Synthesis and Biological Evaluation of Nonylprodigiosin and Macrocyclic Prodigiosin Analogues

Alois Fürstner, ${ }^{*[a]}$ Jaroslaw Grabowski, ${ }^{[a]}$ Christian W. Lehmann, ${ }^{[a]}$ Takao Kataoka, ${ }^{[b]}$ and Kazuo Nagai ${ }^{[b]}$

Abstract

Nonylprodigiosin (4) and various of its analogues have been prepared by Suzuki cross-coupling reactions of a well accessible pyrrolyl triflate with (hetero)aryl boronic acid derivatives bearing alkenyl side chains. The resulting alkenes or dienes were subjected to metathesis dimerization or ring-closing metathesis (RCM) reactions, respectively, by using a ruthenium indenylidene complex as the catalyst. The biological activity of the products thus obtained was tested in two different assays monitoring i) the proliferation of murine spleen cells induced by lipopolysaccharides (LPS) and concanavalin A (Con A), and ii) the vacuolar acidification of baby hamster kidney (BHK) cells. Compounds 4 and 21 suppressed Con A-induced T-cell proliferation much more potently than LPSinduced B-cell proliferation. Furthermore, compounds 4 and 26 markedly inhibited vacuolar acidification, although other com-

Abstract

pounds exhibited no or only marginal effects. Thus, the immunosuppressive activity of prodigiosins toward T-cell proliferation seems to be mediated through cellular targets distinct from vacuolar acidification, and the prodigiosin analogues might be powerful tools to dissect these biological responses. The X-ray crystal structure of the macrocyclic product 25 has been determined, showing that the replacement of one pyrrole ring of the parent compound 4 by a phenyl group does not alter the overall electronic features of the remaining heterocyclic ring system of these alkaloids.

KEYWORDS:

alkaloids • immunosuppression • metathesis • prodigiosins . Suzuki reaction

1

2

3

4

Scheme 1. Different isomers of the heterocyclic domain of prodigiosins stabilized by intramolecular hydrogen bonds.
that both isomers show the same affinity to the yet unknown biological receptor, prodigiosin derivatives with a defined configuration may be of considerable interest for more detailed biochemical and pharmaceutical investigations.
Therefore, we reasoned that the naturally occurring macrocyclic nonylprodigiosin (4), isolated in 1970 by Gerber from Actinomadura madurae, ${ }^{[10]}$ constitutes a particularly attractive target since its alkyl chain spans all three heterocyclic rings and thereby locks the Z configuration of the azafulvene entity. We have recently completed an efficient total synthesis of 4 based upon a Suzuki cross-coupling reaction for the formation of its heterocyclic domain and a ring-closing olefin metathesis (RCM) for the cyclization of the macrocyclic ring. ${ }^{\left[11,{ }^{[2]} \text { Here we describe }\right.}$ the preparation of various nonylprodigiosin analogues by exploiting the flexible design of our synthesis blueprint. Upon comparison with the biological activity of the acyclic parent compound $\mathbf{1}$, these new derivatives provide insights into the links between the configuration of the azafulvene unit as well as the presence of an intact pyrrolylpyrromethene chromophore and the biological response to alkaloids of this type.

Results and Discussion

Chemistry

Our total synthesis of nonylprodigiosin (4) is based on the disconnections shown in Scheme 2. ${ }^{[11]}$ Thus, RCM leads to the efficient formation of the macrocyclic ring from diene 5, ${ }^{[13,14]}$ which was assembled by a Suzuki reaction of the boronic acid 7 with the heteroaryl triflate 6. ${ }^{[15,16]}$ The latter is derived from the lactam 8 that can be prepared in a few routine steps on a multigram scale from commercially available precursors. Due to its stability and easy accessibility, we reasoned that this compound may serve as a convenient platform for the preparation of various analogues of $\mathbf{4}$ if synthon $\mathbf{7}$ is replaced by other suitably functionalized boronic acid derivatives.
This concept was put into practice as shown in Schemes 3 and 4. Thus, a palladium-catalyzed Suzuki reaction of triflate $\mathbf{6}$ with N -Boc-pyrrol-2-ylboronic acid (11) ${ }^{[17]}$ affords product 12, which differs from undecylprodigiosin (1) only in the length of the alkyl chain and the presence of a double bond that provides a handle for further functionalization. Likewise, cross-coupling of 6 with the readily accessible phenylboronic acid derivative 14 gave product 15 in good yield. ${ }^{[18]}$
Similar attempts to prepare prodigiosin analogues, however, in which one of the pyrrole units is replaced by another

7

9

Scheme 2. Retrosynthetic analysis for nonylprodigiosin (4). OTf $=$ triflate $=$ trifluoromethanesulfonate.

Scheme 3. Synthesis of dienes 12 and 15. a) $\left[P d\left(\mathrm{PPh}_{3}\right)_{4}\right](c a t$.$) , aq \mathrm{Na}_{2} \mathrm{CO}_{3}, D M E$, $85^{\circ} \mathrm{C}, 73 \%$; b) 1. nBuLi, $\mathrm{Et}_{2} \mathrm{O}$; 2. B(OMe) 3_{3}; 3. aq $\left.\mathrm{HCl} ; ~ c\right)\left[\mathrm{Pd}_{\left.\left(\mathrm{PPh}_{3}\right)_{4}\right]}\right.$ (cat.), aq $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{DME}, 55^{\circ} \mathrm{C}, 60 \%$. Boc = tert-butoxycarbonyl.

Scheme 4. Synthesis of dienes 19-21. a) 1. nBuLi, $\mathrm{Et}_{2} \mathrm{O}$; 2. 1-bromo-4-pentene $(\rightarrow \mathbf{1 6}, \mathbf{7 3 \%} \rightarrow \mathbf{1 8}, \mathbf{3 6 \%}$), or 1-bromo-11-dodecene ($\rightarrow \mathbf{1 7}, 93 \%$); b) 1. nBuLi, THF; 2. $\mathrm{B}(\mathrm{OMe})_{3} ;$ 3. triflate 6, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (cat.), aq $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{DME},(\rightarrow \mathbf{1 9}, \mathbf{7 8} \% ; \boldsymbol{2 0}$, $\mathbf{6 4 \%} \boldsymbol{\rightarrow} \boldsymbol{\mathbf { 2 1 }}, 81 \%$).
heteroaromatic ring, met with failure. ${ }^{[19]}$ The problem was traced back to the high lability of the required furan- or thiophene boronic acid derivatives, which undergo rapid protodeborylation and could therefore not be obtained in sufficiently pure form. To circumvent this problem, we employed the "in situ" borylation/ Suzuki cross-coupling method ${ }^{[20]}$ summarized in Scheme 4. Thus, deprotonation of 2-(4-pentenyl)furan (16) with $n \mathrm{BuLi}$ followed by addition of $\mathrm{B}(\mathrm{OMe})_{3}$ affords a borate complex which is transferred by a cannula into a solution of triflate 6 in 1,2dimethoxyethane (DME). Addition of catalytic amounts of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ and aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ effects a smooth cross-coupling of these components affording product 19 in 78% yield. Compound 20 bearing a longer side chain on the furan ring as well as the thiophene analogue 21 have been prepared analogously.
These alkene derivatives were then subjected to RCM or metathesis dimerization reactions by using the newly developed ruthenium indenylidene complex 22 ($\mathrm{Cy}=$ cyclohexyl) as the catalyst of choice (Table 1). ${ }^{[21]}$ In its presence, alkene 12 under-

22

Table 1. Preparation of nonylprodigiosin and its analogues by RCM or metathesis dimerization. ${ }^{[a]}$

Substrate ${ }^{[\mathrm{b}]}$	Product	Yield [\%]

19

15

25

93
12

[a] All reactions were carried out in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $5-10 \mathrm{~mol} \%$ of complex 22 as the catalyst. [b] HCl salts of the substrates were used for RCM. [c] Nonylprodigiosin (4) is obtained by hydrogenation of its unsaturated analogue formed by RCM, see ref. [11]; the site of ring closure is indicated by the dotted line.
goes a high-yielding dimerization with formation of product 26 containing two tethered pharmacophore units. ${ }^{[22]}$ In line with our previous investigations on RCM-based macrocyclizations, ${ }^{[13,14]}$ the hydrochloride salts of dienes 15, 19, and 20 cyclize without incident to the corresponding nonylprodigiosin analogues 25, 23, and 24, respectively, in good to excellent yields if the reactions are carried out under high-dilution conditions. Only the thiophene derivative $\mathbf{2 1}$ resisted ring closure; this failure, however, can be explained by the well precedented incompatibility of standard metathesis catalysts with sulfur-containing substrates. ${ }^{[23]}$

Structure

The chemical behavior of prodigiosins can be inferred from the two tautomeric forms III and IV, which differ essentially in the localization of the basic site within the heterocyclic ring system. ${ }^{[24]}$ Whereas recent NMR studies seem to indicate that protonation occurs preferentially at the nitrogen atom of the C ring thus favoring tautomer III, ${ }^{[9 a]}$ an X-ray crystallographic study of $4 \cdot \mathrm{HCl}$ showed beyond doubt that this compound in the solid state is best represented by tautomer IV. ${ }^{[11]}$

III

IV

To study how the replacement of one of the pyrrole rings by a different arene entity affects the electronic pattern within the π system of the pharmacophore, an X-ray diffraction study of compound 25 has been carried out (Figures 1 and 2). ${ }^{[25]}$ The analysis of the relevant bond lengths shows that the central B ring constitutes the basic azafulvene entity, very much in line with the situation found in the parent compound 4 . Therefore it must be concluded that modifications of the A ring as described in this paper do not alter the overall electronic features of the remaining heterocyclic domain, thus rendering products 23-25 relevant mimics for nonylprodigiosin.

Biological evaluation

The novel prodigiosin derivatives have been compared with undecylprodigiosin (1) in two different kinds of experiments. Specifically, this refers to i) proliferation of murine spleen cells induced by lipopolysaccharides (LPS) and concanavalin A (Con A), and ii) vacuolar acidification of baby hamster kidney (BHK) cells where prodigiosins were previously found to exhibit characteristic features at the cellular level.

LPS stimulation induces B-cell proliferation whereas Con A stimulation induces T-cell proliferation. Compound 1 suppressed the Con A-induced proliferation of Tcells at an IC_{50} value of 0.6 nm which was a significantly lower concentration than the

Figure 1. Molecular structure of compound $\mathbf{2 5}$; in the crystal the tautomer with the hydrogen atom attached to $N 2$ is present. Anisotropic displacement parameters are shown at 50% probability and hydrogen atoms have been omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: N1-C1 1.407(4), C1C24 1.450(5), C24-C23 1.340(4), C23-C22 1.448(5), C22-N1 1.325(4), C1-C2 1.364(4), C2-C3 1.404(5), N2-C6 1.353(4), C6-C5 1.379(4), C5-C4 1.383(5), C4-C3 1.394(5), C3N2 1.392(4), C6-C7 1.495(4), C10-C11 1.481(5), C11-C12 1.296(6), C12-C13 1.467(5), C20-C22 1.491(4); C11-C10-C9 113.2(3), C12-C11-C10 127.3(4), C11-C12-C13
128.9(5), C12-C13-C14 109.7(3). The values for the intramolecular hydrogen bond $\left(\mathrm{N} 2 \mathrm{H} \cdots \mathrm{N} 12.27 \AA, \mathrm{~N} 2-\mathrm{H} \cdots \mathrm{N} 1122^{\circ}\right)$ are comparable to those for 384 examples of pyrrolylpyrromethene units (mean NH $\cdots N$ distance 2.4(2) \AA, mean $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle $118(8)^{\circ}$) contained in the April 2000 version of the Cambridge Structural Database.
IC_{50} value toward the LPS-induced proliferation of B cells (15 nm). Although in these assays the activity of all new prodigiosin derivatives was substantially lower than that of 1, compounds 4 and 21 exhibited an inhibitory profile similar to that of compound $\mathbf{1}$ in that these derivatives suppressed the Con Ainduced T-cell proliferation more strongly than the LPS-induced B-cell proliferation (Figure 3, Table 2). The lower activity of the macrocyclic derivative 4 as compared with the parent com-

Figure 2. Side-on view of compound 25 showing the planar arrangement of the two pyrrole rings and the phenyl ring. The alkyl chain deviates from this plane up to $1.28 \AA$. This is caused primarily by the torsion angle C14-C15-C16-C17 of - 106.7° which forces the alkyl chain out of the molecular plane. In addition, there are two gauche conformations, located at C9-C10 and C13-C14. The C=C double bond forms a dihedral angle of only 18° with the ring plane, mainly due to the torsion angles around C10-C11 and C12-C13, which deviate by 47.8° and 74.3°, respectively, from the anti-periplanar arrangement.
ure 4), which indicates the blockage of vacuolar acidification. Prodigiosin derivatives 4 and 26 also significantly prevent vacuolar acidification, whereas all other compounds exhibit no or only marginal effects. Thus, the data suggest that three

Compd	B-cell proliferation $\mathrm{IC}_{50}[\mathrm{~nm}]$	T-cell proliferation IC_{50} [nm]	IC_{50} ratio (B cell/Tcell)
1	15	0.6	24
4	360	26	14
21	1900	130	15
23	1500	2900	0.5
24	7900	2800	2.8
25	12000	4300	2.7
26	850	240	3.6

[a] IC_{50} values for inhibition of LPS-induced B-cell proliferation and Con Ainduced T -cell proliferation were measured. The ratio of the two IC_{50} values (B-cell proliferation versus T-cell proliferation) was calculated. pound 1 may be caused by the fact that one conformation of its pharmacophore is locked as discussed above (see Introduction); alternatively, one may speculate that the flexible undecyl side chain of 1 plays an important role for the insertion of this alkaloid into biological (e.g. lysosomal) membranes. Further structural variations are necessary in order to distinguish between these possibilities.
Prodigiosins were shown to act as $\mathrm{H}^{+} / \mathrm{Cl}^{-}$ symporters that uncouple proton translocation resulting in perturbation of vacuolar acidification. ${ }^{[1,26]}$ This biological activity was assessed by staining BHK cells with a fluorescent dye (acridine orange) that is accumulated in the acidic granules. Fluorescent orange dots represent intracellular acidic granules such as lysosomes over the green background of cytoplasm and nuclei. Compound 1 significantly decreases the intensity and number of orange dots (Fig-

Figure 3. Biological evaluation of the effects of prodigiosin derivatives on the proliferation of murine spleen cells. Mouse spleen cells were stimulated with $10 \mu \mathrm{mLL}{ }^{-1}$ of LPS (open circles) or $2 \mu \mathrm{gmL} \mathrm{m}^{-1}$ of Con A (filled circles) in the presence of the compounds at serially diluted concentrations for 3 days. The proliferative response was assessed by an MTT assay. Data points represent the average of triplicate experiments; $P=$ proliferation.

	Concentration $(\mu \mathrm{M})$				
	0.1	1	10	100	MIC
1	-	+	+		1
4		\pm	+		$1-10$
21				-	>100
23				\pm	>100
24				-	>100
25				-	>100
26		-	+		10

Figure 4. Biological evaluation of the effects of prodigiosin derivatives on vacuolar acidification. BHK cells were pretreated with prodigiosin derivatives at the indicated concentrations for 30 min and further incubated in the presence of $5 \mu \mathrm{gmL}{ }^{-1}$ acridine orange for 30 min . The stained cells were examined by fluorescence microscopy. A) No compounds (negative control); B) 1 (10 $\mu \mathrm{m})$; C) 4 (10 $\mu \mathrm{m})$; D) $21(100 \mu \mathrm{~m})$; E) $23(100 \mu \mathrm{~m})$; F) $24(100 \mu \mathrm{~m})$; G) $25(100 \mu \mathrm{~m})$; H) 26 $(10 \mu \mathrm{~m})$. I) The table shows the concentrations at which the prodigiosin derivatives tested had (+) or did not have (-) an effect on vacuolar acidification; the minimum inhibitory concentration (MIC) for each compound is also given.
pyrrole units are essential for the inhibitory activity of prodigiosins on vacuolar acidification.

Other types of inhibitors of vacuolar acidification such as concanamycins A and B (inhibitors of vacuolar-type H^{+}-ATPase) exhibit immunosuppressive activity in vitro and in vivo similar to prodigiosins, and also display preferential suppression of Con Ainduced T -cell proliferation. ${ }^{\left[1,{ }^{26]}\right.}$ We assumed that these agents augment the toxic effect of Con A by upregulation of Con A receptors on the cell surface through preventing the acidification of the Golgi apparatus and affecting glycoprotein processing. In this work, however, the immunosuppressive activity on Con A-induced T-cell proliferation and the inhibitory activity on vacuolar acidification were dissected especially with two prodigiosin derivatives, 21 and 26, that essentially affect only one of these two biological responses. Thus, the immunosuppressive activity of prodigiosins is caused by mechanisms
other than the inhibition of vacuolar acidification, and the analogues presented in this paper might be powerful tools to address the molecular targets specific for T-cell functions.

Experimental Section

General: All reactions were carried out under Ar in pre-dried glassware by using Schlenk techniques. The solvents were dried by distillation over the drying agents indicated and were stored and transferred under $\mathrm{Ar}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$, $\mathrm{DME}(\mathrm{Na} / \mathrm{K})$, diethyl ether, 1,4dioxane, THF (magnesium/anthracene). Flash chromatography: Merck silica gel (230-400 mesh) or activated aluminum oxide (Aldrich, neutral, Brockmann I, standard grade, ca. 150 mesh) with hexanes/ethyl acetate in various ratios as eluent. NMR spectroscopy: Spectra were recorded on a Bruker AMX 200 or DPX 300 spectrometer in the solvent indicated. Chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. IR spectroscopy: Nicolet FT-7199, wavenumbers in cm^{-1}. MS: Varian CH-5 (70 eV); HR-MS: Finnigan MAT SSQ 7000 (70 eV). Melting-point determination: Gallenkamp apparatus (uncorrected). Elemental analyses: Dornis \& Kolbe, Mülheim (Germany). Commercially available reagents (Aldrich, Fluka) were used as received.

Chemical syntheses

(1-tert-Butoxycarbonyl-2-pyrrolyl)boronic acid (11): nBuLi (1.6m in hexanes, $3.90 \mathrm{~mL}, 6.24 \mathrm{mmol}$) is slowly added to a solution of 2,2,6,6tetramethylpiperidine $(765 \mathrm{mg}, 5.41 \mathrm{mmol})$ in THF $(11 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. After stirring for 10 min at this temperature, the mixture is allowed to warm to $0^{\circ} \mathrm{C}$ within 30 min . After cooling again to $-78^{\circ} \mathrm{C}$, a solution of N -Boc pyrrole $(830 \mathrm{mg}, 4.96 \mathrm{mmol})^{[27]}$ in THF $(20 \mathrm{~mL})$ is added at such a rate that the temperature remains below $-65^{\circ} \mathrm{C}$. The reaction mixture is stirred for 2 h at $-78^{\circ} \mathrm{C}$ prior to the addition of $\mathrm{B}(\mathrm{OMe})_{3}(1.54 \mathrm{~g}, 14.82 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$. The reaction mixture is allowed to warm to ambient temperature overnight. For workup, aq $\mathrm{HCl}(0.25 \mathrm{~m}, 14 \mathrm{~mL}, 3.5 \mathrm{mmol})$ is added, the solvent is evaporated, the residue is extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$, the combined organic phases are washed with water $(2 \times 6 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution is slowly concentrated until a solid starts to precipitate. The mixture is then kept at $0^{\circ} \mathrm{C}$ and the precipitated product is filtered off. Trituration with cold $\mathrm{Et}_{2} \mathrm{O}$ and drying of the residue in vacuo affords the boronic acid 11 ($660 \mathrm{mg}, 63 \%$) as a colorless solid. ${ }^{[17]}$ ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42$ (dd, $1 \mathrm{H}, J=3.2,1.6 \mathrm{~Hz}$), 7.28 (br.s, $2 \mathrm{H}), 7.08$ (dd, J=3.3, 1.7 Hz, 1 H), $6.24(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.2,128.7,127.0,112.0,85.5,27.9 ;$ ${ }^{11} \mathrm{~B}$ NMR ($64 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.2 ; \mathrm{MS}(\mathrm{El}): \mathrm{m} / \mathrm{z}(\%): 211$ (10) $[\mathrm{M}]^{+}, 155$ (19), 138 (9), 111 (62), 110 (15), 93 (11), 57 (100), 41 (25), 29 (13).

3-(4-Pentenyl)phenylboronic acid (14): nBuLi (1.6m in hexanes, $5.00 \mathrm{~mL}, 8.00 \mathrm{mmol}$) is added to a solution of 1-bromo-3-(4pentenyl)benzene ($901 \mathrm{mg}, 4.00 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 90 min at this temperature, the mixture is allowed to warm to r.t. and stirred for another 3 h . After cooling to $-78^{\circ} \mathrm{C}$, $\mathrm{B}(\mathrm{OMe})_{3}(831 \mathrm{mg}, 8.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ is added, the reaction mixture is warmed to $0^{\circ} \mathrm{C}$ and quenched with 10% aq HCl . The reaction mixture is extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer is extracted with 10% aq $\mathrm{NaOH}(3 \times)$, the combined alkaline extracts are acidified with 10% aq HCl until $\mathrm{pH} \approx 1-2$ is reached, and the precipitated solid is filtered off. The acidic filtrate is extracted with $\mathrm{Et}_{2} \mathrm{O}$, the extracts are dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a second crop of the product. The crude boronic acid 14 (195 mg) thus obtained is used for the next step without further purification.
2-(4-Pentenyl)furan (16): Compound 16 ($4.22 \mathrm{~g}, 73 \%$) is obtained as a colorless liquid according to ref. [28] by using furan $(3.07 \mathrm{~mL}$,
42.27 mmol) and 5-bromo-1-pentene ($6.30 \mathrm{~g}, 42.27 \mathrm{mmol}$) as the starting materials. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29$ (dd, $J=1.8$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (dd, $J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dd, $J=3.3,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.81 (ddt, J=16.9, 10.3, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=156.1,140.7,138.2,114.9,110.0,104.8,33.1,27.3,27.2$; IR (neat): $\tilde{v}=3115,3078,2978,2935,2862,1641,1597,1508,1438,1384$, 1345, 1237, 1175, 1147, 1077, 1007, 914, 885, 798, 729, $599 \mathrm{~cm}^{-1}$. MS (EI): m / z (\%): 136 (19) [M] ${ }^{+}, 107$ (7), 94 (76), 92 (13), 82 (20), 81 (100), 53 (29), 39 (17), 27 (15).

2-(11-Dodecenyl)furan (17): Compound 17 ($1.954 \mathrm{~g}, 93 \%$) is obtained as a colorless syrup according to ref. [28] by using furan ($643 \mu \mathrm{~L}, 8.85 \mathrm{mmol}$) and 12-bromo-1-dodecene ($2.187 \mathrm{~g}, 8.85 \mathrm{mmol}$) as the starting materials. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.29$ (dd, $\mathrm{J}=$ $1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.83$ (ddt, J=16.9, 13.3, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.03-4.90(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), 2.09-2.01 (m, 2H), 1.68-1.51 (m, 2H), 1.44-1.29 (m, 14H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=156.9,140.7,139.4,113.9,110.1,104.6$, 33.9, 29.7, 29.7, 29.6, 29.5, 29.3, 29.3, 29.1, 28.2, 28.0; IR (neat): $\tilde{v}=$ $3115,3077,2926,2854,1641,1597,1507,1465,1440,1147,1007,994$, 910, 885, 795, $726 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 234 (16) [M] ${ }^{+}, 123$ (10), 95 (44), 94 (16), 82 (35), 81 (100), 67 (10), 55 (17), 41 (24); HR-MS: m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}$ 234.198365, found 234.198907.

2-(4-Pentenyl)thiophene (18): A solution of thiophene (2.84 g , $33.81 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ is added to $n B u \mathrm{Li}(1.6 \mathrm{~m}, 21.13 \mathrm{~mL}$, $33.81 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture is allowed to warm to r.t. and stirred for 90 min . After cooling to $-15^{\circ} \mathrm{C}$, a solution of 5-bromo-1-pentene in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ is added and the resulting mixture is refluxed for 30 h . The reaction mixture is cooled to r.t. and poured onto crushed ice. The aqueous layer is extracted with tertbutyl methyl ether, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product is purified by distillation (b.p. $=80-81^{\circ} \mathrm{C}$ at 20 mbar) to give product 18 ($1.84 \mathrm{~g}, 36 \%$) as a colorless liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, J=3.5 Hz, 1 H), 5.85 (ddt, J=17.1, 10.4, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.95(\mathrm{~m}$, $2 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=145.5,138.4,126.7,124.2,122.9,114.7$, 33.1, 31.1, 29.3; IR (neat): $\tilde{v}=3076,2976,2933,2856,1641,1535$, 1440, 1240, 1076, 991, 912, 851, 819, $693 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 152 (14) $[M]^{+}, 123$ (7), 110 (67), 98 (29), 97 (100), 53 (10), 45 (14), 39 (12); elemental analysis calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~S}$ (152.26): C 71.00, H 7.94; found: C 70.92, H 8.06.

12: A solution of triflate $6(243 \mathrm{mg}, 0.60 \mathrm{mmol}),{ }^{[11]} \mathrm{LiCl}(76 \mathrm{mg}$, $1.80 \mathrm{mmol})$, the boronic acid $11(380 \mathrm{mg}, 1.80 \mathrm{mmol}),\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ ($35 \mathrm{mg}, 0.03 \mathrm{mmol}$), and aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~m}, 1.8 \mathrm{~mL}, 3.60 \mathrm{mmol})$ in DME $(12 \mathrm{~mL})$ is stirred at $90^{\circ} \mathrm{C}$ for 20 h under Ar. A standard workup followed by flash chromatography on neutral alumina using hexanes/ethyl acetate ($6: 1 \rightarrow 2: 1$) as the eluent provides compound $12(141 \mathrm{mg}, 73 \%)$ as a dark red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $6.88(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=3.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=2.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.52 (d, J=3.7 Hz, 1 H), 6.17 (dd, J=3.6, 2.5 Hz, 1 H), $6.14(\mathrm{~s}, 1 \mathrm{H}), 5.88$ (d, J=3.7 Hz, 1 H), 5.79 (ddt, J=16.9, 10.3, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.91(\mathrm{~m}$, $2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=169.5,160.6,144.4,139.0$, 138.8, 128.4, 128.3, 122.8, 121.3, 116.0, 114.1, 113.2, 110.4, 108.8, 95.9, 58.6, 33.5, 28.9, 28.9, 27.1; MS (EI): m/z (\%): 321 (100) [M] ${ }^{+}, 306$ (12), 266 (10), 253 (31), 252 (69), 238 (26), 221 (7), 118 (11), 91 (33).
15: A solution of triflate $6(110 \mathrm{mg}, 0.27 \mathrm{mmol}){ }^{[11]}\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](31 \mathrm{mg}$, 0.027 mmol), and the boronic acid 14 (195 mg of the crude product) in DME (15 mL) is treated with aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.2 \mathrm{~m}, 0.9 \mathrm{~mL}, 1.98 \mathrm{mmol})$ and the resulting mixture is stirred for 2.5 h at $85^{\circ} \mathrm{C}$. A standard extractive workup followed by flash chromatography on neutral
alumina using hexanes/ethyl acetate $(50: 1 \rightarrow 10: 1)$ as the eluent provides diene 15 . The fractions containing the product are combined and concentrated to a small volume, treated with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$, and evaporated in vacuo. This affords $15 \cdot \mathrm{HCl}$ ($71 \mathrm{mg}, 60 \%$) as a dark red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=14.58$ (br.s, 1 H), 13.47 (br. s, 1 H), 8.24 (s, 1 H), 8.17 (d, J= $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 1 \mathrm{H})$, $6.34-6.32(\mathrm{~m}, 2 \mathrm{H}), 5.95-5.77(\mathrm{~m}, 2 \mathrm{H}), 5.09-4.92(\mathrm{~m}, 4 \mathrm{H}), 4.03(\mathrm{~s}$, $3 \mathrm{H}), 3.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 4 \mathrm{H})$, $1.91-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ 166.8, 157.7, 156.6, 143.6, 138.8, 138.7, 133.3, 132.1, 128.9, 128.8, $128.5,127.2,126.3,120.9,120.8,114.7,114.5,114.3,94.7,59.1,35.1$, 33.5, 33.4, 30.5, 28.6, 28.5, 28.3; IR (KBr): $\tilde{v}=3396,3334,3073,2996$, 2927, 2856, 2752, 1622, 1572, 1545, 1525, 1484, 1459, 1362, 1269, 1239, 1183, 1133, 1048, 982, 949, 911, 815, 778, $694 \mathrm{~cm}^{-1}$; HR-MS (FAB, positive mode): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O} 401.259288$, found 401.258099.
$19 \cdot \mathrm{HCl}$: A solution of the furan $16(170 \mathrm{mg}, 1.25 \mathrm{mmol})$ in THF (3 mL) at $-78^{\circ} \mathrm{C}$ under Ar is treated with $n \mathrm{BuLi}(1.6 \mathrm{~m}$ in hexanes, 0.78 mL , $1.25 \mathrm{mmol})$. The solution is allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for 1 h . After cooling again to $-78^{\circ} \mathrm{C}, \mathrm{B}(\mathrm{OMe})_{3}(167 \mu \mathrm{~L}, 1.50 \mathrm{mmol})$ is introduced and the solution is allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for 2 h . Triflate $6(104 \mathrm{mg}, 0.27 \mathrm{mmol}),{ }^{[11]}\left[\mathrm{Pd}^{[}\left(\mathrm{PPh}_{3}\right)_{4}\right] \quad(25 \mathrm{mg}$, $0.022 \mathrm{mmol})$, and DME (5 mL) were placed into a second flask. The borate complex is transferred by syringe into the second flask at $40^{\circ} \mathrm{C}$ and aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~m}, 1.10 \mathrm{~mL}, 2.20 \mathrm{mmol})$ is added to the reaction mixture. Stirring at $80^{\circ} \mathrm{C}$ for 3 h followed by a standard extractive workup and flash chromatography on neutral alumina with hexanes/ethyl acetate ($50: 1 \rightarrow 6: 1$) as the eluent provides diene 19. Treatment of the free base thus formed with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the solvent affords $19 \cdot \mathrm{HCl}(86 \mathrm{mg}, 78 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=14.20$ (br.s, 1 H$), 13.73$ (br.s, $1 \mathrm{H}), 8.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.34(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.27(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.91(\mathrm{~m}$, $4 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.12-2.01 (m, 4H), 1.79-1.68 (m, 4H), 1.48-1.39 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=166.6,162.2,155.7,146.0,143.6,138.8,138.0$, 131.5, 127.0, 121.3, 120.3, 118.9, 115.1, 114.3, 113.9, 110.1, 93.3, 59.1, 33.5, 33.1, $28.6(2 \times$), 28.2, 27.8, 27.0; IR (KBr): $\tilde{v}=3423,3088,2927$, 2856, 1640, 1611, 1547, 1411, 1286, 1233, 1184, 1136, 1047, 989, 964, 909, $783 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 390 (100) [M HCl]+, 375 (14), 335 (25), 322 (24), 321 (32), 307 (15), 140 (9), 118 (15), 105 (16), 41 (14); HRMS: m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} 390.230727$, found 390.229664.
$\mathbf{2 0} \cdot \mathbf{H C l}$: A solution of the furan 17 ($465 \mathrm{mg}, 1.98 \mathrm{mmol}$) in THF (5 mL) is treated with $n B \mathrm{BLi}(1.6 \mathrm{~m}$ in hexanes, $1.24 \mathrm{~mL}, 1.95 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under Ar. The solution is allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for 1 h . After cooling again to $-78^{\circ} \mathrm{C}, \mathrm{B}(\mathrm{OMe})_{3}(264 \mu \mathrm{~L}, 2.38 \mathrm{mmol})$ is added and the solution is allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for 2 h . Triflate $6(192 \mathrm{mg}, 0.47 \mathrm{mmol}),{ }^{[11]}\left[\mathrm{Pd}^{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](52 \mathrm{mg}, 0.045 \mathrm{mmol})$, and DME $(15 \mathrm{~mL})$ are added into a second flask. The borate complex is transferred by syringe into this second flask at $40^{\circ} \mathrm{C}$ followed by addition of aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.2 \mathrm{~m}, 1.80 \mathrm{~mL}, 3.96 \mathrm{mmol})$. The resulting mixture is stirred at $80^{\circ} \mathrm{C}$ for 3 h . A standard extractive workup followed by flash chromatography on neutral alumina with hexanes/ ethyl acetate ($50: 1 \rightarrow 6: 1$) as the eluent provides diene 20 ; treatment of the free base thus formed with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the solvent affords $\mathbf{2 0} \cdot \mathbf{H C l}(158 \mathrm{mg}, 64 \%)$ as a dark red solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=14.03$ (br.s, 1 H$), 13.58$ (br.s, $1 \mathrm{H}), 8.45(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (d, J=3.5 Hz, 1 H), 6.30-6.27 (m, 2H), 5.90-5.75 (m, 2H), 5.05-4.90 $(\mathrm{m}, 4 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.15-2.00 (m, 4H), 1.84-1.69 (m, 4H), 1.67-1.29(m, 16H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=166.6,162.8,155.7,146.2,143.5,139.4,138.9$,
131.4, 126.0, 121.3, 120.5, 118.9, 114.3, 113.9, 113.9, 110.0, 93.2, 59.1, 33.9, 33.5, 29.6, 29.6, 29.5, 29.4, $29.2(2 \times), 29.0,28.6(2 \times), 28.4,28.2$, 27.8; IR (KBr): $\tilde{v}=3439,3081,2996,2927,2854,1631,1611,1554,1544$, 1495, 1441, 1360, 1288, 1226, 1181, 1039, 978, 969, 906, $781 \mathrm{~cm}^{-1}$; HRMS (FAB, positive mode): m/z: calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}$: 489.348102, found 489.347792 .
21: Substrate 18 ($152 \mathrm{mg}, 1.00 \mathrm{mmol})$ is added to $\mathrm{nBuLi}(1.6 \mathrm{~m}, 625 \mu \mathrm{~L}$, $1.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture is allowed to warm to r.t. and stirred for 90 min . The reaction mixture is cooled to $-15^{\circ} \mathrm{C}$ and $\mathrm{B}(\mathrm{OMe})_{3}(139 \mu \mathrm{~L}, 1.25 \mathrm{mmol})$ is added. The mixture is warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h , then allowed to warm to ambient temperature and stirred for another 30 min . The reaction mixture is concentrated to a small volume and transferred to a solution of triflate $6(62 \mathrm{mg}, 0.15 \mathrm{mmol})^{[11]}$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](18 \mathrm{mg}, 0.156 \mathrm{mmol})$ in DME (5 mL). Aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~m}, 1.00 \mathrm{~mL}, 2.00 \mathrm{mmol})$ is added and the resulting mixture is refluxed for 3 h . A standard extractive workup followed by flash chromatography on neutral alumina with hexanes/ ethyl acetate ($30: 1 \rightarrow 6: 1$) as the eluent provides diene $\mathbf{2 1}$; treatment of the free base thus formed with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the solvent affords $\mathbf{2 1} \cdot \mathrm{HCl}(55 \mathrm{mg}, 0.124 \mathrm{mmol}, 81 \%)$ as a dark red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=14.19$ (br.s, 1 H$)$, 13.52 (br.s, 1 H), 8.83 (d, J=3.9 Hz, 1 H), 7.14 ($\mathrm{s}, 1 \mathrm{H}), 6.98-6.95$ (m, $2 \mathrm{H}), 6.29$ (dd, $J=3.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.77$ $(\mathrm{m}, 2 \mathrm{H}), 5.10-4.92(\mathrm{~m}, 4 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.45(\mathrm{~m}$, $2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=166.7,156.0,153.8,150.1,138.8$, 137.9, 134.1, 131.8, 129.42, 127.5, 126.9, 121.1, 119.0, 115.1, 114.3, 114.0, 94.6, 59.1, 33.5, 33.0, 30.6, 29.8, 28.6, 28.5, 28.2; IR (KBr): $\tilde{v}=$ 3413, 3169, 3052, 2926, 2856, 1723, 1639, 1583, 1548, 1505, 1447, 1409, 1383, 1286, 1185, 1045, 989, 906, 807, $771 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 406 (100) [$M]^{+}, 351$ (18), 337 (33), 192 (5), 148 (8), 121 (17); HRMS: m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OS} 406.207885$, found 406.208770 .
$23 \cdot \mathrm{HCl}$: A solution of diene $19 \cdot \mathrm{HCl}(26 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$ is slowly added to a solution of the ruthenium carbene complex $22(5 \mathrm{mg}, 0.006 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the resulting mixture is refluxed for 40 h . For workup, the reaction mixture is washed with sat. aq $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the organic layer is dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent is evaporated. The residue is subjected to flash chromatography on neutral alumina with hexanes/ethyl acetate $(20: 1 \rightarrow 6: 1)$ as the eluent. The combined fractions containing the product are concentrated to a small volume, treated with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ and evaporated in vacuo. This affords $23 \cdot \mathrm{HCl}(15.5 \mathrm{mg}$, 64%) as a dark red solid. The ratio of isomers is $E: Z=4: 1 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=14.14$ (br.s, 1 H), 13.22 (br.s, 1 H$), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27-6.22(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.93-5.84(\mathrm{~m}$, $1 \mathrm{H}), 5.57-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.18-1.77$ $(\mathrm{m}, 8 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): E$ isomer: $\delta=$ 167.2, 163.0, 155.5, 145.7, 142.7, 130.9, 130.7, 129.7, 128.1, 122.1, 119.6, 118.5, 114.4, 109.8, 92.8, 59.4, 31.7, 31.2, 29.3, 28.3, 28.2, 27.3, 26.9; Z isomer (resolved signals): $\delta=131.1,130.1,130.0,127.7,119.7,117.7$, 109.7, 92.7, 59.3, 28.8, 28.7, 28.1 (2C), 27.6, 27.5, 27.4; IR (KBr): $\tilde{v}=3423$, 3071, 2923, 2851, 1616, 1540, 1501, 1415, 1345, 1247, 1237, 1177, 1130, 1032, 968, 884, 799, 781, 703, $667 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 362 (100) [(M HCl)] ${ }^{+}, 347$ (15), 280 (11), 105 (8); HR-MS: m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} 362.199427$, found 362. 200162.
$\mathbf{2 4} \cdot \mathbf{H C l}$: A solution of diene $\mathbf{2 0} \cdot \mathbf{H C l}(131 \mathrm{mg}, 0.249 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ is slowly added (over 4 h) at $40^{\circ} \mathrm{C}$ to a solution of the ruthenium indenylidene complex 22 ($23 \mathrm{mg}, 0.025 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(250 \mathrm{~mL})$. After stirring for 22 h at this temperature, the reaction mixture is cooled to r.t., washed with sat. aq $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the organic layer is dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the crude material on neutral alumina with hexanes/ethyl acetate $(30: 1 \rightarrow 2: 1)$ as the eluent provides 24 , which after concentration to
a small volume, treating with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$, and evaporation of the solvent in vacuo is isolated as the deeply red solid hydrochloride salt $\mathbf{2 4} \cdot \mathrm{HCl}(71 \mathrm{mg}, 57 \%)$. The ratio of isomers is $E: Z=$ 2.4:1. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.98$ (br.s, 1 H), 13.47 (br.s, 1 H), $8.15(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.07(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.19(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.01-$ $2.95(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.69(\mathrm{~m}, 8 \mathrm{H}), 1.41-1.03(\mathrm{~m}$, $16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: E isomer: $\delta=166.2,162.4,156.2$, 145.6, 143.2, 131.3, 130.7, 129.4, 126.9, 121.1, 120.1, 118.9, 114.2, 110.7, 92.8, 58.9, 32.9, 31.7, 29.6, 29.2, 28.9, 28.8, 28.7, 28.5, 28.3, 28.2, 28.1, 28.0, 27.8, 26.9; Z isomer (resolved signals): $\delta=166.0,162.9,156.1$, 145.1, 143.1, 131.4, 130.3, 126.9, 120.8, 119.3, 114.0, 110.1, 92.7, 28.9, 28.6, 27.9, 27.0, 26.7; IR (KBr): $\tilde{v}=3425,3111,2923,2851,1626,1547$, 1506, 1451, 1384, 1352, 1278, 1244, 1181, 1129, 1043, 966, 884, 838, 793, $776 \mathrm{~cm}^{-1}$; HR-MS: m/z: calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2} 460.308977$, found 460.307802.

25: ${ }^{[25]}$ A solution of diene $15 \cdot \mathrm{HCl}\left(67 \mathrm{mg}, 0.153 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ is slowly added to a solution of the ruthenium indenylidene complex 22 ($5 \mathrm{mg}, 0.006 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the resulting mixture is refluxed for 24 h . For workup, the reaction mixture is washed with sat. aq $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the organic layer is dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue on neutral alumina with hexanes/ethyl acetate (20:1) as the eluent affords product 25 ($49 \mathrm{mg}, 86 \%$) as an orange crystalline solid. The ratio of isomers is $E: Z=10: 1 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.16(\mathrm{~s}, 1 \mathrm{H}), 7.55$ (dd, $J=6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.52-5.49(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.15$ $(\mathrm{m}, 2 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: E isomer: $\delta=168.5,165.4,143.3,142.9$, 141.1, 134.5, 130.7, 130.7, 130.3, 130.0, 128.6, 126.6, 125.0, 119.9, 117.7, 110.2, 94.6, 58.4, 33.2, 32.3, 30.0, 29.6, 29.4, 28.6, 28.2; Z isomer (resolved signals): $\delta=130.5,130.1,128.4,125.8,120.5,117.9,110.1$, 94.8, 35.0, 31.0, 28.3, 28.0, 27.3, 26.7, 26.2; IR (KBr): $\tilde{v}=3453,3092$, 3040, 3008, 2925, 2848, 1629, 1583, 1566, 1547, 1492, 1453, 1359, 1227, 1189, 1157, 1113, 1042, 939, 902, 776, 761, 695, 676, $654 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 372 (100) [M] ${ }^{+}, 357$ (22), 329 (7), 290 (18), 275 (5), 186 (3), 165 (3), 118 (7); HR-MS: m/z: calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O} 372.220163$, found 372.221209 .
$26 \cdot \mathrm{HCl}$: A solution of $12 \cdot \mathrm{HCl}(28 \mathrm{mg}, 0.078 \mathrm{mmol}$; obtained by treatment of compound 12 with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the solvent) and ruthenium indenylidene complex 22 ($3.6 \mathrm{mg}, 0.004 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ is refluxed for 30 h . For workup, the reaction mixture is washed with sat. aq $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the organic layer is dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue is subjected to flash chromatography on neutral alumina with hexanes/ethyl acetate $(4: 1 \rightarrow 1: 1)$ as the solvent. The combined fractions containing the product are concentrated to a small volume, treated with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$, and evaporated in vacuo. This affords $26 \cdot \mathrm{HCl}$ ($25 \mathrm{mg}, 93 \%$) as a dark red solid. The ratio of isomers is $E: Z=2.7: 1$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=12.92$ (br.s, 2 H$), 12.72$ (br.s, 2 H$), 12.69$ (br.s, 2H), 7.19-7.17 (m, 2H), 6.94 (s, 2H), 6.93-6.92 (m, 2H), 6.81$6.79(\mathrm{~m}, 2 \mathrm{H}), 6.32-6.29(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{dd}, J=3.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.39-5.36(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 4 \mathrm{H})$, $2.05-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): E isomer: $\delta=166.6,152.7,149.0,130.3,129.2,127.3$, 126.0, $122.3121 .6,117.9,116.3,112.5,112.0,93.2,59.0,32.3,29.2,28.7$, 28.1 ; Z isomer (resolved signals): $\delta=132.0,129.8,110.3,29.4,28.8$, 28.2, 27.0; HR-MS: m/z: calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{2}$ 615.344748, found 615.343202.

Biological evaluation: The bioassays were basically performed as previously described with a slight modification. ${ }^{[1,26]}$ Proliferation of murine spleen cells: Mouse spleen cells from C57BL/6 mice (female,
$6-10$ weeks old) were stimulated with $10 \mu \mathrm{gmL}^{-1}$ of LPS or $2 \mu \mathrm{gmL}^{-1}$ of Con A in the presence of indicated concentrations of prodigiosin derivatives for 3 d . The cells were then pulsed with $0.5 \mathrm{mg} \mathrm{mL}^{-1}$ of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagents for 8 h . The dye was solubilized with 5% sodium dodecyl sulfate (SDS), and the absorbance at 595 nm was measured. Visualization of vacuolar acidification: Baby hamster kidney (BHK) cells were pretreated with indicated concentrations of prodigiosin derivatives for 30 min and then treated with $5 \mu \mathrm{gmL}^{-1}$ of acridine orange for 30 min . The stained cells were washed with phosphate-buffered saline and examined by fluorescence microscopy.

Generous financial support by the Deutsche Forschungsgemeinschaft (Leibniz program) and by the Fonds der Chemischen Industrie is acknowledged with gratitude.
[1] a) R. F. Tsuji, M. Yamamoto, A. Nakamura, T. Kataoka, J. Magae, K. Nagai, M. Yamasaki, J. Antibiot. 1990, 43, 1293-1301; b) A. Nakamura, J. Magae, R. F. Tsuji, M. Yamasaki, K. Nagai, Transplantation 1989, 47, 1013-1016; c) M.-H. Lee, M. Yamashita, R. F. Tsuji, M. Yamasaki, T. Kataoka, J. Magae, K. Nagai, J. Antibiot. 1998, 51, $92-94$; d) A. Nakamura, K. Nagai, K. Ando, G. Tamura, J. Antibiot. 1986, 39, 1155-1159; e) J. Magae, M. W. Miller, K. Nagai, G. M. Shearer, J. Antibiot. 1996, 49, 86-90; f) T. Kataoka, J. Magae, H. Nariuchi, M. Yamasaki, K. Nagai, J. Antibiot. 1992, 45, 1303 -1312; g) R. F. Tsuji, J. Magae, M. Yamashita, K. Nagai, M. Yamasaki, J. Antibiot. 1992, 45, 1295 1302; h) T. Kataoka, J. Magae, K. Kasamoo, H. Yamanishi, A. Endo, M. Yamasaki, K. Nagai, J. Antibiot. 1992, 45, 1618-1625; i) T. Kataoka, M. Muroi, S. Ohkuma, T. Waritani, J. Magae, A. Takatsuki, S. Kondo, M. Yamasaki, K. Nagai, FEBS Lett. 1995, 359, 53-59; j) T. Sato, H. Konno, Y. Tanaka, T. Kataoka, K. Nagai, H. H. Wasserman, S. Ohkuma, J. Biol. Chem. 1998, 273, $21455-21462$; k) M.-H. Lee, T. Kataoka, J. Magae, K. Nagai, Biosci. Biotechnol. Biochem. 1995, 59, 1417-1421; I) K. Togashi, T. Kataoka, K. Nagai, Immunol. Lett. 1997, 55, 139-144; m) M.-H. Lee, T. Kataoka, N. Honjo, J. Magae, K. Nagai, Immunology 2000, 99, 243-248.
[2] a) S. Songia, A. Mortellaro, S. Taverna, C. Fornasiero, E. A. Scheiber, E. Erba, F. Colotta, A. Mantovani, A.-M. Isetta, J. Golay, J. Immunol. 1997, 158, 3987-3995.
[3] S. B. Han, H. M. Kim, Y. H. Kim, C. W. Lee, E.-S. Jang, K. H. Son, S. U. Kim, Y. K. Kim, Int. J. Immunopharmacol. 1998, 20, 1-13.
[4] In addition to the immunomodulating properties, prodigiosin derivatives also show antibacterial, cytotoxic, and antimalarial activity; for leading references on the preparation and biological evaluations see the following references and the literature cited therein: a) D. L. Boger, M. Patel, J. Org. Chem. 1988, 53, 1405 - 1415; b) A. J. Castro, Nature 1967, 213, 903-904; c) A. J. Castro, G. R. Gale, G.E. Means, G. Tertzakian, J. Med. Chem. 1967, 10, 29-32; d) D. Brown, D. Griffiths, M. E. Rider, R. C. Smith, J. Chem. Soc. Perkin Trans. 1 1986, 455-463; e) H. Berner, G. Schulz, H. Reinshagen, Monatsh. Chem. 1977, 108, 285-297.
[5] It was suggested that undecylprodigiosin (1) inhibits T-cell activation in the mid to late G_{1} phase, mostly downstream from the interaction of IL-2 with its receptor, see ref. [2].
[6] For a review on the biological response elicited by FK-506 and other immunophilins see: M. K. Rosen, S. L. Schreiber, Angew. Chem. 1992, 104, 413-430; Angew. Chem. Int. Ed. Engl. 1992, 31, 384.
[7] M. Ferrari, P. Gnocchi, M. C. Fornasiero, F. Colotta, R. D'Alessio, A. M. Isetta (Pharmacia \& Upjohn), WO-A 98/11894 A1, 1998.
[8] A report in the recent literature shows that the dose - response curve of 1 on T and Blymphocytes is rather steep, with a maximal inhibition of proliferation at $40 \mathrm{ng} \mathrm{mL}^{-1}$ and an IC_{50} value of $3-8 \mathrm{ng} \mathrm{mL}^{-1}$ for both cell types. In mice, the $E D_{50}$ value of 1 was reported to be $1.5 \mathrm{mg} \mathrm{kg}^{-1}$ i.p. for 6 days, while toxic signs are appreciable from a dose of $4 \mathrm{mg} \mathrm{kg}^{-1}$, see ref. [2].
[9] a) V. Rizzo, A. Morelli, V. Pinciroli, D. Sciangula, R. D'Alessio, J. Pharm. Sci. 1999, 88, 73-78; b) A. Mortellaro, S. Songia, P. Gnocchi, M. Ferrari, C. Fornasiero, R. D'Alessio, A. Isetta, F. Colotta, J. Golay, J. Immunol. 1999, 162, 7102-7109.
[10] a) N. N. Gerber, Tetrahedron Lett. 1970, 809-812; b) N. N. Gerber, J. Antibiot. 1971, 24, 636-640; c) N. N. Gerber, J. Heterocycl. Chem. 1973, 10, 925-929.
[11] A. Fürstner, J. Grabowski, C. W. Lehmann, J. Org. Chem. 1999, 64, 8275 8280.
[12] For syntheses of other prodigiosins and related compounds from our laboratory see: a) A. Fürstner, H. Szillat, B. Gabor, R. Mynott, J. Am. Chem. Soc. 1998, 120, 8305-8314; b) A. Fürstner, H. Krause, J. Org. Chem. 1999, 64, 8281 -8286; c) A. Fürstner, H. Weintritt, J. Am. Chem. Soc. 1998, 120, 2817-2825; d) A. Fürstner, H. Weintritt, J. Am. Chem. Soc. 1997, 119, 2944-2945.
[13] For reviews on RCM see: a) R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413-4450; b) M. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124 2144; Angew. Chem. Int. Ed. Engl. 1997, 36, 2036 - 2055; c) A. Fürstner, Top. Catal. 1997, 4, 285-299; d) A. Fürstner, Top. Organomet. Chem. 1998, 1, 37-72; e) A. Fürstner, Angew. Chem. 2000, 112, 3140-3172; Angew. Chem. Int. Ed. 2000, 39, 3012-3043.
[14] For syntheses of bioactive targets by RCM from our laboratory see: a) A. Fürstner, T. Müller, J. Am. Chem. Soc. 1999, 121, 7814-7821; b) A. Fürstner, T. Müller, J. Org. Chem. 1998, 63, 424-425; c) A. Fürstner, G. Seidel, N. Kindler, Tetrahedron 1999, 55, 8215-8230; d) A. Fürstner, N. Kindler, Tetrahedron Lett. 1996, 37, 7005-7008; e) A. Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130-9136; f) A. Fürstner, T. Gastner, H. Weintritt, J. Org. Chem. 1999, 64, 2361-2366; g) A. Fürstner, K. Langemann, J. Org. Chem. 1996, 61, 8746-8749; h) L. Ackermann, D. El Tom, A. Fürstner, Tetrahedron 2000, 56, 2195-2202.
[15] Reviews on the Suzuki reaction: a) A. Suzuki, J. Organomet. Chem. 1999, 576, 147-168; b) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.
[16] For a similar strategy see: R. D'Alessio, A. Rossi, Synlett 1996, 513-514.
[17] a) S. Martina, V. Enkelmann, G. Wegner, A.-D. Schlüter, Synthesis 1991, 613-615; b) C. N. Johnson, G. Stemp, N. Anand, S. C. Stephen, T. Gallagher, Synlett 1998, 1025-1027.
[18] A similar analogue of metacycloprodigiosin (2), in which one pyrrole unit is replaced by a phenyl ring, exhibits significantly lower toxicity than the parent natural product, see ref. [4e].
[19] For other prodigiosin analogues containing one thiophene unit see: a) A. J. Blake, G. A. Hunter, H. McNab, J. Chem. Soc. Chem. Commun. 1990, 734-736; b) M. D'Auria, E. De Luca, G. Mauriello, R. Racioppi, Synth. Commun. 1999, 29, 35-42; c) see also ref. [4e].
[20] a) W. A. Christofoli, B. A. Keay, Tetrahedron Lett. 1991, 32, 5881-5884; b) S. P. Maddaford, B. A. Keay, J. Org. Chem. 1994, 59, 6501-6503; c) Y. Kobayashi, E. Ikeda, J. Chem. Soc. Chem. Commun. 1994, 1789-1790; d) see also: A. Fürstner, K. Nikolakis, Liebigs Ann. 1996, 2107-2113.
[21] a) Synthesis: K. J. Harlow, A. F. Hill, J. D. E. T. Wilton-Ely, J. Chem. Soc. Dalton Trans. 1999, 285-291; b) assignment of the correct structure: L. Jafarpour, H.-J. Schanz, E. D. Stevens, S. P. Nolan, Organometallics 1999, 18, 5416-5419, c) Applications to RCM: A. Fürstner, A. F. Hill, M. Liebl, J. D. E. T. Wilton-Ely, Chem. Commun. 1999, 601-602; d) A. Fürstner, O. R. Thiel, J. Org. Chem. 2000, 65, 1738-1742.
[22] For analogous dimers of FK-506 prepared by metathesis see: S. T. Diver, S. L. Schreiber, J. Am. Chem. Soc. 1997, 119, 5106-5109.
[23] a) Y.-S. Shon, T. R. Lee, Tetrahedron Lett. 1997, 38, 1283-1286; b) S. K. Armstrong, B. A. Christie, Tetrahedron Lett. 1996, 37, 9373-9376.
[24] Theoretical calculations on the parent pyrrolylpyrromethene system lacking the $4-\mathrm{OMe}$ substituent at the B ring show that the energy difference between the two possible tautomers is low and no definite conclusions have been drawn, see: H. Falk, G. Streßler, N. Müller, Monatsh. Chem. 1988, 119, 505-508.
[25] Crystal structure analysis of $25: \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}, M_{\mathrm{r}}=372.49$, orange crystals, dimensions: $0.12 \times 0.08 \times 0.08 \mathrm{~mm}$, monoclinic, $P 2_{1} / n$ (no. 14), $T=100 \mathrm{~K}$, $a=5.6390(7), \quad b=41.094(4), \quad c=9.1933(10) \AA, \quad \beta=107.811(4)^{\circ}, \quad V=$ $2028.2(4) \AA^{3}, Z=4, \rho_{\text {calcd }}=1.220 \mathrm{Mg} \mathrm{m}^{-3}, \mu=0.074 \mathrm{~mm}^{-1}, \lambda=0.71073 \AA$. X-ray diffraction data were collected with a Nonius KappaCCD diffractometer employing ω scans to cover reciprocal space up to $\theta=24.97^{\circ}$ with 85.1% completeness. Integration of raw data yielded a total of 5375 reflections, merged into 3036 unique reflections with $R_{\text {int }}=0.0611$ after applying Lorentz, polarization, and absorption corrections. The structure was solved by direct methods with program SHELXS-97, and atomic positions and displacement parameters were refined by using full-matrix least-squares based on F^{2} with program SHELXL-97. All hydrogen atom positions were calculated, except for H2N which was located from
difference Fourier synthesis and was refined. Refinement of 254 parameters using all reflections converged at $R=0.0617, w R=0.1426$, highest residual electron density peak $0.399 \AA^{3}$. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-144263. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; e-mail: deposit@ccdc. cam.ac.uk).
[26] a) T. Kataoka, K. Takaku, J. Magae, N. Shinohara, H. Takayama, S. Kondo, K. Nagai, J. Immunol. 1994, 153, 3938-3947; b) T. Kataoka, N. Shinohara, H.

Takayama, K. Takaku, S. Kondo, S. Yonehara, K. Nagai, J. Immunol. 1996, 156, 3678-3686; c) T. Kataoka, M. Sato, S. Kondo, K. Nagai, Biosci. Biotechnol. Biochem. 1996, 60, 1729-1731; d) T. Kataoka, K. Togashi, H. Takayama, K. Takaku, K. Nagai, Immunology 1997, 91, 493-500; e) K. Togashi, T. Kataoka, K. Nagai, Cytotechnology 1997, 25, 127-135.
[27] L. Grehn, U. Ragnarsson, Angew. Chem. 1984, 96, 291-292; Angew. Chem. Int. Ed. Engl. 1984, 23, 296.
[28] N. B. McKeown, I. Chambrier, M. J. Cook, J. Chem. Soc. Perkin Trans. 1 1990, 1169-1177.

The new free WILEY-VCH Alerting
Service makes time-consuming random
finds a thing of the past!

Now you can be supplied per e-mail regularly with information tailored precisely to your needs and interests. Just fill out the registration form at www.wiley-vch.de/home/pas for e-mails with news on the latest WILEY-VCH publications in your field. Added benefit: general info on important developments and services at WILEY-VCH.

Be on the ball so you'll be in the know!
WWWarMily veh de

