.55. Found C, 57.44; H, 5.14; N, 11.57.
1-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-

 2H-pyrazolo[4,3-c]pyridin-3-yl)-3-phenylthiourea (12j). IR (neat) vmax, 3389.4, 3307.3, $2927.8,1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3,997.0, \mathrm{~cm}^{1}{ }^{1} ; \mathrm{Mp} 98-100{ }^{\circ} \mathrm{C}$; ${ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.34$ (m, H), 7.13-7.19 (m, 2H), $6.90(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.22(\mathrm{~m}, 2 \mathrm{H})$, 4.36-4.41 ($\mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.58 \mathrm{~m}, 1 \mathrm{H}), 3.34-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.20(\mathrm{~m}, 1 \mathrm{H})$, 2.99-3.05 (m, 1H). m/z=600.52; Elemental Composition calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{OS}$. C, 58.00; H, 4.20; N 11.66. Found C, 58.02; H, 4.21; N 11.681-(5-allyl-2-(2,4-dichlorophenyl)-7,7-difluoro-4,5,6,7-tetrahydro-6-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]pyridin-3-yl)-3-(4-(trifluoromethyl)phenyl)thiourea (12k). IR (neat) vmax, $3389.4,3307.3,2927.8,1685.5,1640.0,1608.4,1513.9,1274.1,1091.1,1037.3$, 997.0, cm^{-1}; Mp 98-100 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{-} \mathrm{d}_{6}, 400 \mathrm{MHz}$): $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.96(\mathrm{~m}$, $2 \mathrm{H}), 7.50-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.80-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.21$ $(\mathrm{m}, 2 \mathrm{H}), 4.40-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.10(\mathrm{~m}, 2 \mathrm{H}), \mathrm{m} / \mathrm{z}=668.2$; Elemental Composition calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{OS}$. C, $3.90 ; \mathrm{H}, 3.62 ; \mathrm{N}, 10.48$. Found C, 53.94; H, 3.63; N, 10.46.

Molecular Modeling. The programs DiscoveryStudio and InsightII from Accelrys were used for this part of the study, and structure-based analyses were based on the STAT-3 β homodimer (PDBID: 1BG1). Using the LigandFit protocol of DiscoveryStudio, the 3-D protein was cleaned and the size and spatial orientation of the active site was identified. Energy minimizations were performed using the CHARMM force field. Each energyminimized final docking position was evaluated using the interaction scoring function in the LigandFit module of DiscoveryStudio. In parallel, docking and interaction analysis between the PFPs and the STAT-3 SH2 domain were also performed with ASEDock as implemented in MOE.

Supplementary Figures and Tables

Figure S1. Compound 12k and its putative interactions with the SH2 domain of STAT3, suggesting a variety of lipophilic interactions with the binding site. Different binding modes of ligands seem to be possible (compare Figure S2), with Lys591 having different functions.

Figure S2. Compound 12g and its putative interactions with the SH2 domain of STAT3, suggesting a variety of lipophilic interactions with the binding site. Different binding modes of ligands seem to be possible (compare Figure S1), with Lys591 having different functions.

[^0]: \#These authors contributed equally to this work
 *Corresponding authors

