Electronic Supplementary Information for

Synthesis and Characterisation of Bis(β -ketoaminato) Complexes of Cobalt(II)[†]

Kiyoshi C. D. Robson,^a Cory D. Phillips,^a Brian O. Patrick,^b and W. Stephen McNeil^{*a}

^a Department of Chemistry, University of British Columbia Okanagan, 3333 University Way, Kelowna BC, Canada. Fax: 1 250 807 8005; Tel: 1 250 807 8751; E-mail: s.mcneil@ubc.ca

^b Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, Canada

Includes:

- experimental data for X-ray structure determination of 1b to 6b
- DFT optimized metrical parameters and thermochemical data for 1c, 5c, and 6c

Contents

2
4
6
8
10
13
15
17
19

Structure Determination of 1b

Data Collection

A orange needle crystal of $C_{32}H_{28}N_2O_2Co$ having approximate dimensions of 0.07 x 0.07 x 0.20 mm was mounted on a glass fiber. All measurements were made on a Bruker X8 APEX diffractometer with graphite monochromated Mo-K α radiation.

The data were collected at a temperature of $-100.0 \pm 0.1^{\circ}$ C to a maximum 20 value of 45.0°. Data were collected in a series of ϕ and ω scans in 0.50° oscillations with 20.0 second exposures. The crystal-to-detector distance was 38.85 mm. Due to weak scattering there was little or no useable data beyond a 20 value of 45° -- the average I/ σ (I) between 42° and 45° 20 was 1.70.

Data Reduction

Of the 16566 reflections that were collected, 3495 were unique ($R_{int} = 0.072$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT¹ software package. The linear absorption coefficient, μ , for Mo-K α radiation is 6.69 cm⁻¹. Data were corrected for absorption effects using the multi-scan technique (SADABS²), with minimum and maximum transmission coefficients of 0.687 and 0.954, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods³. All C-H hydrogen atoms were included in calculated positions but were not refined. The final cycle of full-matrix least-squares refinement⁴ on F^2 was based on 3495 reflections and 337 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.085$$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.109$$

The standard deviation of an observation of unit weight⁵ was 1.00. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.31 and $-0.25 \text{ e}^{-}/\text{Å}^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All refinements were performed using the SHELXTL¹⁰ crystallographic software package of Bruker-AXS.

References

(1) SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA. (1997-2003).

(2) <u>SADABS</u>. Bruker Nonius area detector scaling and absorption correction - V2.10, Bruker AXS Inc., Madison, Wisconsin, USA (2003).

(3) <u>SIR97</u> - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C. , Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. (1999) J. Appl. Cryst. 32, 115-119.

(4) Least Squares function minimized:

$$\Sigma w (F_0^2 - F_c^2)^2$$

(5) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where: N_0 = number of observations N_V = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

Structure Determination of 2b

Data Collection

A red prism crystal of $C_{34}H_{32}N_2O_2Co$ having approximate dimensions of 0.35 x 0.50 x 0.50 mm was mounted on a glass fiber. All measurements were made on a Bruker X8 APEX diffractometer with graphite monochromated Mo-K α radiation.

The data were collected at a temperature of $-100.0 \pm 0.1^{\circ}$ C to a maximum 20 value of 56.2°. Data were collected in a series of ϕ and ω scans in 0.50° oscillations with 5.0 second exposures. The crystal-to-detector distance was 39.12 mm.

Data Reduction

Of the 30714 reflections that were collected, 6835 were unique ($R_{int} = 0.036$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT¹ software package. The linear absorption coefficient, μ , for Mo-K α radiation is 6.34 cm⁻¹. Data were corrected for absorption effects using the multi-scan technique (SADABS²), with minimum and maximum transmission coefficients of 0.606 and 0.801, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods³. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in calculated positions but were not refined. The final cycle of full-matrix least-squares refinement⁴ on F^2 was based on 6835 reflections and 356 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.053$$

wR2 = [
$$\Sigma$$
 (w (Fo² - Fc²)²)/ Σ w(Fo²)²]^{1/2} = 0.092

The standard deviation of an observation of unit weight⁵ was 1.05. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.29 and $-0.42 \text{ e}^{-}/\text{Å}^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and

McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All refinements were performed using the SHELXTL¹⁰ crystallographic software package of Bruker-AXS.

References

(1) SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA. (1997-2003).

(2) <u>SADABS</u>. Bruker Nonius area detector scaling and absorption correction - V2.10, Bruker AXS Inc., Madison, Wisconsin, USA (2003).

(3) <u>SIR97</u> - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. (1999) J. Appl. Cryst. 32, 115-119.

(4) Least Squares function minimized:

$$\Sigma w (F_0^2 - F_c^2)^2$$

(5) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where: N_0 = number of observations N_V = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

Structure Determination of 3b

Data Collection

An orange rod crystal of $C_{36}H_{36}N_2O_2Co$ having approximate dimensions of 0.20 x 0.25 x 0.50 mm was mounted on a glass fiber. All measurements were made on a Bruker X8 APEX diffractometer with graphite monochromated Mo-K α radiation.

The data were collected at a temperature of -100.0 ± 0.1 °C to a maximum 20 value of 55.8°. Data were collected in a series of ϕ and ω scans in 0.50° oscillations with 10.0 second exposures. The crystal-to-detector distance was 38.85 mm.

Data Reduction

Of the 15483 reflections that were collected, 3588 were unique ($R_{int} = 0.032$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT¹ software package. The linear absorption coefficient, μ , for Mo-K α radiation is 6.04 cm⁻¹. Data were corrected for absorption effects using the multi-scan technique (SADABS²), with minimum and maximum transmission coefficients of 0.698 and 0.886, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods³. The material resides on a two-fold rotation axis passing through the central Co atom. All non-hydrogen atoms were refined anisotropically. All C-H hydrogen atoms were included in calculated positions but were not refined. The methyl hydrogens on C4 appeared to be disordered and were calculated in two orientations with half-occupancies. The final cycle of full-matrix least-squares refinement⁴ on F² was based on 3588 reflections and 188 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.039$$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.079$$

The standard deviation of an observation of unit weight⁵ was 1.03. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.48 and $-0.30 \text{ e}^{-}/\text{Å}^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All refinements were performed using the SHELXTL¹⁰ crystallographic software package of Bruker-AXS.

References

(1) SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA. (1997-2003).

(2) <u>SADABS</u>. Bruker Nonius area detector scaling and absorption correction - V2.10, Bruker AXS Inc., Madison, Wisconsin, USA (2003).

(3) <u>SIR97</u> - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C. , Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. (1999) J. Appl. Cryst. 32, 115-119.

(4) Least Squares function minimized:

$$\Sigma w (F_0^2 - F_c^2)^2$$

(5) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where: N_0 = number of observations N_V = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

Structure Determination of 4b

Data Collection

A red prism crystal of $C_{36}H_{36}N_2O_2Co$ having approximate dimensions of 0.12 x 0.30 x 0.35 mm was mounted on a glass fiber. All measurements were made on a Bruker X8 APEX II diffractometer with graphite monochromated Mo-K α radiation.

The data were collected at a temperature of -100.0 ± 0.1 °C to a maximum 20 value of 56.3°. Data were collected in a series of ϕ and ω scans in 0.50° oscillations with 5.0 second exposures. The crystal-to-detector distance was 36.00 mm.

Data Reduction

Of the 23369 reflections that were collected, 3586 were unique ($R_{int} = 0.044$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT¹ software package. The linear absorption coefficient, μ , for Mo-K α radiation is 6.18 cm⁻¹. Data were corrected for absorption effects using the multi-scan technique (SADABS²), with minimum and maximum transmission coefficients of 0.739 and 0.929, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods³. The material crystallizes with one halfmolecule residing on an inversion center. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions but were not refined. The final cycle of full-matrix least-squares refinement⁴ on F² was based on 3586 reflections and 189 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.047$$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.093$$

The standard deviation of an observation of unit weight⁵ was 1.04. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.30 and $-0.35 \text{ e}^{-}/\text{Å}^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All refinements were performed using the SHELXTL¹⁰ crystallographic software package of Bruker-AXS.

References

(1) SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA. (1997-2003).

(2) <u>SADABS</u>. Bruker Nonius area detector scaling and absorption correction - V2.10, Bruker AXS Inc., Madison, Wisconsin, USA (2003).

(3) <u>SIR97</u> - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C. , Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. (1999) J. Appl. Cryst. 32, 115-119.

(4) Least Squares function minimized:

$$\Sigma w (F_0^2 - F_c^2)^2$$

(5) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where: N_0 = number of observations N_V = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

Structure Determination of 5b

Data Collection

An irregular red crystal of $C_{34}H_{26}N_2O_2F_6Co$ having approximate dimensions of 0.15 x 0.20 x 0.45 mm was mounted on a glass fiber. All measurements were made on a Bruker X8 APEX II diffractometer with graphite monochromated Mo-K α radiation.

The data were collected at a temperature of -100.0 ± 0.1 °C to a maximum 20 value of 56.0°. Data were collected in a series of ϕ and ω scans in 0.50° oscillations with 20.0 second exposures. The crystal-to-detector distance was 36.00 mm.

Data Reduction

Of the 31180 reflections that were collected, 7546 were unique ($R_{int} = 0.041$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT¹ software package. The linear absorption coefficient, μ , for Mo-K α radiation is 6.13 cm⁻¹. Data were corrected for absorption effects using the multi-scan technique (SADABS²), with minimum and maximum transmission coefficients of 0.679 and 0.912, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods³. The material crystallizes with disordered fluorines on each of the CF₃ groups. In each case the disorder was modeled in two orientations, with populations for each fragment refining to approximately 50%. Both C17 and C34 have anomalously low U_{eq} values as compared to their neighbours, as an effect of this disorder in the CF₃ groups. The high degree of thermal motion associated with the fluorine atoms results in their unusually large U_{eq} values. All non-hydrogen atoms were refined anisotropically, while all hydrogen atoms were placed in calculated positions and not refined. The final cycle of full-matrix least-squares refinement⁴ on F² was based on 7546 reflections and 464 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.073$$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.117$$

The standard deviation of an observation of unit weight⁵ was 0.99. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.40 and $-0.40 \text{ e}^{-}/\text{Å}^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for Δf and $\Delta f''$ were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All refinements were performed using the SHELXTL¹⁰ crystallographic software package of Bruker-AXS.

References

(1) SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA. (1997-2003).

(2) <u>SADABS</u>. Bruker Nonius area detector scaling and absorption correction - V2.10, Bruker AXS Inc., Madison, Wisconsin, USA (2003).

(3) <u>SIR97</u> - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C. , Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. (1999) J. Appl. Cryst. 32, 115-119.

(4) Least Squares function minimized:

 $\Sigma w (F_0^2 - F_c^2)^2$

(5) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where: N_0 = number of observations N_V = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Structure Determination of 6b

Data Collection

An irregular red crystal of $C_{34}H_{32}N_2O_4Co$ having approximate dimensions of 0.08 x 0.13 x 0.20 mm was mounted on a glass fiber. All measurements were made on a Bruker X8 APEX II diffractometer with graphite monochromated Mo-K α radiation.

The data were collected at a temperature of $-100.0 \pm 0.1^{\circ}$ C to a maximum 20 value of 50.4°. Data were collected in a series of ϕ and ω scans in 0.50° oscillations with 30.0 second exposures. The crystal-to-detector distance was 36.00 mm.

Data Reduction

Of the 19915 reflections that were collected, 5051 were unique ($R_{int} = 0.066$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT¹ software package. The linear absorption coefficient, μ , for Mo-K α radiation is 6.43 cm⁻¹. Data were corrected for absorption effects using the multi-scan technique (SADABS²), with minimum and maximum transmission coefficients of 0.508 and 0.950, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods³. All non-hydrogen atoms were refined anisotropically, while all hydrogen atoms were placed in calculated positions and not refined. The final cycle of full-matrix least-squares refinement⁴ on F² was based on 5051 reflections and 374 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.097$$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.165$$

The standard deviation of an observation of unit weight⁵ was 1.07. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.58 and $-0.49 \text{ e}^{-}/\text{Å}^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and

McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All refinements were performed using the SHELXTL¹⁰ crystallographic software package of Bruker-AXS.

References

(1) SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA. (1997-2003).

(2) <u>SADABS</u>. Bruker Nonius area detector scaling and absorption correction - V2.10, Bruker AXS Inc., Madison, Wisconsin, USA (2003).

(3) <u>SIR97</u> - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. (1999) J. Appl. Cryst. 32, 115-119.

(4) Least Squares function minimized:

$$\Sigma w (F_0^2 - F_c^2)^2$$

(5) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where: N_0 = number of observations N_V = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

DFT Optimization of 1c B3LYP/LANL2DZ

_____ CenterAtomicAtomicCoordinates (Angstroms)NumberNumberTypeXY Coordinates (Angstroms) _____ 0 -1.130129 2.491735 -2.085634 0 -2.271895 2.337294 -1.279959 0 -3.040614 3.095027 -1.385311 0 -2.543833 1.302096 -0.331579 0 -0.104423 1.665527 -2.105713 0 -1.710984 0.274172 -0.091154 0 1.711063 -0.274102 -0.091452 0 2.543810 -1.302051 -0.332083 2.543810 -1.302051 -0.332083 2.271646 -2.337201 -1.280455 -3.874928 1.405754 0.408252 -4.325243 0.419485 0.560438 -2.208880 -1.379764 3.261067 0.643762 2.597472 -1.801646 -2.419969 -2.717243 2.871250 -2.552878 -4.081692 1.191202 -2.206353 -1.113628 4.315841 -2.587489 -3.486708 3.621051 1.991939 0.712851 0.919063 2.182198 2.058099 0.530055 1.992520 0.382304 2.293100 2.401609 3.050454 1.502382 2.149796 2.309904 -0.526639 2.2093391.3794633.2608901.802058-0.6439982.597127 2.420369 2.716986 2.871195

Standard orientation:

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

1 02.5531124.0816081.19127302.2069321.1132104.31563402.5879583.4863733.621060 49 1 50 1 51 _____ SCF Done: E(UB+HF-LYP) = -1257.78334932 A.U. after 1 cycles Convg = 0.5681D-08 S**2 = 3.7596 -V/T = 2.0543Annihilation of the first spin contaminant: S**2 before annihilation 3.7596, after 3.7500 Zero-point correction=0.414342 (HartreThermal correction to Energy=0.441711Thermal correction to Enthalpy=0.442655Thermal correction to Gibbs Free Energy=0.352620Sum of electronic and zero-point Energies=-1257.369008Sum of electronic and thermal Energies=-1257.341638Sum of electronic and thermal Enthalpies=-1257.340694Sum of electronic and thermal Free Energies=-1257.430729 Zero-point correction= 0.414342 (Hartree/Particle)

DFT Optimization of 5c B3LYP/LANL2DZ

_____ CenterAtomicAtomicCoordinates (Angstroms)NumberNumberTypeXY Ζ 1 6 0 -1.621956 -3.129899 2.208361 0.577472 -1.116411 1.617546 -0.577479 -1.116426 -1.617539 -0.084204 -1.349774 -2.850332 0.624889 -0.594714 4.061538 2.749959 -0.413806 0.728570 1.222494 1.286005 1.585225 3.664960 0.586828 0.374882 2.970919 -1.458904 0.533110 2.135321 2.287699 1.229616 0.267310 3.360558 1.556313 2.025540 0 0 0 0 -3.360548 1.939026 -0.627726 -4.610940 0.318672 0.085950

Standard orientation:

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

49	1	0	-1.898328	3.330347	-1.419997
50	6	0	-4.309014	3.011800	-0.197868
51	6	0	4.309038	3.011775	0.197845
52	9	0	-4.250633	4.154108	-1.013451
53	9	0	-4.055959	3.479701	1.116859
54	9	0	-5.648167	2.590029	-0.189552
55	9	0	4.250542	4.154167	1.013299
56	9	0	4.056113	3.479523	-1.116961
57	9	0	5.648205	2.590038	0.189714
SCF Done: Annihilat S**2 befo	E(UB+HF-LYP) Convg = S**2 = tion of the finance ore annihilat;) = -1931.8 0.3638D-0 3.7598 irst spin com ion 3.75	9119724 A. 8 ntaminant: 98. after	U. after -V/T = 2.0 3.7500	2 cycles 365
Zero-poir Thermal o Thermal o Thermal o	nt correction: correction to correction to correction to	= Energy= Enthalpy= Gibbs Free I	Energy=	0.421014 0.456282 0.457227 0.344300	(Hartree/Particle)
Sum of el	lectronic and	zero-point i	Energies=	-1931.	470183
Sum of el	Sum of electronic and thermal Energies=			-1931.	434915
Sum of el	lectronic and	thermal Ent	halpies=	-1931.	433971
Sum of el	Sum of electronic and thermal Free Energies=			-1931.	546898

DFT Optimization of 6c B3LYP/LANL2DZ

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	 د	· · · · · · · · · · · · · · · · · · ·	-1 602076		 0 00000	
1	6	0	-1.602076	-2.504250	2.232070	
2	0	0	-0.915198	-1.729043	3.130107	
3	1 C	0	-1.201249	-1.806345	4.1/3612	
4	0	0	1 205504	-0./8488/	2.836878	
5	8	0	-1.385504	-2.61/985	0.933990	
6	/	0	0.613197	-0.581694	1.603757	
/	1	0	-0.613189	-0.581/09	-1.603/48	
8	6	0	-0.119751	-0.784923	-2.836866	
9	6	0	0.915193	-1.729094	-3.130164	
10	1 C	0	1.201241	-1.806415	-4.1/3588	
	6	0	1.602064	-2.564301	-2.232844	
12	8	0	1.385492	-2.618011	-0.933955	
13	27	0	-0.000001	-1.605690	0.000011	
14	6	0	2.683297	-3.502174	-2.738522	
15	1	0	2.410005	-4.537374	-2.496660	
16	1	0	2.838312	-3.414680	-3.818367	
17	1	0	3.627142	-3.288328	-2.220482	
18	6	0	-0.669704	-0.006571	-4.029247	
19	1	0	-1.740065	0.193235	-3.918429	
20	1	0	-0.164582	0.962652	-4.133229	
21	1	0	-0.506394	-0.568203	-4.953673	
22	6	0	0.669706	-0.006515	4.029246	
23	1	0	1.740049	0.193364	3.918393	
24	1	0	0.164522	0.962673	4.133262	
25	1	0	0.506466	-0.568171	4.953671	
26	6	0	-2.683321	-3.502109	2.738567	
27	1	0	-2.838337	-3.414598	3.818411	
28	1	0	-3.627163	-3.288260	2.220523	
29	1	0	-2.410041	-4.537316	2.496720	
30	6	0	1.608211	0.424849	1.334974	
31	6	0	2.862598	0.037589	0.823648	
32	6	0	1.327764	1.805386	1.477606	
33	6	0	3.836715	0.997799	0.490384	
34	1	0	3.069666	-1.019924	0.683622	
35	6	0	2.288706	2.768021	1.146074	
36	1	0	0.347380	2.119322	1.826145	
37	6	0	3.550329	2.367925	0.656270	
38	1	0	4.795766	0.666713	0.104651	
39	1	0	2.082710	3.829201	1.249360	
40	6	0	-1.608203	0.424838	-1.334978	
41	6	0	-2.862601	0.037584	-0.823675	
42	6	0	-1.327745	1.805375	-1.477595	
43	6	0	-3.836718	0.997797	-0.490425	
44	1	0	-3.069677	-1.019929	-0.683657	
45	6	0	-2.288686	2.768014	-1.146075	
46	1	0	-0.347351	2.119307	-1.826110	
47	6	0	-3.550321	2.367923	-0.656299	
48	1	0	-4.795778	0.666715	-0.104710	

Standard orientation:

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2010

49	1	0	-2.082681	3.829193	-1.249350
50	8	0	-4.438434	3.407133	-0.357031
51	8	0	4.438442	3.407131	0.356993
52	6	0	-5.754621	3.066678	0.162374
53	1	0	-6.260414	4.022020	0.316798
54	1	0	-6.323001	2.459909	-0.556701
55	1	0	-5.679604	2.529596	1.118519
56	6	0	5.754618	3.066671	-0.162438
57	1	0	6.260414	4.022011	-0.316868
58	1	0	6.323008	2.459896	0.556623
59	1	0	5.679580	2.529594	-1.118584
SCF Done: Annihilat	E(UB+HF-LYP Convg = S**2 = cion of the f) = -1486.7 0.2707D-0 3.7596 irst spin co	29744524 A.1 08 ontaminant:	U. after -V/T = 2.0	1 cycles 464
S**2 befo	ore annihilat	ion 3.75	96, after	3.7500	
Zero-poir	nt correction	=		0.478157	(Hartree/Particle)
Thermal c	correction to	Energy=		0.511217	
Thermal c	correction to	Enthalpy=		0.512161	
Thermal c	correction to	Gibbs Free	Energy=	0.408035	
Sum of electronic and zero-point Energies=			Energies=	-1486.	306358
Sum of el	Sum of electronic and thermal Energies=			-1486.	273298
Sum of el	lectronic and	thermal Ent	halpies=	-1486.	272354
Sum of electronic and thermal Free Energies=				-1486.	376480