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Abstract: The plant Psychotria kirkii hosts an obligatory bacterial 

symbiont, Candidatus Burkholderia kirkii, in nodules on their leaves. 

Recently, a glucosylated derivative of (+)-streptol, (+)-streptol 

glucoside, was isolated from the nodulated leaves and was found to 

possess a plant growth inhibitory activity. To establish a structure 

activity relationship study, a convergent strategy was developed to 

obtain several pseudosugars from a single synthetic precursor. 

Furthermore, the glucosylation of streptol was investigated in detail 

and conditions affording specifically the a or b glucosidic anomer were 

identified. Although (+)-streptol was the most active compound, its 

concentration in P. kirkii plant leaves extract was approximately 10 

fold lower than that of (+)-streptol glucoside. These results provide 

compelling evidence that the glucosylation of (+)-streptol protects the 

plant host against the growth inhibitory effect of the compound, which 

might constitute a molecular cornerstone for this successful plant-

bacteria symbiosis. 

Bacteria are well known to establish special relationships with 
other organisms leading to either beneficial (symbiosis) or 
detrimental (parasitism) interactions with their hosts. The study of 
such systems led to the discovery of several bioactive compounds 
produced by the bacterial symbiont.[1] In some cases, it was found 
that the microorganism protects the host against predators by 
providing chemical defense.[2] The study of these natural products 
is particularly challenging because the bacterial symbionts often 
lost the ability to grow outside of its host; to overcome this difficulty, 
these natural products can be produced via heterologous 
expression or organic synthesis.[3] 
The obligatory symbiosis of the plant Psychotria kirkii (P. kirkii) 
with its symbiont (Candidatus Burkholderia kirkii) represents an 
example where the bacterial symbiont cannot be cultivated 
without its host. The leaf nodule symbiosis was described more 
than 100 years ago[4] and has been investigated at a biological 
and genomic level.[5] The sequencing and bioinformatic analysis 
of the bacterial genome identified a putative 2-epi-5-epi-valiolone 
synthase.[6] which is known to be involved in the biosynthesis of 
C7N aminocyclitols and other pseudosugars,[7] and is present in 
the genome of many prokaryotic and eukaryotic organisms.[8] By 

applying an NMR-guided fractionation of crude extracts of P. kirkii 
leaves, a novel aminocyclitol kirkamide (1) possessing 
 insecticidal activities was isolated and characterized.[9] 
Interestingly, 1 and its potential gene cluster were also detected 
in the nodulated leaves of another plant of the Rubiaceae 
family.[10] An extensive analysis of the biological activities of P. 

kirkii leaf crude extract led to the discovery of the novel plant 
growth inhibitor (+)-streptol glucoside (2), which was isolated and 
its structure elucidated by NMR and mass spectrometry 
analysis.[10] The aglycon of this natural product is composed of the 
plant growth inhibitory  
(+)-streptol (3, known also as valienol), which was previously 
isolated from Streptomyces sp.[11] Furthermore, a detailed 
comparison of the chemical shift and coupling constant of the 
anomeric proton (4.30 ppm, 3JH-H = 7.9 Hz), in DMSO-d6, with 
known natural products allowed the determination of the β 
configuration of the glucose moiety.[10] 

Interestingly, the diastereoisomer of (+)-streptol glucoside  
A-79197-2 (4) was also isolated from bacteria living on the leaves 
of a different plant.[12] We hypothesized that the glucose attached 
to streptol plays an important role in the relationship between the 
host and the bacteria. To evaluate effects of glucosylation and 
configuration on the growth inhibitory activity of streptol, we 
embarked on the development of a convergent strategy to obtain 
(+)-streptol glucoside (2), (+)-streptol (3),  
A-79197-2 (4), (–)-streptol glucoside (5), (–)-streptol (6) and the 
diastereoisomer 7of A-79197-2.  

  

Figure 1. Constitution and configuration of the natural products kirkamide (1), 
(+)-streptol glucoside (2), (+)-streptol (3) and  A-79197-2 (4). 

To date, several synthetic approaches have been designed to 
obtain streptol (3). Routes towards racemic material used 
methylene cyclohexene,[13] para-benzoquinone[14] and myo-
inositol[15] as starting materials and enantioselective syntheses 
were developed using diverse strategies such as a retro Diels-
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Alder reaction,[16] a Baylis-Hillman reaction followed by ring-
closing metathesis (RCM),[17] and Horner-Wadsworth-Emmons 
(HWE)[18] and intramolecular aldol reactions.[19] We envisaged 
that both streptol glucoside and A-79197-2 could be derived from 
a protected streptol 8. The glucosyl moiety can be attached in the 
last stage of the synthesis allowing for diversification by selective 
a or b glucosylation (Scheme 1). 

 

 

Scheme 1. Retrosynthetic route of (+)-streptol glucoside (2) and  
A-79197-2 (4) (PG = protecting group) 

The compound 8 was chosen as the key intermediate for the 
synthesis. It could be prepared enantioselectively from the 
norbornene 9 according to a known procedure.[16] The selected 
route furnished the two key intermediates 10 and 11, which can 
be separated by enzymatic kinetic resolution and used for the 
synthesis of both enantiomer of streptol. The synthesis features 
several key steps such as epoxidation, aldol reaction and an 
acetate-assisted epoxide opening reaction affording the protected 
streptol 12 (Scheme 2).  

 

Scheme 2. Synthetic strategy to obtain the protected streptol 12. Reaction 
conditions: a) H2O2, Na2CO3; b) DBU, formalin; c) TBSCl, Imid, 84% over 3 
steps; d) NaBH4; e) Amano Lipase PS-IM, vinyl acetate 45% over 2 steps, 99% 
ee; f) BF3

.OEt2; g) NaOAc, Ac2O, 76% over 2 steps; h) Ph2O, 230°C, 98%; i) 
NaBH4, CeCl3•7H2O, 77%. DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene, TBS: tert-
butyldimethylsilyl. 

We envisaged the attachment of the sugar moiety by the Koenigs-
Knorr method[20] using a neighboring group participation strategy 
to ensure a selective b-glucosylation. The ester group at the 2-
position of the glucose donor stabilizes the intermediate 
oxocarbenium ion forming a bicyclic intermediate 13 (supporting 

information).[21]  
Readily available acetoxybromo-D-glucose (14a) was originally 
selected as the glucosyl donor for this reaction. However, 
preliminary screening of reaction conditions showed no product 
formation (Table 1, entry 1-7). Interestingly, under AgOTf 
mediated conditions and in the presence of 2,6-di-tert-butyl-4-
methylpyridine as an acid scavenger, the orthoester 15a was 
isolated as the exclusive product (Table 1, entry 7). We focused 
on optimizing these reaction conditions and adjusted the 

protecting groups on the glucosyl donor by introducing more 
sterically hindered substituents like benzoyl or pivaloyl in an 
attempt to prevent the orthoester formation. Unfortunately, the 
benzoylbromo-glucose 14b did not provide the desired glucosidic 
product, and only the orthoester 15b was observed. However, the 
use of pivaloylated bromo-D-glucose 14c as glucosyl donor 
afforded the glucosidic product 16c in 80% yield (Table 1, entry 
10).[22] Performing the reaction at lower temperature (– 5°C) 
decreased the rate of decomposition of the starting material and, 
using these conditions, we were pleased to observe an excellent 
yield (98%, Table 1, entry 11). Other glucosylation methods did 
not give the desired product. 

 

Scheme 3. Reaction screening for the selective   b-glucosylation of the 
protected streptol 12. Conditions are described in table 1. 

Table 1. Screening conditions for the selective b-glucosylation of  
the protected streptol (12) 

Entry[a] R = Promoter Base  Time (h) Yield (%)[b] 

1[c] Ac, 14a Hg(CN)2 TMU 12 nd 

2 Ac, 14a Sn(OTf)2 TMU 12 nd 

3 Ac, 14a Ag2CO3  12 nd 

4 Ac, 14a Ag2O   12 nd 

5 Ac, 14a AgOTf TMU 12 nd 

6 Ac, 14a AgOTf lutidine 12 nd 

7 Ac, 14a AgOTf DTBMP 12 89, 15a 

8 Ac, 14a HgBr2 HgO 12 40, 15a 

9 Bz, 14b AgOTf DTBMP 15 63, 15b 

10 Piv, 14c AgOTf DTBMP 15 80, 16c 

11[d] Piv, 14c AgOTf DTBMP 24 98, 16c 

[a] Reactions were performed, unless stated otherwise, with 10 mg of alcohol 

with a concentration of 0.025 M, 3.0 equiv. of Br-glucose, the promoter, the base, 

MS 4Å, CH2Cl2 as solvent and at rt. [b] Yield of isolated product was determined 

by column chromatography. [c] The solvent of the reaction was CH3CN. [d] The 

temperature of the reaction was –5°C. TMU: tetramethylurea, DTBMP: 2,6-di-

tert-butyl-4-methylpyridine, nd: not determined, Ac: acetyl,  

Bz: benzoyl, Piv: pivaloyl 

 

Finally, the substituents on the disaccharide 16c were 
sequentially deprotected. The TBS group was removed using a 
TBAF solution and the ester groups were hydrolyzed in LiOH 
solution to afford the desired (+)-streptol glucoside (2), which was 
then purified by reverse phase HPLC (RP-HPLC). The 
configuration of the anomeric center of the glucopyranosyl moiety 
was confirmed as β by the analysis of its typical proton chemical 
shift and coupling constant (3JH-H = 7.9 Hz). To our delight, the 

OPG

PGO

HO

OPG

OPG
O

O

H

H

OHO
HO O

OH

HO

OH

OH

β

O

OH

HO

OH

OH

OHO
HO

OH

α

4

β-selective 
glucosylation

α-selective 
glucosylation

8

2

4

9

OH

HO

HO

O

O

H

H

O

OAc

O

TBSO

HO

HO

H O

OTBS

10

45% over 2 steps
99% ee

11

43% over 2 steps
99%ee

OTBS

HO

AcO

OAc

OAc

9 12

+
a, b, c

d, e

f, g, h ,i

TBSO

HO

AcO

OAc

OAc

+

ORO
RO

OR

O

TBSO

AcO

OAc

OAc

ORO
RO

O O

R' O

OTBS

OAc

OAc

AcO

16 a, b, c 15 a, b c12

ORO
RO

RO
Br

14 a, b, c

RO

RO

RO

+

a : R = Ac, R’ = Me      b : R = Bz, R’ = Ph      c : R = Piv, R’ = tBu



COMMUNICATION author accepted manuscript (postprint)         

 

 

 

 

data for the fully synthetic streptol glucoside was in complete 
agreement with those obtained for the isolated natural product 
(Supporting information). 
 
We then turned our attention on the preparation of A-79197-2 (4), 
which bears a glucose in α configuration (Scheme 4). Readily 
available 2,3,4,6-tetra-O-benyzl-a-D-glucopyranosyl bromide was 
used as the glucosyl donor for this α-glucosylation reaction. As 
the OBn group at the C-2 position of the sugar does not participate 
as a neighboring group, the more thermodynamically stable α-
product is formed, due to the anomeric effect.[23] Performing the 
reaction under our previously optimized conditions (AgOTf, 2,6-
di-tert-butyl-4-methylpyridine, CH2Cl2) at lower reaction 
temperature (–78°C), gave the product in good yield but with an 
α/β ratio of only 5.4/1. Changing the reaction solvent to Et2O, 
pleasingly delivered the desired glucosidic product 17 in good 
yield with improved selectivity (α/β=9.2/1).[24] With this 
pseudodisaccharide in hand, we embarked on the sequential 
removal of the hydroxyl protecting groups. The TBS substituent 
on the aglycone was efficiently removed under standard 
conditions (TBAF) to yield the hydroxy 18. However, the acetyl 
followed by the benzyl groups deprotection was proved 
considerably more challenging. Conventional methods using 
Birch conditions[25] (Na/NH3 at –78°C) did not result in any product. 
The milder conditions of lithium di-tert-butylbiphenyl (LiDBB)[26] at 
–78°C provided A-79197-2 (4) but in a rather low 24% yield over 
2 steps. A more successful debenzylation was achieved using 
lithium naphthalenide (LiNp),[27] which prevented the cleavage of 
the allylic alcohol and gave the product 4 in reasonable yield (53% 
over 2 steps). The resulting residue was purified by RP-HPLC to 
give A-79197-2 (4). Other debenzylation methods such as BCl3 
delivered the product in low yield accompanied by an inseparable 
impurity.[28] The configuration of the anomeric center of the 
glucopyranosyl moiety was confirmed as α by the analysis of its 
typical proton chemical shift and coupling constant. 

   

Scheme 4. Synthesis of A-79197-2 (4). a) DTBMP, AgOTf, –78°C to rt; b) TBAF, 
THF, 90%; c) NaOMe, MeOH. 

In addition to the natural enantiomeric series, we are also 
interested in the biological properties of (–)-streptol (6),  
(–)-streptol glucoside (5) and the diastereoisomer of  
A-79197-2 7. The biological properties of these compounds would 
help to establish a structure-activity relationship (SAR) study. The 
enantioselective synthesis of (–)-streptol (6) was achieved using 
the previously obtained intermediate 10, which was acetylated 

and converted to the protected (–)-streptol 19 following the route 
displayed in scheme 2. Using our developed synthetic route, 19 

was used for the synthesis of (–)-streptol (6), (–)-streptol 
glucoside (5) and the diastereoisomer 7 of  
A-79197-2. 
 

   

Scheme 5. (–)-Streptol (6), the diastereoisomer of A-79197-2 7 and  
(–)-streptol glucoside (5) synthesized following the developed procedures. 

The growth inhibitory activity of the synthesized natural products 
and their analogs containing the enantiomeric form of streptol, 
was evaluated on lettuce seedlings by measuring the length of 
their roots after 5 days of incubation (Figure 2). Interestingly the 
most active compound was (+)-streptol (3) with an IC50 value of 
17 µM followed by (+)-streptol glucoside (2) and  
A-79197-2 (4), with IC50 values of 28 µM and more than 100 µM, 
respectively (see supporting information). Additionally, the 
enantiomer of the natural product 3, i.e. (–)-streptol (6), and the 
glucosylated form, (–)-streptol glucoside (5) and the 
diastereoisomer of A-79197-2 7, were found to be inactive. 
Comparison of the biological activity based on the IC50 values 
alone seems challenging, due to a rather small difference 
between 2 and 3. However, analysis of the phenotype shown in 
Figure 2 provides visual and compelling evidence (1) that the 
presence of the aglycon (+)-streptol (3) is important for the growth 
inhibitory activity and (2) that glucosyl residue, attached in a or b  
position of the anomeric center, decreases the potency of the 
compound. It is worth highlighting that the hypocotyl growth is 
affected by 3 as a consequence of root-growth inhibition, but no 
developmental defects were observed.  
To investigate if not only (+)-streptol glucoside (2) but also  
(+)-streptol (3) was present in P. kirkii leaves extract, an 
HPLC/MS method to quantify the concentration of both 
compounds was developed. In agreement with a previous 
report,[29] 1.29% of (+)-streptol glucoside (2) was detected in the 
extract while, surprisingly, only 0.14% of (+)-streptol (3) were 
observed. These results further corroborate the hypothesis that 
(+)-streptol (3) is the active compound and glycosidation could 
protect the plant P. kirkii against the growth inhibitor effect of 3. 
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Figure 2. Phenotype of lettuce seedlings after 5 days of compound treatment at 
25 µM concentration. Root growth and development are altered in decreasing 
activity: (+)-streptol (3) > (+)-streptol glucoside (2) > A-79197-2 (4) and 5, 6 
and 7 showed no activity. Scale = 5 mm. 

 
In conclusion, we developed a convergent synthetic route 
producing three natural products and their enantiomer or 
diastereoisomer form. The plant growth inhibitory activity of these 
compounds has been evaluated and (+)-streptol was found to 
possess the most potent activity, (+)-streptol glucoside and A-
79197-2, which are produced by different plant-associated 
bacteria, were found to be less active than  
(+)-streptol. We suggest that the glucosylation of (+)-streptol is 
required to reduce the toxicity of the compound for the host plant 
and we are currently investigating this hypothesis. 

Experimental Section 

The experimental procedures and the characterization of the 
compounds are found in the supporting information. 
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Protective glucosylation:  

A convergent synthetic route was 
developed to obtain the novel growth 
plant inhibitor, streptol glucoside, 
recently isolated from P. kirkii plant 
leaves extract. The biological activity 
investigation of the natural product and 
its derivatives suggests that the 
glucose of streptol glucoside protects 
the plant against the potent growth 
inhibitor streptol. 
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