Synthesis and characterization of cadmium doped lead-borate glasses

A A ALEMI*, H SEDGHI[†], A R MIRMOHSENI and V GOLSANAMLU

Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran [†]Department of Physics, Science Faculty, Urmia University, Iran

MS received 28 April 2005; revised 20 October 2005

Abstract. Cadmium doped lead-borate glasses were prepared from the melts in appropriate proportions of PbO₂, H_3BO_3 and (15–40 mol%) CdO mixture in the temperature range 700–950°C. The infrared spectra of the glasses in the range 400–4000 cm⁻¹ show their structures. No boroxol ring formation was observed in the structure of these glasses. Furthermore, doped cadmium atoms were not seen in tetrahedral coordination. But the conversion of three-fold to four-fold coordination of boron atoms in the structure of glasses was observed.

Keywords. Cadmium; lead borate glasses.

1. Introduction

Infrared spectroscopy and Raman scattering are two important spectroscopic methods applied in the structural investigation of the local order characterizing vitreous materials like oxide glasses (Hassan et al 1992; Martino et al 2001; Yiannopoulos et al 2001). B₂O₃ is one of the most common glass formers and is present in almost all commercially important glasses. It is often used as a dielectric material and borate glasses possess scientific interest because of the occurrence of boron anomaly (Griscon 1978). Synthesis and study of lanthanum borate (Hinatsu et al 2003), aluminum borate whiskers (Alemi and Hinatsu) and borate glasses, in particular, have become subjects of great interest for infrared studies, due to their structural peculiarities (Kamitsos and Karakassides 1989; Motke et al 2002). In borate glasses, B_2O_3 is a basic glass former because of its higher bond strength, lower cation size and smaller heat of fusion, so the structural investigation of boron in these glasses is one of the most attractive points of borate glass formation and related doped systems. In borate glasses, B^{3+} ions are triangularly coordinated by oxygen atoms and the triangle units are corner bounded in a random configuration (Yawale et al 2000). PbO and ZnO can enter the glass network both as a network former and also as a network modifier and due to this the structure of this glass is expected to be different from that of alkali borate glasses. The structure of borate glasses is completely different from other glasses such as phosphate glasses and silicate glasses.

In the present paper, synthesis and characterization of lead borate glasses, doped with cadmium oxide are studied with the help of infrared and Raman spectroscopy to determine the structure of borate glasses containing varying amounts of PbO_2 and CdO.

2. Experimental

2.1 Sample preparation

Cadmium doped lead–borate glasses were prepared from analar grade powders of H_3BO_3 , PbO₂ and CdO which were thoroughly mixed in the composition range of $xPbO_{2^-}(50-x)CdO-50B_2O_3$, where x = 10, 15, 20, 25, 30 and 35 mol%. The appropriate amount of chemicals were mixed and heat treated in open porcelain crucible on a kerr 666 electric furnace. Initially, the samples were maintained for 1 h at the temperature range from 450–550°C for decomposition of boric acid. Then the temperature was raised up to 750–900°C and maintained for 2 h and the melt was poured between two stainless steel mould plates. Samples were quenched at 250°C in order to prevent crackings on the glasses and these glasses were yellow in colour.

2.2 X-ray diffraction

The glassy nature of the samples was confirmed by XRD studies using D5000 Siemens with Cu–Ka line of wave-length l = 1.5418 Å at the scanning rate of 2 /min and 2 q was varied from 4–70°.

2.3 DSC thermogram

The glassy nature of prepared glass $(30PbO_2-20CdO-50B_2O_3)$ was confirmed by the differential thermal studies using Shimadzu DSC60 differential scanning calorimeter (DSC) in the temperature range from $30-500^{\circ}$ C with a heating rate of 10° C/min under nitrogen atmosphere.

^{*}Author for correspondence (alemi@tabrizu.ac.ir; aa_alemi@yahoo.com)

2.4 Infrared spectra

In the present work, the FTIR transmission spectra in the region $400-4000 \text{ cm}^{-1}$ were recorded for all the samples using FT–IR Nexus 670 by KBr pellet technique.

2.5 Density measurement

The density of glass samples was measured using Archimedes's principle. The measurements were done using Shimadzu Aw 200 balance and xylene as an inert immersion liquid. The density was obtained from the relation

$$d(g/cm^3) = [a/(a - b)]x(density of the xylene),$$

where *a* is the weight of the glass sample in air and *b* the weight of the glass sample when immersed in xylene. The density of xylene is $0.865 \text{ (g/cm}^3)$ (Karthikeyan and Mohan 2003).

2.6 Refractometer

The refractive indices of the prepared glasses were measured on a microscope (ARL–ZEISS 4685266) and luxmeter.

3. Results and discussion

3.1 X-ray diffraction

The X-ray diffraction pattern of CdO-doped lead-borate glasses show no sharp peaks indicating amorphous nature.

3.2 Thermal analysis

The DSC thermogram of $30PbO_2-20CdO-50B_2O_3$ glass is shown in figure 1. From this figure it is observed that the glass transition temperature of the sample is $370^{\circ}C$.

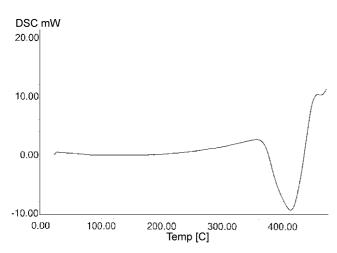
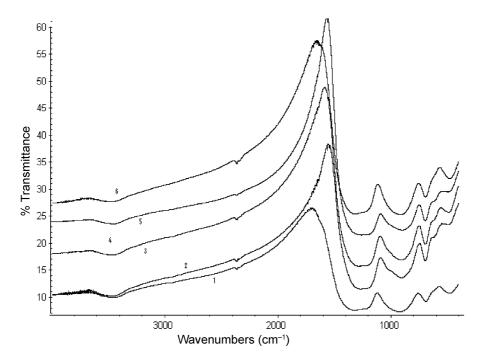



Figure 1. DSC thermogram of 30PbO₂-20CdO-50B₂O₃ glass.

3.3 FTIR and Raman analysis

The FTIR spectra of doped glasses were obtained using KBr pellet technique in the range 400–4000 cm⁻¹. The broad composite bands extending from 3200–3600 cm⁻¹ are attributed to hydroxyl or water groups (Adams and Douglas 1959; Scholzelt 1991). In figure 2, it can be seen that there is no effect of composition on the types of the structural groupings. This may be due to presence of symmetric $(BO_3)^{3-}$ triangles, $(BO_4)^{4-}$ tetrahedral and asymmetric $(BO_3)^{3-}$ units (non-bridging oxygen) in each of the samples of PbO₂–CdO–B₂O₃ glasses. Furthermore, it is noticed that in the spectra containing different concentrations of CdO, the structure is not changed.

According to the Krogh Moe's model, the structure of boron oxide glass consists of a random network of planar BO₃ triangles with a certain fraction of six membered (boroxol) rings (Moe 1965). X-ray diffraction data suggest that glass structure consists of a random network of BO₃ triangles without boroxol rings. The vibrational modes of the borate network are seen to be mainly active in three infrared spectral regions, which are similar to those reported by several workers (Kamitsos et al 1987; Ghoneun et al 1996): (i) the first group of bands which occur at 1200-1600 cm⁻¹ is due to the asymmetric stretching relaxation of the B–O band of trigonal BO₃ units, (ii) the second group lies between 800 and 1200 cm⁻¹ and is due to the B–O bond stretching of the tetrahedral BO₄ units and (iii) the third group is observed around 700 cm⁻¹ and is due to bending of B-O-B linkages in the borate networks. The infrared spectra of these glasses show seven to eight absorption peaks. The peaks are sharp, medium, weak and broad. The broad bands are exhibited in the oxide spectra, probably due to the combination of high degeneracy of vibrational states, thermal broadening of the lattice dispersion band and mechanical scattering from powder samples. In the present glass, the absence of absorption peak at 806 cm⁻¹ indicates the absence of boroxol ring formation. The progressive substitution of boroxol rings by triborate and tetraborate groups is observed. In pure B_2O_3 glass, the 806 cm⁻¹ frequency is a characteristic of boroxol ring. The vanishing of 806 cm⁻¹ means no boroxol ring in the glass structure; ultimately it consists of BO3 and BO4 groups. These groups may be attached in the form of random network. This corresponds to the progressive substitution of boroxol ring by BO₃ and BO₄ groups. This type of behaviour is observed in B₂O₃-Li₂O glasses (Galeener et al 1980; Kulkarni et al 1984; Kanehisa and Elliot 1989). The absorption band at 1307 cm⁻¹ is associated with B(III)-O-B(IV) stretching vibrations. The band around 1357 cm^{-1} is assigned to B–O stretching vibrations of trigonal (BO₃)³⁻ units in metaborates, pyroborates and orthoborates (Chekhovskii 1985). On passing from boron trioxide to borate glasses in the coordination number, boron takes place. In these glasses, the boron is tetrahedrally surrounded by four oxygen atoms (Biscoe and Warren 1938). The band around 1292 cm⁻¹ is due to B–O

Figure 2. FTIR spectra of $xPbO_2-(50-x)CdO-50B_2O_3$ (1: x = 10, 2: x = 15, 3: x = 20, 4: x = 25, 5: x = 30, 6: x = 35).

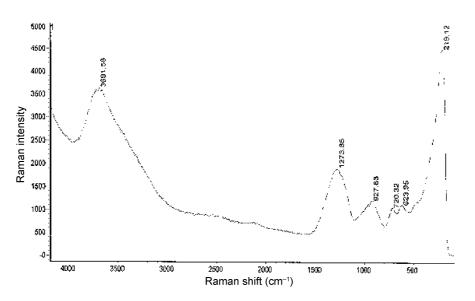


Figure 3. Raman spectrum of 30PbO₂-20CdO-50B₂O₃ glass.

 Table 1. Physical properties of cadmium doped lead-borate glass.

No.	Physical properties	
1	Density (g/cm ³)	5.81
2	Dielectric constant	3.71
3	Reflection loss $(R\%)$	10
4	Refractive index	1.925

asymmetric stretching of BO_3 unit (Heaton and Moore 1987). The shoulder at 1234 cm⁻¹ may arise from B–O stretching vibrations of $(BO_3)^{3-}$ unit in metaborate chains

and orthoborates (Kamitsos *et al* 1990). Similarly the band at 1005 cm⁻¹ is due to vibration of some atoms attached to nonbridging oxygen in the form of BO₄ vibration (Ito and Miyauchi 1983). The absorption around 1000 cm⁻¹ indicates formation of diborate groups in the present glasses. The shoulder at 1021 cm⁻¹ is due to stretching vibrations of tetrahedral BO₄. In IR spectra of Na₂O–B₂O₃–SiO₂ glasses the band at about 995 cm⁻¹ is attributed to a stretching vibration of B–O–Si linkage. Similarly the presence of the band at 992 cm⁻¹ in the spectra may be assigned to a stretching vibration of B–O–M (B–O–Pb) linkage where M represents a metal ion. The absorption band at 696 cm⁻¹ is due to combined vibration of BO₄ and PbO₄ groups. The band around 699 cm⁻¹ indicates that oxygen bridges two trigonal boron atoms. In $50Pb_2-50B_2O_3$ glass system the absorption band at 828 and 1130 cm⁻¹ was reported by Doweidar *et al* (1991). In present PbO₂–CdO–B₂O₃ glasses, it is found that the bands are absent. Probably this may be due to substitution of CdO for fraction of PbO₂ contents. The absorption at region 840 cm⁻¹ is not observed in these glasses, which suggests that the formation of tetrahedral coordination of Cd (i.e. CdO₄) is absent (Yawale *et al* 1995). Figure 3 indicates the Raman spectrum of 30PbO₂– 20CdO–50B₂O₃ glass which has a strong absorption band in the region 200–300 cm⁻¹ which corresponds to Cd–O vibrational modes (Robinson 1991). The other absorption bands have been discussed in its FTIR spectra.

3.4 Refractive index

Refractive index has been measured using a Luxmeter. The transition coefficient (T_n) and its relations with Furnel coefficient was also used to calculate the amount of refractive index. The physical properties of cadmium doped lead borate glass is shown in table 1.

Transition coefficient,

$$T_n = \frac{\text{Intensity of transmitted light}}{\text{Intensity of incident light}}$$
 $T_n = 0.9$,

$$T_n = \frac{n_2}{n_1} t_{12}^2, \text{ Furnel transition coefficient, } t_{12}^2 = \frac{2n_1}{n_1 + n_2}$$
$$T_n = \frac{n_2}{n_1} \left[\frac{2n_1}{n_1 + n_2} \right]^2 = \frac{n_2}{1} \left[\frac{2}{1 + n_2} \right]^2,$$

the refractive index of the air, $n_1 = 1$,

$$0 \cdot 9 = \frac{n_2}{1} \left[\frac{2}{1+n_2} \right]^2 \implies n_2 = 1 \cdot 925.$$

The measured refractive index has been 1.92 for the glasses by using direct optometry with a microscope and agreed well in both the approaches.

4. Conclusions

We conclude that the structure of cadmium doped lead borate glasses consists of BO_3 and BO_4 groups which are connected randomly. The structures of present glasses are independent of their compositions. The small changes occurring in the absorption bands do not account for major structural changes.

Acknowledgements

With thanks, the authors acknowledge the financial support from the Council of Tabriz University and the "Management and Planning Organization" of Islamic Republic of Iran.

References

Adams R V and Douglas R W 1959 *J. Soc. Glass Technol.* **43** 147 Alemi A A and Hinatsu Y Unpublished work

- Biscoe J and Warren B E 1938 J. Am. Ceram. Soc. 21 287
- Chekhovskii V G 1985 *Ffisika I Khimiya Stekla* **11** 24 (English Translation)
- Doweidar H, Abouzeid M A and El-Damrawi G M 1991 J. Phys. D: Appl. Phys. 24 2222
- Galeener F L, Lucovsky G and Mikkelsen J C 1980 *Phys. Rev.* **B22** 3983
- Ghoneun N A, El Batul H A, Abdel Shafi N and Azooz M H 1996 *Proceeding of Egyptian conference of chemistry* (Egypt) p. 162
- Griscon D L 1978 *Borate glasses: Materials science research* (New York: Plenum) Ch. 12, p.36
- Hassan A K, Torell L M, Borjesson L and Doweidar H 1992 Phys. Rev. B45 12797
- Heaton H M and Moore H 1987 J. Phys. Chem. Glasses 28 203
- Hinatsu Y, Doi Y, Ito K, Wakeshima M and Alemi A A 2003 J. Solid State Chem. **172** 438
- Ito Y and Miyauchi K 1983 J. Non-Cryst. Solids 57 389
- Kamitsos E I and Karakassides M A 1989 J. Phys. Chem. Glasses 30 19
- Kamitsos E I, Karakassides M A and Chryssikos G D 1987 Phys. Chem. Glasses **91** 1073
- Kamitsos E I, Patsis A P, Karakassides M A and Chryssikos G D 1990 J. Non-Cryst. Solids 126 52
- Kanehisa M A and Elliot R J 1989 Mater. Sci. Engg. B3 163

Karthikeyan B and Mohan S 2003 Physica B334 298

- Kulkarni A R, Maiti H S and Paul A 1984 Bull. Mater. Sci. 6 207
- Martino D Di, Santos L F, Marques A C and Almeida R M 2001 J. Non-Cryst. Solids **293** 394

Moe U K 1965 Phys. Chem. Glasses 6 46

- Motke S G, Yawale S P and Yawale S S 2002 *Bull. Mater. Sci.* **25** 75
- Robinson J W 1991 *Practical handbook of spectroscopy* (ed.) J W Robinson (USA: CRC Press Inc.) 1st ed., Ch. 5, p. 533
- Scholzelt H 1991 *Glass: nature, structure and properties* (New York: Springer Verlag)
- Yawale S P, Pakade S V and Adgaonkar C S 1995 Indian J. Pure & Appl. Phys. 33 35
- Yawale S S, Yawale S P and Adgaonkar C S 2000 Indian J. Eng. Mater. Sci. 7 150
- Yiannopoulos Y D, Chryssikos G D and Kamitsos E I 2001 Phys. Chem. Glasses 42 164