
Vol.: (0123456789)
1 3

https://doi.org/10.1007/s11051-022-05518-z

RESEARCH PAPER

Synthesis and characterization of calcium oxide 
nanoparticles for  CO2 capture

Ei Ei Khine · Daniel Koncz‑Horvath · 
Ferenc Kristaly · Tibor Ferenczi · Gabor Karacs · 
Peter Baumli · George Kaptay 

Received: 24 March 2022 / Accepted: 16 June 2022 
© The Author(s) 2022

it is able to capture carbon dioxide from normal air 
slowly, but surely. However, when the CaO nanopar-
ticles are kept in the air at 100–200 °C, they mostly 
capture water vapor from the air instead of carbon 
dioxide, and the resulting calcium hydroxide blocks 
the carbon dioxide capture by CaO nanoparticles.

Keywords Precipitation method · CaO 
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Introduction

Calcium oxide (CaO) is an important inorganic com-
pound. It can be used as a catalyst [1–3], pellet for 
 CO2 capture and kinetic analysis [4, 5], toxic-waste 
remediation agent, or as an additive in refractory 
and paint industries [6], antimicrobial agent, a drug 
delivery agent, as well as in various other biomedi-
cal applications [7]. Calcium oxide has been regarded 
as one of the most promising candidates for carbon 
capture [8–13] due to its good kinetics and high 
capture capacity, low running cost [14], and even 
under low  CO2 partial pressures. It is demonstrated 
even by the fact the CaO is unstable in air and will 
gradually convert back to  CaCO3 when cooled back 
to room temperature [15]. Various methods such 
as sol–gel, thermal decomposition, hydrothermal 
technique, combustion method, co-precipitation 
technique, biogenic method, precipitation method, 
two-step thermal decomposition technique, one-step 

Abstract In this paper, the preparation of calcium 
oxide (CaO) nanoparticles (NPs) is reported by a pre-
cipitation method, using  CaCl2 and NaOH as starting 
raw materials. The produced NPs were characterized 
for chemical composition, phase composition, parti-
cle size distribution, morphological features, specific 
surface area, and crystallite sizes. It is shown that cal-
cination of Ca(OH)2 in vacuum takes place faster/at 
a lower temperature compared to the calcination in 
air due to the higher entropy of the gaseous product 
of calcination. It is also shown that when these CaO 
nanoparticles are kept at room temperature in air, they 
fully and spontaneously transform into  CaCO3 within 
3  weeks. Therefore, if this material is disposed in 
open fields (not necessarily in industrial conditions), 
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multi-component synthesis, and microwave syn-
thesis [16–29] can be used for the preparation of 
CaO nanoparticles [30]. Varying these methods, 
all physical and chemical properties of nano-CaO 
can be changed; morphology, specific surface area, 
and capturing efficiency can be carefully controlled 
under specific synthesis conditions [31]. The calci-
nation temperatures of CaO from Ca(OH)2 precursor 
are found in the range of 450–650 °C [32–37]. CaO 
can also be prepared from  CaCO3 by decomposition 
above 900  °C [38, 39]. The adsorption capacity of 
CaO-based adsorbents decreases over several cycles 
of CaO carbonation/calcination [40–43]. To improve 
the sintering-resistant properties of CaO-based adsor-
bents, many factors should be considered, such as 
decreasing the particle size and increasing the surface 
area, dispersing CaO on an inert support, as well as 
surface modification [44, 45]. The CaO nanoparticles 
have comparatively high adsorption efficiency, but the 
capabilities of multiple carbonations and decarbona-
tion cycles of raw CaO rapidly degrade. The  CO2 cap-
turing of CaO sorbent was done at high temperature 
between 550 and 800 °C [46, 47]. The grain size of 
CaO grows faster as the calcination temperature and 
heating time are increased [48]. The aim of this paper 
is to report on some novel results to produce CaO 
nanoparticles through precipitation method. Various 
analytical techniques are applied to characterize the 
product, and additionally, the results of carbon diox-
ide absorption experiments at low temperatures are 
presented.

Experimental

Materials and the synthesis method

Twenty milliliters of 1  M  CaCl2 ×  H2O (≥ 95%, 
Sigma-Aldrich) and 20  ml of 2  M NaOH (≥ 98%, 
VWR Ltd.) were used as initial reagents for the syn-
thesis of Ca(OH)2 powder. During synthesis, the rea-
gents are used in stoichiometric  Ca+2:OH−  = 1:2 mol 
ratio. First, both aqueous solutions  (CaCl2 and NaOH) 
were heated up to 80 °C. At this fixed temperature, a 
given NaOH solution was added dropwise to a given 
 CaCl2 solution under stirring (1300 rpm) by magnetic 
stirrer for 30 min. The process takes place according 
to the following reaction:

The suspension obtained was washed five times 
with 120 ml of distilled water per occasion to remove 
NaCl from the suspension. The duration of each fil-
tering process was 2.5 h. As a result, a white precipi-
tate Ca(OH)2 occurred according to the process (left 
from/the solution passes the filter, while right from/
the precipitate is captured by the filter):

The wet precipitate Ca(OH)2 was dried in air at 
room temperature over one night to collect a semi-dry 
precipitate Ca(OH)2. Of collected semi-dry precipi-
tate of Ca(OH)2, 1.24 g was calcined in air at 650 °C 
for 1  h in the furnace with a heating rate of 15  °C/
min. As a result, 0.92 g of calcium oxide (CaO) pow-
der was produced by calcination while the dissocia-
tion product  H2O was evaporated as shown in the fol-
lowing equation:

According to molar masses, from 1.24  g of 
dry Ca(OH)2, one expects to obtain about 0.939  g 
CaO. This is larger by 2.0% compared to the 0.92 g 
obtained in reality, meaning that our semi-dry 
Ca(OH)2 contained about 2 w% of water. In Table 1, 
all our samples used in this paper are collected.

Characterization techniques

XRD investigations were performed using two instru-
ments: both Cu K-alpha source, 40  kV and 40  mA 
generator settings, and parallel beam with Göbel 
mirror. The obtained CaO powder calcined in air 
was measured on Bruker D8 (Vantec-PSD with 1° 
opening, scanning rate 0.007°(2Th)/24  s). The wet 
Ca(OH)2 precipitate was in  situ calcined between 
25 and 650  °C, recording at each 50  °C in a Anton 
Paar HTK 1200  N heating chamber with 60  °C/
min heating rate, 0.01  mbar when vacuum applied 
mounted on Bruker D8 Discover Lynx Eye XE-T 
solid-state ED detector in 0 D mode, and scanning 
rate 0.014°(2Th)/24  s. The SEM and EDS investi-
gations are performed with a Thermo Fisher Helios 
G4 PFIB SEM equipped with an EDAX Octane 
ElectPlus detector. The average particle sizes of 
the samples are measured from the SEM images 

CaCl2(aq) + 2NaOH(aq) → Ca(OH)2(s) + 2NaCl2(aq)

Ca(OH)2(s) + 2NaCl2(aq) + nH2O → nH2O + 2NaCl2(aq)∕ Ca(OH)2(s,wet)

Ca(OH)2(s,wet) → CaO(s) + H2O(g) ↑

J Nanopart Res (2022) 24: 139Page 2 of 11139



1 3
Vol.: (0123456789)

by “ImageJ” software using the mode of threshold 
adjustment. The TEM measurements were done by 
Fei Tecnai G2 20 XT win equipment with tungsten 
cathode and an acceleration voltage of 200  kV. The 
specific surface area of the CaO was examined by 
Brunauer–Emmett–Teller method (BET, Micromet-
rics TriStar 3000). The  CO2 adsorption capacity was 
determined through the measurement of the mass 
increase at different temperatures (25, 100, 200 °C) in 
air as a function of time.

Results and discussion

XRD results

Figure  1 shows a series of XRD diffractograms of 
sample 1. It follows that the initial wet precipitate 
at 25  °C contains mostly Ca(OH)2 with very few 
amounts of  CaCO3. The peaks for Ca(OH)2 disap-
peared in the temperature range between 250 and 
300  °C; instead, new peaks of CaO appeared and 

remained stable till the maximum measured tempera-
ture of 650 °C. The small peak of  CaCO3 disappeared 
in the temperature range between 500 and 550  °C. 
Similar results of sample 2 are shown in Fig. 2 for the 
case when the in situ calcination in the XRD equip-
ment was performed in air. Compared to Fig. 1, cal-
cination in air (instead of vacuum) leads to prolonged 
stability by about 150 °C for both initial compounds: 
from 300 to 450  °C for Ca(OH)2 and from 500 to 
650 °C for  CaCO3 (for the summary of data of Figs. 1 
and 2, see Table 2). The difference between samples 
1–2 is due to the high entropy of the gaseous reaction 
products  (H2O and  CO2) that drive the dissociation 
reaction in vacuum further and faster compared to the 
case when calcination is performed in air.

Figure 3 shows the temperature dependence of the 
crystallite sizes of CaO nanoparticles as function of 
calcination temperature in vacuum (sample 1) and in 
air (sample 2) using XRD technique. The crystal sizes 
of CaO calcined under vacuum goes through a maxi-
mum at 550  °C. Around this temperature, the CaO 
particles undergo recrystallization by eliminating 

Table 1  The list of 
the samples with the 
experimental conditions

Sample Conditions of calcination Kept in normal air

1 Wet precipitate: in vacuum from 25 to 650 °C –-
2 Wet precipitate: in air from 25 to 650 °C –-
3 Dry precipitate: in air at 650 °C for 1 h “Fresh sample”
4 Dry precipitate: in air at 650 °C for 1 h At 25 °C for 3 weeks
5 Dry precipitate: in air at 650 °C for 1 h At 100 °C for 3 weeks
6 Dry precipitate: in air at 650 °C for 1 h At 200 °C for 3 weeks

Fig. 1  The XRD diffracto-
grams of sample 1 during 
its calcination steps under 
vacuum in the temperature 
interval of 25–650 °C
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lattice defects and dislocations. The same maximum 
is not present when CaO was obtained by calcination 
in air. Also, the final particle size obtained after cal-
cination at 650  °C is lower when calcination is per-
formed in air. That is why the samples obtained in 

this way are used here for further analysis. The XRD 
diffractogram of the corresponding sample 3 is shown 
after its calcination in Fig. 4. This figure confirms the 
formation of only one phase, CaO, being in agree-
ment with Figs. 1 and 2. As follows from Fig. 4, the 
size of these crystals is below 100  nm, so they are 
truly nanoparticles [49].

SEM, EDS, and TEM investigations of the CaO 
particles

Figure 5 shows SEM and EDS examination of sam-
ples 3–4. The SEM images prove that the CaO par-
ticles have flake shape morphology. The particle 
sizes found from the SEM images are too large 

Fig. 2  The XRD diffracto-
grams of sample 2 during 
its calcination steps under 
air in the temperature inter-
val of 25–650 °C

Table 2  Phases formed from wet Ca(OH)2 during its calcina-
tion at different temperatures and in two different environments

Detected phases In vacuum (Fig. 1) In air (Fig. 2)

Ca(OH)2 +  CaCO3 25–150 °C 25–400 °C
Ca(OH)2 +  CaCO3 + CaO 200–250 °C –-
CaCO3 + CaO 300–550 °C 450–600 °C
CaO 600–650 °C 650 °C

Fig. 3  The crystallite 
size of CaO as function of 
calcination temperature of 
samples 1 and 2. According 
to Table 2, the dotted line 
obtained in vacuum starts 
from 200 °C, while the bold 
line obtained in air starts 
from 450 °C. At 450 °C 
and at 600 °C, two values 
coincide
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(115–255 nm), proving that the particles are agglom-
erated. The EDS investigation confirmed the presence 
of Ca and O (a small amount of C comes from the 
sample holder). Figure 5b shows the SEM image of 
CaO (sample 4) after the sample was kept in normal 
air at room temperature for 3 weeks. As follows from 
the comparison of Fig. 5a, b, the C and O contents of 
CaO increased significantly proving that it adsorbed 
 CO2 with the formation of  CaCO3 (for details see 
below).

TEM images of different CaO particles (sample 3) 
are shown in Fig. 6. Both single particles with their 
sizes below 100 nm and agglomerated particles with 
their sizes around 500  nm are present. The com-
parison of Figs.  5 and 6 proves that the particles of 
Fig. 5 are agglomerated particles. The comparison of 
Fig.  3 with Fig.  6 proves that the sizes for particles 
equaling crystallites obtained by XRD and TEM are 
similar; thus, the CaO nanoparticles were success-
fully produced. According to SEM and TEM images, 
this sorbent did not exhibit a “fluffy” structure, which 
probably contributes to its high surface area and 
large pore volume enhancing the uptake capacity and 
reversibility of CaO sorbent.

Absorption measurements

The CaO nanoparticles described above (sam-
ples 4–6) were used for absorption measurements. 
Samples 4–6 were exposed to air at different tem-
peratures (25, 100, and 200  °C) for three weeks 
(= 504  h). The time dependences of the mass 
increase of the three CaO samples are shown in 

Fig. 7. Table 3 shows the initial and final masses of 
the samples kept at different temperatures. As fol-
lows from Fig. 7, the initial mass increase is much 
faster compared to the same at longer times. Moreo-
ver, after about 450 h, all samples reach saturation, 
i.e., their masses do not increase any more with fur-
ther holding time. The half-time of curves in Fig. 7 
decreases with increasing temperature, i.e., the rela-
tive rate of the process increases with temperature. 
More importantly, the relative mass increase of the 
samples decreases with increasing temperature.

The expected primary reaction of the air compo-
nents with CaO nanoparticles is the capture of car-
bon dioxide from air: CaO(s) + CO2(g) = CaCO3(s) . 
This reaction is accompanied by the following 
standard Gibbs energy changes in kilojoules per 
mole (at different temperatures given in °C): − 129.9 
(25), − 117.8 (100), and − 101.6 (200) [50]. Indeed, 
when CaO was kept for 3  weeks at 25  °C, it was 
fully transformed into the calcite form of  CaCO3 
(see also Fig. 8). The theoretical ratio of the molar 
masses of  CaCO3 to CaO equals 1.78. This ratio 
is practically the same as found at the end of the 
experiment performed at 25  °C (see Fig.  7 and 
Table 3), further confirming that at room tempera-
ture, CaO nanoparticles are able to capture carbon 
dioxide from air and the full chemical capacity of 
CaO is used for this process within 3 weeks. Note 
that although the 3  weeks seems a long time, this 
process does not need industrial conditions: The 
CaO nano-particles deposited on field will slowly 
but surely absorb  CO2 from surrounding air.

Fig. 4  The XRD diffrac-
togram of sample 3: dry 
Ca(OH)2 precipitate cal-
cined in air at 650 °C with 
heating rate of 15 °C/min. 
Only nano-CaO is found

J Nanopart Res (2022) 24: 139 Page 5 of 11 139



 

1 3
Vol:. (1234567890)

In contrary to the results found at room tempera-
ture, the same CaO sample also captured some mois-
ture from air when it was kept in air at 100–200 °C 

during 3  weeks (see Fig.  8). These samples trans-
formed into the mixture of two different phases: 
Ca(OH)2 and  CaCO3. The calcite form of  CaCO3 was 

Fig. 5  SEM image (left) and EDS spectrum (right) of fresh CaO (sample 3; a) and for the sample kept in air at room temperature for 
3 weeks (sample 4; b). The peaks for gold in EDS spectra correspond to the gold coating added during sample preparation

Fig. 6  TEM images of 
fresh CaO (sample 3) 
after the calcination of dry 
Ca(OH)2 precipitate in air at 
650 °C for 1 h: single parti-
cles (left) and agglomerated 
particles (right)
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formed at both temperatures, but at 100  °C,  CaCO3 
was found partly as aragonite. The sample kept for 
3 weeks at 100 °C is composed of 74 w% of Ca(OH)2 
and 26 w% of  CaCO3; the latter divided into 17 w% 
of calcite and 9 w% of aragonite. The sample kept for 
3 weeks at 200 °C is composed of 60 w% of Ca(OH)2 
and 40 w% of  CaCO3 in the form of calcite. This is in 
agreement with Fig. 2 and Table 2, where the mixture 

of (Ca(OH)2 +  CaCO3) is reported at temperatures 
below 400  °C when Ca(OH)2 precipitate is calcined 
in air.

Based on the above, at 100–200  °C, the fol-
lowing additional reaction also took place: 
CaOs + H2O(g) = Ca(OH)2(s) . This side reaction 
is accompanied by the following standard Gibbs 
energy changes in kilojoules per mole (at different 
temperatures given in °C): − 66.3 (25), − 55.8 (100), 
and − 41.9 (200) [50]. Although these standard Gibbs 
energy changes are less negative compared to those 
accompanying the formation of  CaCO3, nevertheless 
these values are also sufficiently negative to allow the 
formation of Ca(OH)2 in addition to  CaCO3. The fact 
that Ca(OH)2 is formed at 100 and 200 °C but not at 
25 °C cannot be explained solely by thermodynamic 
reasons. It is probably due to kinetic reasons, namely 
to the lower activation energy of Ca(OH)2 formation 
compared to that of  CaCO3 formation. In summary, 
with increasing temperature, thermodynamics pre-
fers the formation of  CaCO3, while kinetics prefers 
the formation of Ca(OH)2. The interplay between 
these two opposite trends might be the reason for the 
observed values. Certainly, further experiments are 
needed to clarify the temperature dependence in more 
details.

The ratio of the molar masses of Ca(OH)2 to CaO 
equals 1.32, and this ratio is considerably lower than 
1.78 valid for  CaCO3. This, together with Fig.  8, 
explains in Fig. 7 why the final masses of CaO sam-
ples kept at 100–200 °C are considerably lower com-
pared to that of the sample kept at 25  °C. The final 
masses of the CaO samples can be estimated by the 
following equation:
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Fig. 7  The time dependence of the relative mass change of 
CaO samples 4–6 exposed to normal air at different tempera-
tures

Table 3  The measured initial and final masses of CaO sam-
ples (data from Fig. 7)

Sample Temper-
ature, 
°C

Initial 
mass, g

Final 
mass, g

Final/
initial 
masses

Half-time, 
h

4 25 0.87 1.54 1.77 37
5 100 0.75 1.03 1.37 22
6 200 0.88 1.09 1.24 19

Fig. 8  The XRD patterns 
of the CaO nanoparticles 
(samples 4–6) after being 
kept in air at 25, 100, and 
200 °C for 3 weeks
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where CCaCO3 (w%) and CCa(OH)2 (w%) are the  CaCO3 
and Ca(OH)2 contents (in mass percent) of the final 
sample. Substituting the above values and the values 
given in Table 3, the following results are obtained:

 i. At 25  °C: CCaCO3 = 100% and CCa(OH)2 = 0%: 
mfinal = 1.55 g, deviating less than 1% from the 
measured value of 1.54 g (see Table 3),

 ii. At 100 °C: CCaCO3 = 26% and CCa(OH)2 = 74%: 
mfinal = 1.08 g, being larger by 4.8% compared 
to the measured value of 1.03 g (see Table 3),

 iii. At 200 °C: CCaCO3 = 40% and CCa(OH)2 = 60%: 
mfinal = 1.32 g, being larger by 21% compared 
to the measured value of 1.09 g (see Table 3).

These results indicate that the formation of 
Ca(OH)2 kinetically blocks the formation of  CaCO3, 
and this mechanism is enhanced with increasing tem-
perature at least up to 200 °C. This can be explained 
by the large difference between molar volumes of 
CaO (16.8  cm3/mol) and Ca(OH)2 (33.5  cm3/mol). 
The fact that Eq.  (1) predicts higher mass increase 
than experimentally observed indicates that some 
residual, unreacted CaO should be present in the 
samples, kinetically blocked by Ca(OH)2. However, 
no peak of CaO is visible in Fig.  8. This might be 
explained by the nano-size of the blocked, un-reacted 
islands of CaO, which might be not visible by XRD. 
From the measured values, the remaining concen-
tration of CaO can be found extending Eq.  (1) as 
follows:

From Eq. (2):

Substituting the above values into Eq. (3):

 i. At 25 °C: mfinal∕minitial = 1.77, CCaCO3 = 100% 
and CCa(OH)2 = 0%: CCaO = 1.3%,

 ii. At 100 °C: mfinal∕minitial = 1.37, CCaCO3 = 26% 
and CCa(OH)2 = 74%: CCaO = 15.8%,

(1)
mfinal = minitial ∙

(

0.0178 ∙ CCaCO3 + 0.0132 ∙ CCa(OH)2

)

(2)
m

final
= m

initial
∙
[

0.01 ∙ C
CaO

+
(

1 − 0.01 ∙ C
CaO

)

∙
(

0.0178 ∙ C
CaCO3

+ 0.0132 ∙ C
Ca(OH)2

)]

(3)

CCaO ≅

mfinal

minitial

−
(

0.0178 ∙ CCaCO3 + 0.0132 ∙ CCa(OH)2

)

0.01 ∙
[

1 −
(

0.0178 ∙ CCaCO3 + 0.0132 ∙ CCa(OH)2

)]

 iii. At 200 °C: mfinal∕minitial = 1.24, CCaCO3 = 40% 
and CCa(OH)2 = 60%: CCaO = 52.4%.

As follows from these results, the higher is the tem-
perature, the higher is the ratio of blocked and unre-
acted CaO, at least until 200  °C. Certainly, further 
experiments are needed to clarify this question.

Finally, it is suggested here to perform capturing of 
carbon dioxide by CaO nanoparticles produced here at 
room temperature, as at higher temperature (at least up 
to 200  °C), the efficiency of this process is consider-
ably decreased due to the partial formation of Ca(OH)2. 
Even if the rate of  CO2 capturing is lower at room tem-
perature, it does not require any industrial equipment: 
When CaO nano-particles are disposed on a field, they 
will capture the stoichiometric amount of carbon diox-
ide slowly, but surely.

The specific surface area of the CaO samples

Freshly prepared pure CaO sample 3 (obtained by 
calcination in air at 650  °C for 1  h) was found to 
have the measured specific surface area of 4.34  m2/g 
(Table  4). After keeping the same sample at room 
temperature in air for 3  weeks (sample 4), its spe-
cific surface area is increased to 6.05  m2/g (Fig. 4). 
This difference looks quite large, about 39%. As 
follows from the above, this is due to the absorp-
tion of  CO2 by CaO nanoparticles and by the trans-
formation of the latter into  CaCO3. Now, let us re-
calculate these measured values to somewhat more 
scientific values expressed in  m2/m3 = 1/m. Using 
the density of 3.34  g/cm3 of CaO [51], the initial 

Table 4  Results of surface area measurements of samples 3–4

Sample BET,  m2/g BJH,  m2/g BJH,  m3/g BET, pore, nm

3 4.34 3.17 0.016 11
4 6.05 5.17 0.031 17

specific surface area of 4.34  m2/g is recalculated to 
1.45 E7 1/m. On the other hand, using the density 
of 2.71 g/cm3 of  CaCO3 in the calcite form [50], the 
final specific surface area of 6.05  m2/g is recalcu-
lated to 1.64 E7 1/m. Thus, the difference between 
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the initial and final values is reduced to 13%. Mode-
ling the particles in the first approximation as cubes 
with their specific surface area expressed as 6/a 
(with a = the side length of a cube), the cube side is 
found to decrease during the carbonization process 
from about 414 nm to about 359 nm. It means that 
the specific surface area measurements correspond 
to the agglomerated particles, as explained above in 
relation with Fig. 6.

As follows from Table  4, the specific surface 
areas of pores (BJH) are increased from 3.17  m2/g 
for freshly prepared CaO sample 3 to 5.17  m2/g 
after 3 weeks explosion to air at room temperature 
(sample 4). The cumulative specific pore volumes 
are increased from 0.016  m3/g of the freshly pre-
pared CaO sample to 0.031  m3/g after it is kept in 
air during 3 weeks at room temperature. The aver-
age pore diameters are increased from 11  nm for 
fresh CaO to 17 nm after it is kept for 3 weeks in 
fresh air at room temperature.

Conclusions

Ca(OH)2 precipitates were prepared from the reac-
tion of aqueous solutions containing dissolved 
 CaCl2 and NaOH. After the dissolved NaCl is 
washed out and the Ca(OH)2 precipitates are filtered 
and dried, they were calcined to form CaO nano-
particles. It was found that calcination in vacuum 
leads to the formation of CaO nanoparticles at a 
somewhat lower temperature compared to the same 
calcination performed in air, due to high entropy 
of low-pressure gaseous products. However, apply-
ing vacuum during calcination also leads to a larger 
CaO grain size compared to calcination in air. That 
is why calcination in air is recommended here to 
obtain CaO nano-particles of smaller size and larger 
specific surface area.

It is shown that when these CaO nanoparticles are 
kept at room temperature in normal air, they fully and 
spontaneously transform into  CaCO3 within 3 weeks, 
i.e., they are able to capture carbon dioxide from air. 
This process does not require any industrial condi-
tion; it rather happens spontaneously if the CaO 
nano-particles are disposed to open fields.

However, when the CaO nanoparticles are kept 
in air at 100–200 °C, then they mostly capture water 

vapor from air instead of carbon dioxide, and calcium 
hydroxide forming as a result blocks the carbon diox-
ide capture by CaO nanoparticles.
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