Synthesis and Conformational Analysis of Pentapeptides Containing Enantiomerically Pure 2,2-Disubstituted Glycines - Source link

Kathrin A. Brun, Anthony Linden, Heinz Heimgartner
Published on: 01 Mar 2008 - Helvetica Chimica Acta (John Wiley \& Sons, Ltd)
Topics: Amino acid

Related papers:

- The 'Azirine/Oxazolone Method' on Solid Phase: Introduction of Various α, α-Disubstituted α-Amino Acids
- Synthesis of a Derivative of the Peptaibol-Antibiotic Trichovirin I 1B by Means of the 'Azirine/Oxazolone Method'
- The first total synthesis of the peptaibol hypomurocin A1 and its conformation analysis: an application of the 'azirine/oxazolone method'.
- 3-Amino-2H-Azirines. Synthons for α, α-Disubstituted α-Amino Acids in Heterocycle and Peptide Synthesis [New Analytical Methods (43)]
- Introduction of the Aib-Pro unit into peptides by means of the 'azirine/oxazolone method' on solid phase

Synthesis and conformational analysis of pentapeptides containing enantiomerically pure 2,2-disubstituted glycines

Brun, K A; Linden, A; Heimgartner, H

Brun, K A; Linden, A; Heimgartner, H (2008). Synthesis and conformational analysis of pentapeptides containing enantiomerically pure 2,2-disubstituted glycines. Helvetica Chimica Acta, 91(3):526-558.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Helvetica Chimica Acta 2008, 91(3):526-558.

Synthesis and conformational analysis of pentapeptides containing enantiomerically pure 2,2-disubstituted glycines

Abstract

The synthesis and conformational analysis of model pentapeptides with the sequence Z-Leu-Aib-Xaa-Gln-Valol is described. These peptides contain two 2,2-disubstituted glycines (α, α-disubstituted α-amino acids), i.e., Aib (aminoisobutyric acid) and a series of unsymmetrically substituted, enantiomerically pure amino acids Xaa. These disubstituted amino acids were incorporated into the model peptides via the 'azirine/oxazolone method'. Conformational analysis was performed in solution by means of NMR techniques and in the solid state by X-ray crystallography. Both methods show that the backbones of thesemodel peptides form helical conformations, as is expected for 2,2-disubstitued glycinecontaining peptides.

Synthesis and Conformational Analysis of Pentapeptides

Containing Enantiomerically Pure 2,2-Disubstituted Glycines

by Kathrin A. Brun ${ }^{1}$), Anthony Linden, and Heinz Heimgartner*
Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057
Zürich

Dedicated to Professor Dieter Seebach on the occasion of his 70th birthday

[^0]The synthesis and conformational analysis of model pentapeptides with the sequence Z-Leu-Aib-Xaa-Gln-Valol is described. These peptides contain two 2,2-disubstituted glycines (α, α-disubstituted α-amino acids), i.e., Aib (aminoisobutyric acid) and a series of unsymmetrically substituted, enantiomerically pure amino acids Xaa. These disubstituted amino acids were incorporated into the model peptides via the 'azirine/oxazolone method'. Conformational analysis was performed in solution by means of NMR techniques and in the solid state by X-ray crystallography. Both methods show that the backbones of these model peptides form helical conformations, as is expected for 2,2-disubstitued glycinecontaining peptides.

1. Introduction. - Within the last 30 years, 2,2 -disubstituted glycines (i.e., α, α disubstituted α-amino acids) attracted increasing interest as structural units in biologically active heterocycles (see, e.g., [1]) and in conformationally restricted peptides (see, e.g., [2]). Of special significance are the so-called peptaibols, i.e., peptide antibiotics, which contain a high proportion of 2,2-dimethylglycine (α-aminoisobutyric acid, Aib) and are produced by some filamentous fungi [3]. Due to the presence of Aib, these peptides exhibit helical conformations [4][5]. This structure is essential for their biological activity [6], i.e., their ability to form ion channels through membranes [7].

For this reason, several new syntheses of achiral and optically active 2,2disubstituted glycines have been reported in recent years [2c][8], as well as new protocols for the introduction of these sterically congested amino acids into peptides [9-11]. In our laboratory, we have developed the so-called 'azirine/oxazolone method' for this purpose [12][13]. It has been shown that this protocol can be used successfully in the synthesis of peptaibols and segments thereof [5f][5g][13]. Therefore, a large series of 2 H -azirin-3amines were prepared as synthons for symmetrical 2,2-disubstituted [14] and heterocyclic α-amino acids [15], as well as dipeptide synthons [15c][16]. Furthermore, building blocks for enantiomerically pure 2-methylphenylalanine [17] and 2-ethylalanine (isovaline, Iva) [18] were obtained after chromatographic separation of the corresponding diastereoisomeric 2 H -azirin-3-amines bearing a chiral residue at the exocyclic N -atom. Recently, we reported the synthesis of some new optically active 2 H -azirin-3-amines $\mathbf{1}$ as synthons for enantiomerically pure 2,2-disubstituted glycines by using (R)-[1-(naphthalen1 -yl)ethyl]amine as the chiral auxiliary [19].

Formulae $\mathbf{1}$ and $\mathbf{2}$

It has been shown that these 2 H -azirin- 3 -amines are suitable for the successful incorporation of the corresponding enantiomerically pure 2,2-disubstituted glycines into peptides by use of the 'azirine/oxazolone method' [17-19]. In the present paper, we present the synthesis and the results of the conformational analysis of model pentapeptides $\mathbf{2 a}-\mathbf{g}$ with the sequence Z-Leu-Aib-Xaa-Gln-Valol. With Xaa $=$ Aib or D-Iva, this is the C-terminal segment of the naturally occurring peptaibol family of trichotoxin $A-50$ (see [13e]). As the first examples, we described the preparation of the pentapeptides $\mathbf{2 c}$ containing D- and L-Iva [18].
2. Results and Discussion. - 2.1. Synthesis of the Pentapeptides 2. The model pentapeptides 2 were synthesized according to Schemes 1 and 2. The N-terminal tripeptides Z-Leu-Aib-Xaa-NR ${ }^{3} \mathrm{R}^{4} \mathbf{3 a}-\mathbf{g}$ were prepared by using the 'azirine/oxazolone method'. First, Z-Leu-OH was coupled with 1a, the synthon for Aib , in $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, yielding the dipeptide amide 4, which was hydrolyzed at room temperature with $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{H}_{2} \mathrm{O} /\right.$ THF 1:1) to give Z-Leu-Aib-OH 5 [19]. The latter was coupled with the respective azirines $\mathbf{1 a}-\mathbf{g}$ to yield the tripeptide amides $\mathbf{3 a - g}$ (Scheme 1, Table 1; for the coupling with $\mathbf{1 c}-\mathbf{g}$, see [19]).

Scheme 1

Table 1

Subsequent hydrolysis gave the tripeptide acids $\mathbf{6 a}-\mathbf{g}$ (Scheme 2, Table 2). The structure of (R)-6c was established by X-ray crystallography (Fig. l). For (R)-6c, the OH
group forms an intramolecular H -bond with the central amide O -atom, thereby creating a ten-membered loop and a helical turn within the molecule. This interaction can be described by the graph set motif [21] of $\mathrm{S}(10)$. $\mathrm{N}(1)-\mathrm{H}$ forms an intermolecular H -bond with the carboxylic acid carbonyl O -atom of a neighboring molecule, thereby linking the molecules into extended chains, which run parallel to the $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ direction and which can be described by the graph set motif of $\mathrm{C}(11)$. $\mathrm{N}(4)-\mathrm{H}$ forms an intermolecular H -bond with the amide O -atom of a neighboring molecule, thereby linking the molecules into extended chains, which run parallel to the $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ direction and which can be described by the graph set motif of $\mathrm{C}(5)$. The combination of the intermolecular interactions generates a threedimensional framework of H -bonded molecules. $\mathrm{N}(7)-\mathrm{H}$ is not involved in any H -bonding interactions. The closest acceptor atom is $\mathrm{O}(12)$ within the same molecule, but the $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{O}$ distances of $2.65(3)$ and $3.330(2) \AA$ are just outside the maximum value (2.6 and $3.2 \AA$, respectively) considered to be the outer limit of a significiant $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O} \mathrm{H}$-bonding interaction.

Scheme 2

Table 2
Figure 1. ORTEP Plots [20] of the molecular structures of a) (R)-6c (Z-Leu-Aib-(R)-Iva-OH), b) (R)-7c (Z-Leu-Aib-(R)-Iva-NHMe), and c) (R)-7d (Z-Leu-Aib-(R)-Val(2Me)NHMe) (50\% probability ellipsoids; arbitrary numbering of the atoms)

The standard conditions for the hydrolysis of peptide amides with a N-methylanilide group are $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{H}_{2} \mathrm{O} /\right.$ THF 1:1) at room temperature. However, for the tripeptide amides of type $\mathbf{3}$ with $\operatorname{NaphthEt}(\mathrm{Me}) \mathrm{N}$ as the chiral auxiliary group, these conditions have proven
to be too mild. Therefore, the temperature was increased and the solvent system was changed to $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ 1:1. The optimized new standard conditions were 3 h at 60°.

Interestingly, the coupling of amino acids with a junction at $\mathrm{C}(3)$ (i.e., β-branched amino acids, such as $\operatorname{Val}(2 \mathrm{Me})$ and $\mathrm{Ala}(2 \mathrm{cPent})$) by the reaction of the corresponding azirine with Z-Leu-Aib-OH proceeded with lower yields than that of amino acids with a $\mathrm{CH}_{2}(3)$ group (linear or γ-branched amino acids; see Table 1). On the other hand, the hydrolysis gave better yields in the case of β-branched amino acids (Table 2).

During this hydrolysis, a side product 7 with a N-methylamide group, which is similar to the side products described in [22], was formed in addition to $\mathbf{6}$ (Scheme 3, Table 2). For example, the hydrolysis of the (S) - and (R)-Iva containing tripeptides (S) - and (R) 3c gave the side products (S) - and $(R)-7 \mathbf{c}$ in 30 and 29% yield, respectively. The structures of the (R)-Iva and $(R)-\operatorname{Val}(2 \mathrm{Me})$ containing $(R)-7 \mathbf{c}$ and $(R)-\mathbf{7 d}$ were determined by X-ray crystallography (Fig. 1).

Scheme 3

The solid-state structures of $(R)-\mathbf{7 c}$ and $(R)-\mathbf{7 d}$ also exhibit the same hydrogenbonding motifs and three-dimensional framework as described above for $(R)-\mathbf{6 c}$ with the carboxylic acid group now replaced by the amide group involving $\mathrm{N}(10)-\mathrm{H} . \mathrm{N}(7)-\mathrm{H}$ is positioned in approximately the correct position to interact intramolecularly with $\mathrm{O}(12)$, but, again, the $\mathrm{H}^{\cdots \mathrm{O}}$ and $\mathrm{N} \cdots \mathrm{O}$ distances of 2.63(2) and 2.78(4) \AA, and 3.297(2) and $3.451(3) \AA$, respectively, are too long to be considered as a significiant $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}$ H-bonding interactions, particularly in the case of $(R)-7 \mathbf{d}$.

In the crystals of the product $(R)-\mathbf{6 c}$ and the side product $(R)-\mathbf{7} \mathbf{c}$ of the hydrolysis of $(R)-\mathbf{3 c}$, as well as the side product $(R)-\mathbf{7 d}$ of the hydrolysis of $(R)-\mathbf{3 d}$, the molecules form a β-turn of type I' or III', which is in good agreement with the structures of the investigated pentapeptides (Fig. 1). However, as noted earlier, the interatomic distances for the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions normally associated with such turns $(\mathrm{N}(10)-\mathrm{H} \cdots \mathrm{O}(12)$ in these structures) are such that the interactions are at best extremely weak hydrogen bonds.

The coupling of Z-Leu-Aib-OH (5) with $\left(2^{\prime} R\right)-\mathbf{1 h}$ and $\left(2^{\prime} S\right) \mathbf{- 1 h}$, i.e., the synthons for $(R)-$ and (S)-Phe $(2 \mathrm{Me})$ [17], and with $(2 R)-\mathbf{1 i}$ and $(2 S)$-1i, the synthons for (R) - and (S)-Iva [18], to give tripeptide amides of type 3, as well as their hydrolysis to the corresponding tripeptide acids 6, gave better yields than in the case of $\mathbf{1 g}$ and $\mathbf{1 c}$ (Table 2), but their chiral auxiliary groups cannot be as widely used as the $\operatorname{NaphthEt(Me)N~group.~}$

Formulae 1h and 1i

The C-terminal dipeptide H-Gln-Valol (11) was synthesized via coupling of the 4nitrophenyl ester Z-Gln-ONp(8) with L-valinol (Valol, 9) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMF (active ester method). The obtained Z-Gln-Valol (10) was deprotected by hydrogenolytic cleavage of the Z group $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\right)$ in MeOH at room temperature to give $\mathbf{1 1}$ (Scheme 2). The coupling of the tripeptide acids $\mathbf{6}$ with $\mathbf{1 1}$ was carried out by using classical peptide coupling methods with $O-\left(7-\right.$ azabenzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyluronium hexafluorophosphate (HATU) as the coupling reagent (Table 2).

The conformations of the model peptides $\mathbf{2}$ were investigated in the crystalline state. For these studies, however, some of the peptides had to be modified by changing the N -
terminal protecting group, because the Z-protected peptides did not crystallize very well. The 4-bromobenzoyl group proved to be very suitable for this purpose (Scheme 4). In a first step, the N -terminus of the pentapeptide $\mathbf{2}$ was deprotected by treating a solution of $\mathbf{2}$ in MeOH at room temperature with H_{2} and Pd / C. After filtration over Celite, the deprotected pentapeptide $\mathbf{1 2}$ was reacted with 4-bromobenzoyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the new pentapeptide $\mathbf{1 3}$ (Table 2).

Scheme 4

2.2. Conformational Analysis of the Pentapeptides. The conformations of some model peptides 2 and 13, respectively, were investigated in the solid state as well as in solution. X-ray crystal-structure determinations were performed in the cases of 13a
 Aib-(S)-Val(2Me)-Gln-Valol), (S)-2e (Z-Leu-Aib-(S)-Ala(2cPent)-Gln-Valol), (S)-13f (p BrBz-Leu-Aib-(S)-Leu(2Me)-Gln-Valol), and (S)-13g ($p \mathrm{BrBz-Leu}-\mathrm{Aib}-(S)$-Phe(2Me)-Gln-Valol) (Fig. 2). All pentapeptides adopt a helical conformation stabilized by intramolecular H-bonds, which form two β-turns: $\mathrm{N}(10)-\mathrm{H}$ and $\mathrm{N}(13)-\mathrm{H}$ interact with the carbonyl O -atom that is seven atoms back along the peptide backbone. Each of these interactions has a graph set motif [21] of $\mathrm{S}(10)$.

Figure 2. ORTEP Plots [20] of the molecular structures of a) 13a ($p \mathrm{BrBz}$-Leu-Aib-Aib-Gln-Valol), b) 13b (p BrBz-Leu-Aib-Ac ${ }_{5} \mathrm{c}-\mathrm{Gln}-\mathrm{Valol}$), c) (S)-2d (Z-Leu-Aib-(S)$\operatorname{Val}(2 \mathrm{Me})-\mathrm{Gln}-\mathrm{Valol}), \mathrm{d})(S)-2 \mathrm{e}(\mathrm{Z}-\mathrm{Leu}-\mathrm{Aib}-(S)-\mathrm{Ala}(2 \mathrm{cPent})-\mathrm{Gln}-\mathrm{Valol})$, e) one of the two symmetry-independent molecules of (S)-13f ($p \mathrm{BrBz}$-Leu-Aib-(S)-Leu(2Me)-Gln-Valol),
and f) (S)-13g (p BrBz-Leu-Aib-(S)-Phe(2Me)-Gln-Valol) (50\% probability ellipsoids; arbitrary numbering of the atoms; any solvent molecules and minor disorder components have been omitted for clarity)

Intermolecular H-bonds also link the molecules in each structure into infinite twodimensional networks. In 13a, $\mathrm{N}(1)-\mathrm{H}$ and $\mathrm{N}(4)-\mathrm{H}$ form intermolecular H -bonds with, respectively, the carbonyl O -atom, $\mathrm{O}(12)$, and the hydroxy O -atom, $\mathrm{O}(15)$, at the opposite end of a neighboring molecule. These interactions link the peptide molecules into extended chains which run parallel to the $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ direction and which can be described by graph set motifs of $\mathrm{C}(14)$. The OH group also forms an intermolecular H -bond with the amide $\mathrm{O}-$ atom, $\mathrm{O}(33)$, of the side chain at $\mathrm{C}(11)$ of a different neighboring peptide molecule, thereby linking the molecules into extended chains which run parallel to the $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ direction and which can be described by the $\mathrm{C}(11)$ motif. The partial occupancy $\mathrm{H}_{2} \mathrm{O}$ molecule accepts a H -bond from $\mathrm{N}(7)-\mathrm{H}$ and also donates a H -bond to $\mathrm{O}(33)$ in a different peptide molecule, thereby linking the peptide and $\mathrm{H}_{2} \mathrm{O}$ molecules into extended chains which run parallel to the $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ direction and which have a $\mathrm{C}_{2}^{2}(12)$ motif. The NH_{2} group, $\mathrm{N}(33)$, of the amide side chain forms an intramolecular H-bond with the carbonyl O-atom, $\mathrm{O}(16)(\mathrm{S}(18)$ motif), and an intermolecular H -bond with $\mathrm{O}(9)$ from a neighboring molecule. This latter interaction links the the molecules into extended chains which run parallel to the $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ direction and which can be described by the $C(9)$ motif. The combination of all intermolecular interactions links the molecules into infinite twodimensional networks, which lie parallel to the (010) plane.

The structure of 13b exhibits the same pattern of hydrogen-bonding motifs and twodimensional network to that described above for 13a, except that with the absence of a water molecule, $\mathrm{N}(7)-\mathrm{H}$ is not involved in a H -bond.

For (S)-2d, the H -atoms of $\mathrm{N}(37)$ on the terminal amide side chain are involved in the same intra- and intermolecular interactions that were described for 13a to give the $S(18)$ and $C(9)$ motifs. The remaining interactions, however, generate a different pattern: $\mathrm{N}(1)-\mathrm{H}$ and $\mathrm{N}(4)-\mathrm{H}$ form intermolecular H -bonds with the amide O -atom, $\mathrm{O}(37)$, of the terminal amide side chain of the same neighboring molecule. Each of these interactions links the molecules into extended chains which run parallel to the $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ direction and which can be described by graph set motifs of $\mathrm{C}(16)$ and $\mathrm{C}(13)$, respectively. The OH group also forms an intermolecular H -bond with the amide O -atom of the terminal amide side chain, but on a different neighboring molecule. This interaction links the molecules into extended chains which run parallel to the $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ direction and have the $\mathrm{C}(11)$ motif. $\mathrm{N}(7)-\mathrm{H}$ forms an intermolecular H -bond with the hydroxy O -atom of yet another neighboring molecule, but also links the molecules into extended chains which run parallel to the $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ direction and have the $\mathrm{C}(11)$ motif. The combination of all intermolecular interactions links the molecules into infinite two-dimensional networks, which lie parallel to the (001) plane.

The structure of $(S) \mathbf{- 2 e}$ exhibits the same pattern of hydrogen-bonding motifs and two-dimensional network to that described above for (S)-2d

The structure of $(S) \mathbf{- 1 3 f}$ has two molecules in the asymmetric unit, A and B. For the hydrogen-bonding, the molecules of type A interact amongst themselves, as do those of type B, and the patterns are identical with those described for 13b, except for differences in the directionality of some chains. The chains involving $\mathrm{N}(1)-\mathrm{H}$ and $\mathrm{N}(4)-\mathrm{H}$ of molecule A
and those involving the corresponding atoms of molecule B run parallel to the $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ direction. The chains involving the OH group, as well as those involving the $\mathrm{N}-\mathrm{H}$ group of the terminal amide side chain, run parallel to the $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ and $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ directions for molecules A and B, respectively. Considered overall, the intermolecular H-bonds link the molecules of (S)-13f into infinite two-dimensional layer networks, where each layer consists entirely of only one type of symmetry-independent molecule. Thus layers of Hbonded molecules A and layers of molecules B are stacked in an alternating fashion along the [001] direction.

For $(S) \mathbf{- 1 3 g}$, the NH_{2} group, $\mathrm{N}(39)$, on the terminal amide side chain is involved in the same intra- and intermolecular interactions that were described for 13a to give the usual $\mathrm{S}(18)$ and $\mathrm{C}(9)$ motifs. $\mathrm{N}(1)-\mathrm{H}$, and $\mathrm{N}(7)-\mathrm{H}$ form intermolecular H-bonds with, respectively, the amide O -atom of the side chain, $\mathrm{O}(39)$, and a carbonyl O -atom, $\mathrm{O}(12)$, in two different neighboring peptide molecules. These interactions link the molecules into extended chains which run parallel to the $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ direction and which can be described by graph set motifs of $\mathrm{C}(16)$ and $\mathrm{C}(8)$, respectively. $\mathrm{N}(4)-\mathrm{H}$ interacts with $\mathrm{O}(43)$ of one of the two independent MeOH molecules, while $\mathrm{O}(43)$ is close enough to $\mathrm{O}(9)$ in a different peptide molecule to be donating a H -bond to the latter atom (the H -atoms of the solvent molecules could not be located). These interactions link the peptide and MeOH molecules into extended chains, which run parallel to the $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ direction and which can be desrcibed by a graph set motif of $\mathrm{C}_{2}^{2}(10)$. The hydroxy group, $\mathrm{O}(15)-\mathrm{H}$, forms an intermolecular $\mathrm{H}-$ bond with $\mathrm{O}(44)$ of the second MeOH molecule, but this solvent molecule does not appear to act as a H-bond donor. Considered overall, the intermolecular interactions combine to link the molecules into infinite two-dimensional networks, which lie parallel to the (001) plane.

In Tables 3 and 4, the torsion angles $\phi_{i+1}, \psi_{i+1}, \phi_{i+2}$, and ψ_{i+2} of the β-turns are summarized. The values show that two consecutive β-turns of type III/I are formed for 13a, 13b, (S)-2d, (S)-2e, and (S)-13f, whereas in the case of (S)-13g two β-turns of type III/III are observed. The III/III combination can be considered as an incipient 3_{10}-helix.

Table 3

Table 4

The results described above are in good agreement with previously reported results obtained for $\mathrm{Aib}[23-29], \mathrm{Ac}_{5} \mathrm{c}$ [14][30][31], $\operatorname{Val}(2 \mathrm{Me})$ [32], $\mathrm{Leu}(2 \mathrm{Me})$ [33], and Phe(2 Me) [34-36] containing oligopeptides.

The conformation of the model peptide (S) $\mathbf{- 2 g}$ was also investigated in solution by means of NMR techniques. An easy way is the observation of the signals of the amide H atoms under different conditions. Their chemical shifts show a significantly different behaviour when they are involved in an intramolecular H-bond, than when exposed to the solvent or forming intermolecular H -bonds. Intramolecularly bound NH atoms are much less influenced by temperature changes [14] or by addition of polar solvents or radicals [37].

For (S)-2g, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured at different temperatures. Although it was not possible to assign every signal in the NMR spectrum, two strongly temperature dependent NH signals were found, i.e., the signals for the amide H -atoms of Leu and Aib, which are not involved in the H -bonding pattern of the incipient 3_{10}-helix. One other signal was also temperature dependent, but to a much lesser extent, i.e., one of the amide protons of the Gln side chain. This result is in agreement with the X-ray crystal structure of (S) -
$\mathbf{1 3 g}$, i.e., the corresponding p BrBz-protected derivative of (S)-2g, where one amide H -atom of the Gln side chain is intramolecularly involved in a H -bond with the $\mathrm{C}=\mathrm{O}$ group of the N -terminal protecting $p \mathrm{BrBz}$-group, and the other amide NH -atom of the Gln side chain is exposed to the environment and should show a significant temperature dependence. All other amide H -atoms of (S)-2g did not show a significant temperature-dependence (Fig. 3). The NH-atom of Phe $(2 \mathrm{Me})$ could not be observed and is supposed to lie in the region of the aromatic H -atoms.

Figure 3

As can be seen in Fig. 3, the temperature dependence of the amide H -atoms is linear. In order to compare the effects, the temperature coefficients were calculated and are shown in Table 5.

Table 5

As only the amide H -atoms of Leu and Aib , but not of $\mathrm{Phe}(2 \mathrm{Me})$, $\mathrm{Gln}(2 \mathrm{Me})$, and Valol are temperature dependent, it is likely that the incipient 3_{10}-helix, which was observed for $(S) \mathbf{- 1 3 g}$ in the solid state, is also the dominant conformation in solution.

In conclusion, it has been shown that the model pentapeptides of the type Z-Leu-Aib-Xaa-Gln-Valol, with Xaa = 2,2-disubstituted glycine, can be prepared conveniently by using the 'azirine/oxazolone method'. They adopt a helical conformation in the solid state and in solution; the results from crystallographic and NMR-investigations are in good agreement with each other.

We thank the analytical services of our institute for NMR and mass spectra and for elemental analyses. Financial support by the Swiss National Science Foundation, F. Hoffmann-La Roche AG, Basel, the Stiftung für wissenschaftliche Forschung an der Universität Zürich, and the Prof. Dr. Hans E. Schmid-Stiftung is gratefully acknowledged. K. A. B. thanks the Stipendienfonds der Basler Chemischen Industrie for a scholarship.

Experimental Part

1. General. See [19]. ${ }^{1} \mathrm{H}-(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(150.9 \mathrm{MHz})$ Spectra: Bruker AMX-600 instrument.
2. Preparation of H-Gln-Valol (11). 2.1. N-[(Benzyloxy)carbonyl]-glutaminyl-valinol (Z-Gln-Valol; 10). To a soln. of L-valinol (9, $0.66 \mathrm{~g}, 6.40 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, a soln. of Z-Gln-ON $p(8,2.83 \mathrm{~g}, 7.10 \mathrm{mmol})$ in abs. DMF (25 ml) was added slowly at 0°. After 6 h , the gel-like precipitate was diluted with $\mathrm{CHCl}_{3}(25 \mathrm{ml})$ and stirred for 18 h at r.t., then, additional $\mathrm{CHCl}_{3}(50 \mathrm{ml})$ was added. After 2 h , the precipitate was filtered, washed with $\mathrm{AcOEt} / \mathrm{CHCl}_{3} 1: 1$ and $\mathrm{Et}_{2} \mathrm{O}$. Recrystallization from EtOH yielded $1.717 \mathrm{~g}(73 \%)$ of 10. Colorless crystals. M.p. $186.6-187.0^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.20$. IR: 3430 s, $3300 s, 3200 m, 3080 w, 3060 w, 2960 m, 2930 m, 2870 m, 1680 s, 1660 s, 1645 s, 1555 s, 1535 s$, $1505 m, 1470 m, 1465 m, 1445 m, 1415 m, 1390 m, 1370 m, 1350 m, 1330 m, 1260 s, 1245 s$, $1190 w, 1140 w, 1060 m, 1040 m, 1020 m, 995 w, 940 w, 910 w, 880 w, 855 w, 770 w, 745 m .{ }^{1} \mathrm{H}-$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 7.35 - 7.3 ($m, 5$ arom. H); 5.08 (br. $s, \mathrm{PhCH}_{2} \mathrm{O}$); 4.14 ($d d, J=8.5,5.8$, $\mathrm{CH}(2)$ of Gln$)$; $3.7-3.55\left(m, \mathrm{CH}(2)\right.$ and $\mathrm{CH}_{2}(1)$ of Valol); $2.31\left(t, J=7.5, \mathrm{CH}_{2}(4)\right.$ of Gln); $2.15-1.8\left(m, \mathrm{CH}(3)\right.$ of Valol, $\mathrm{CH}_{2}(3)$ of Gln $) ; 0.93,0.89(2 d, J=6.8,2 \mathrm{Me}(4)$ of Valol). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.8\left(s, \mathrm{CONH}_{2}\right) ; 174.3(s, \mathrm{CONH}) ; 158.3(s, \mathrm{OCONH}) ; 138.1(s, 1$
arom. C); 129.4, 128.9, 128.8 ($3 d$, 5 arom. CH); $67.6\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 63.0(t, \mathrm{C}(1)$ of Valol); 58.0, $56.0(2 d, \mathrm{C}(2)$ of $\mathrm{Gln}, \mathrm{C}(2)$ of Valol); $32.5(t, \mathrm{C}(4)$ of Gln$) ; 30.0(d, \mathrm{C}(3)$ of Valol); 29.1 ($t, \mathrm{C}(3)$ of Gln); 19.9, 18.8 ($2 q, 2 \mathrm{Me}(4)$ of Valol). ESI-MS (MeOH): 404 (31, $[M+$ $\left.K]^{+}\right), 388\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ (365.43): C 59.16, H 7.45, N 11.50; found: C 59.27, H 7.71, N 11.54 .
2.2. Glutaminyl-valinol (H-Gln-Valol; 11). A soln. of $\mathbf{1 0}$ (14.970 g, 40.97 mmol) and $\mathrm{Pd} / \mathrm{C}(10 \%$ on activated charcoal, 0.550 g$)$ in $\mathrm{MeOH}(950 \mathrm{ml})$ was treated with H_{2} for 18 h at r.t. The mixture was filtered over Celite, and the filtrate was evaporated: 9.419 g (99\%) of 11. Colorless solid. M.p. $134.5-135.2^{\circ}$. IR: $3350 s, 3280 s, 3200 s, 3110 s, 2950 s, 2930 s$, $2870 m, 1690 s, 1680 s, 1670 s, 1645 s, 1630 s, 1615 s, 1565 s, 1550 s, 1515 m, 1505 m, 1465 m$, $1450 m, 1415 s, 1385 m, 1370 m, 1350 m, 1335 m, 1310 m, 1280 m, 1245 m, 1200 w, 1150 m$, $1080 m, 1070 m, 1025 m, 975 m, 950 m, 875 w, 845 w, 815 w, 780 w, 770 w, 715 m .{ }^{1} \mathrm{H}-\mathrm{NMR}:$ $3.7-3.5\left(m, \mathrm{CH}_{2}(1)\right.$ of Valol, $\mathrm{CH}(2)$ of Gln$) ; 3.4-3.3(m, \mathrm{CH}(2)$ of Valol); $2.35-2.3(m$, $\mathrm{CH}_{2}(4)$ of Gln$) ; 2.0-1.75\left(m, \mathrm{CH}_{2}(3)\right.$ of Gln, $\mathrm{CH}(3)$ of Valol); $0.96,0.93(2 d, J=6.9,6.8$, 2 Me of Valol). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 178.3,177.1(2 s, 2 \mathrm{CONH}) ; 63.0(t, \mathrm{C}(1)$ of Valol); 57.9, 55.7 (2d, C(2) of Gln, C(2) of Valol); 32.7, 32.5 (2t, C(3), C(4) of Gln); 30.0 (d, C(3) of Valol); 19.8, 18.8 ($2 q, 2$ Me of Valol). CI-MS $\left(\mathrm{NH}_{3}\right): 233(11), 232\left(100,[M+1]^{+}\right), 229(10), 215$ (20), 214 (12), 129 (5), 104 (7), 101 (6).
3. Peptides with Xaa $=$ Aib. 3.1. Benzyl [(S)-1-(\{[1,1-Dimethyl-2-(\{1,1-dimethyl-2-[methyl(phenyl)amino]-2-oxoethyl\}amino)-2-oxoethyl]amino? carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-Aib-N(Me)Ph; 3a). To a soln. of N-[(Benzyloxy)carbonyl]leucyl- α aminoisobutyric acid (Z-Leu-Aib-OH [19]; 5, $1.152 \mathrm{~g}, 3.29 \mathrm{mmol}$) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, 2,2,N-trimethyl-N-phenyl-2H-azirin-3-amine (1a [38], $0.610 \mathrm{~g}, 3.50 \mathrm{mmol}$) was added at 0°. The soln. was stirred for 23 h at r.t. The mixture was washed with $2 \mathrm{~N} \mathrm{HCl}, 1 \mathrm{~N} \mathrm{NaOH}-$
soln., and sat. aq. NaCl -soln., dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated: $1.645 \mathrm{~g}(95 \%)$ of 3a. Colorless solid. M.p. $57.1-57.8^{\circ}$. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.51 ; R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)$ 0.18. IR: $3310 s, 3060 \mathrm{~m}, 3030 \mathrm{~m}, 2955 \mathrm{~s}$, $2870 \mathrm{~m}, 2140 \mathrm{w}, 1950 \mathrm{w}, 1880 \mathrm{w}, 1820 \mathrm{w}, 1705 \mathrm{vs}$, $1690 \mathrm{vs}, 1680 \mathrm{vs}, 1660 \mathrm{vs}, 1640 \mathrm{vs}$, $1595 \mathrm{~s}, 1540-1520 \mathrm{vs}$, $1495 \mathrm{vs}, 1470 \mathrm{~s}, 1455 \mathrm{~s}, 1390 \mathrm{~s}$, $1365 s, 1315 m, 1265-1240 s, 1220 s, 1170 m, 1120 m, 1090 s, 1070 m, 1045 m, 1030 m$, $1005 w, 965 w, 920 w, 910 w, 875 w, 840 w, 825 w, 770 m, 740 m, 705 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.4$ $-7.2(m, 10$ arom. H$) ; 5.15,5.09\left(A B, J=12.8, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.00(t, J=7.5, \mathrm{CH}(2)$ of Leu $)$; 3.25 (br. $s, \mathrm{MeN}) ; 1.7-1.65\left(m, \mathrm{CH}(4)\right.$ of Leu); $1.55-1.5\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu); 1.47, 1.44, $1.41,1.38(4 s, 4 \mathrm{Me}$ of 2 Aib$) ; 0.96,0.93\left(2 d, J=6.7,6.5,2 \mathrm{Me}\right.$ of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\mathrm{CD}_{3} \mathrm{OD}$): 176.2, 175.6, 175.2 ($3 s, 3 \mathrm{CONH}$); 158.8 (s, OCONH); 146.9 ($s, 1$ arom. CN); 138.5 ($s, 1$ arom. C); 130.4, 129.7, 129.1, 128.5 ($4 d, 10$ arom. CH); 67.6 ($t, \mathrm{PhCH}_{2} \mathrm{O}$); 58.7, $58.2(2 s, 2 \mathrm{C}(2)$ of 2 Aib$) ; 55.7(d, \mathrm{C}(2)$ of Leu); $41.6(t, \mathrm{C}(3)$ of Leu); $41.3(q, \mathrm{MeN})$; 26.6, 26.4, 26.0, 24.7 ($d, 3 q, \mathrm{C}(4)$ of Leu, 4 Me of 2 Aib); 23.4, 22.4 ($2 q, 2 \mathrm{Me}$ of Leu). ESI-MS (NaI): $547\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ (530.67): C 65.64, H 7.72, N 10.56; found: C 65.90, H 7.56, N 10.73.

3.2. N -[(Benzyloxy)carbonyl]-leucyl- α-aminoisobutyryl- α-aminoisobutyric Acid (Z-

 Leu-Aib-Aib-OH; 6a). A soln. of 3a (1.373 g, 2.62 mmol) in $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 1: 1,40 \mathrm{ml}\right)$ was stirred for 2 h at r.t. Thereby, a colorless precipitate was formed. Then, 2N HCl (40 $\mathrm{ml})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. During this operation the precipitate dissolved. The org. soln. was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Washing of the residue with AcOEt yielded $1.005 \mathrm{~g}(88 \%)$ of $\mathbf{6 a}$. Colorless solid. M.p. $192-193^{\circ} . R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.18$ - 0.07. IR: $3385 m, 3330 s, 3290 s, 3060 w, 3030 w, 2980 w$, $2950 m, 2865 w, 1740 s, 1705 v s, 1660 s, 1550 m, 1525 s, 1500 m, 1470 w, 1455 w, 1440 w$, $1385 m, 1365 w, 1315 s, 1295 m, 1270 s, 1245 s, 1220 m, 1175 w, 1130 w, 1120 w, 1080 w$,$1045 m, 1030 w, 990 w, 970 w, 945 w, 910 w, 850 w, 785 w, 765 w, 755 w, 740 w, 730 w .{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): 7.35-7.25\left(m, 5\right.$ arom. H); 5.13, $5.08\left(A B, J=12.6, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.02(t, J$ $=7.5, \mathrm{CH}(2)$ of Leu); $1.7-1.65\left(m, \mathrm{CH}(4)\right.$ of Leu); $1.52\left(d d, J=7.8,7.2, \mathrm{CH}_{2}(3)\right.$ of Leu); $1.44,1.43,1.42,1.40(4 s, 4 \mathrm{Me}$ of 2 Aib$)$; $0.96,0.93\left(2 d, J=6.5,2 \mathrm{Me}\right.$ of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\mathrm{CD}_{3} \mathrm{OD}$): 178.0, 175.9, 175.1 (3s, COOH, 2 CONH); 158.7 ($\left.s, \mathrm{OCONH}\right) ; 138.3$ ($s, 1$ arom. C); 129.5, 129.0, $128.6(3 d, 5$ arom. CH$) ; 67.6\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 57.9,57.1(2 s, 2 \mathrm{C}(2)$ of $2 \mathrm{Aib}) ; 55.5$ ($d, \mathrm{C}(2)$ of Leu); 41.5 ($t, \mathrm{C}(3)$ of Leu); 25.9 ($d, \mathrm{C}(4)$ of Leu); 26.1, 25.5, 24.7, 24.6, 23.3, 22.2 ($6 q, 4 \mathrm{Me}$ of $2 \mathrm{Aib}, 2 \mathrm{Me}$ of Leu). ESI-MS (NaI): $458\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6}$ (435.51): C 60.67, H 7.64, N 9.65; found: C 60.55, H 7.63, N 9.59.
3.3. N -[(Benzyloxy)carbonyl]-leucyl- α-aminoisobutyryl- α-aminoisobutyryl-glu-taminyl-valinol (Z-Leu-Aib-Aib-Gln-Valol, 2a). To a soln. of $\mathbf{6 a}(100 \mathrm{mg}, 0.230 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(70 \mathrm{mg}, 0.690 \mathrm{mmol})$ in abs. DMF $(2.5 \mathrm{ml})$ at r.t., HATU $(87 \mathrm{mg}, 0.230 \mathrm{mmol})$ was added. After 5 min , $\mathrm{HOBt}(35 \mathrm{mg}, 0.23 \mathrm{mmol})$, and after a further $5 \mathrm{~min}, 11(53 \mathrm{mg}$, 0.230 mmol) was added and the mixture was stirred for 19 h at r.t., and evaporated. The residue was dissolved in AcOEt, washed with 1 N HCl and 1 N NaOH -soln., dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Recrystallization from AcOEt/hexane yielded 114 mg (77\%) 2a. Colorless crystals. M.p. $170-172^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.16$. IR: $3310 s, 3030 w, 2960 m$, $2870 w, 1655 \mathrm{vs}, 1535 \mathrm{~s}, 1470 w, 1455 w, 1385 w, 1365 w, 1335 w, 1310 w, 1265 m, 1230 w$, $1170 w, 1120 w, 1040 w, 1030 w, 925 w, 850 w, 790 w, 740 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.92(d, J=$ 6.9, NH); $7.46(s, \mathrm{NH}) ; 7.35-7.25\left(m, 5\right.$ arom. H); 5.13, $5.10\left(A B, J=12.7, \mathrm{PhCH}_{2} \mathrm{O}\right)$; $4.15-4.05\left(m, \mathrm{CH}(2)\right.$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of Leu); $3.7-3.65\left(m, \mathrm{CH}(2)\right.$ and $\mathrm{CH}_{2}(1)$ of Valol); $2.4-2.35\left(m, \mathrm{CH}_{2}(4)\right.$ of Gln$) ; 2.25-2.2\left(m, \mathrm{CH}_{2}(3)\right.$ of Gln$) ; 1.9-1.85(m, \mathrm{CH}(3)$ of Valol); $1.75-1.7$ ($m, \mathrm{CH}(4)$ of Leu); $1.6-1.55\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu); $1.4-1.35(m, 4 \mathrm{Me}$ of

2 Aib); $1.0-0.9$ ($m, 2 \mathrm{Me}$ of Leu, 2 Me of Valol). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.9,177.8$, 176.8, 176.1, 174.4 ($5 s, 5 \mathrm{CONH}$); 158.9 (s, OCONH); 138.4 ($s, 1$ arom. C); 129.6, 129.0, 128.6 ($3 d, 5$ arom. CH); $67.8\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; $63.6(t, \mathrm{C}(1)$ of Valol); $58.6(d, \mathrm{C}(2)$ of Gln$)$; 58.0, 57.8 ($2 s, 2 \mathrm{C}(2)$ of 2 Aib$) ; 56.2,55.9$ (2d, C(2) of Valol, C(2) of Leu); 41.4 ($t, \mathrm{C}(3)$ of Leu); 33.5 (t, C(4) of Gln); 30.1 (d, C(3) of Valol); 28.5 (t, C(3) of Gln); 25.9 (d, C(4) of Leu); 26.9, 25.8, 24.6, 24.2, 23.3, 22.2 ($6 q, 4$ Me of 2 Aib, 2 Me of Leu); 20.1, 19.4 (2q, 2 Me of Valol). ESI-MS (MeOH): $687\left(25,[M+\mathrm{K}]^{+}\right), 672\left(94,[M+\mathrm{Na}]^{+}\right), 650(100,[M+$ 1^{+}). Anal. calc. for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ (666.82): C 57.64, H 8.01, H 12.60; found: C 57.38, H 7.97, N 12.24.
3.4. $\mathrm{N}-\{(\mathrm{S})-1-[(\{2-[(2-\{[4-A m i n o-(\mathrm{S})-1-(\{[(\mathrm{S})-1-(h y d r o x y m e t h y l)-2-m e t h y l p r o p y l]-$ amino\}carbonyl)-4-oxobutyl]amino\}-1,1-dimethyl-2-oxoethyl)amino]-1,1-dimethyl-2oxoethyl\}amino) carbonyl]-3-methylbutyl\} 4-Bromobenzamide (pBrBz-Leu-Aib-Aib-GlnValol; 13a). A soln. of 2a ($71 \mathrm{mg}, 0.109 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(10 \%$ on activated charcoal, 7 $\mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was treated with H_{2} for 1.5 h at r.t. The mixture was filtered over cotton wool, and the filtrate was evaporated. The residue (58 mg) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml), and $\mathrm{Et}_{3} \mathrm{~N}$ ($30 \mathrm{mg}, 0.297 \mathrm{mmol}$) and 4-bromobenzoylchloride ($35 \mathrm{mg}, 0.159 \mathrm{mmol}$) were added. A precipitate formed while stirring for 30 min at r.t. The mixture was washed with 2 N HCl and 1 N NaOH . The precipitate dissolved after addition of a small amount of MeOH . The org. soln. was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue $(59 \mathrm{mg}, 78 \%$, 13a) was recrystallized from $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}$ and petroleum ether. Colorless crystals. M.p. $232.9-233.8^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.15$. IR: $3650 w, 3420 s, 3340 \mathrm{vs}, 3280 \mathrm{v} s, 3060 w$, $2980 m, 2980 s, 2960 s, 2870 m, 2540 w, 2490 w, 2440 w, 2400 w, 1675 \mathrm{vs}, 1660 \mathrm{vs}, 1650 \mathrm{vs}$, $1595 s, 1540 \mathrm{vs}, 1485 s, 1465 s, 1455 s, 1440 s, 1415 m, 1390 s, 1365 s, 1340 m, 1300 s, 1235 m$, $1200 m, 1175 m, 1140 m, 1070 m, 1010 m, 980 w, 940 w, 925 w, 900 w, 870 w, 860 w, 825 w$,
$790 w, 765 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.81,7.62\left(A A^{\prime} B B^{\prime}, J=8.5,4\right.$ arom. H); $4.55-4.5(\mathrm{~m}$, $\mathrm{CH}(2)$ of Gln); $4.15-4.1\left(m, \mathrm{CH}(2)\right.$ of Leu); 3.62 (br. $s, \mathrm{CH}_{2}(1)$ and $\mathrm{CH}(2)$ of Valol); 2.35 $-2.3\left(m, \mathrm{CH}_{2}(4)\right.$ of Gln $) ; 2.25-2.0\left(m, \mathrm{CH}_{2}(3)\right.$ of Gln$) ; 1.85-1.65(m, \mathrm{CH}(3)$ of Valol, $\mathrm{CH}(4)$ and $\mathrm{CH}_{2}(3)$ of Leu$) ; 1.45-1.4$ ($m, 4 \mathrm{Me}$ of 2 Aib); 1.01, $0.99,0.87,0.79(4 d, J=$ 5.9, 6.0, 6.7, 6.8, 2 Me of Leu, 2 Me of Valol). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 178.0,177.8,176.9$, 175.6, 174.3 ($5 s, 5 \mathrm{CONH}$); 169.6 ($s, 1 \mathrm{CO}$ (amide, $p \mathrm{BrBz}$)); 134.0 ($s, 1$ arom. C); 132.8, 130.6 ($2 d, 4$ arom. CH); 127.4 ($s, 1$ arom. CBr); 63.5 ($t, \mathrm{C}(1)$ of Valol); 58.6 ($d, \mathrm{C}(2)$ of Gln); 58.1, $57.9(2 s, 2 \mathrm{C}(2)$ of 2 Aib$)$; 56.1, $54.5(2 d, \mathrm{C}(2)$ of Valol, C(2) of Leu); $41.2(t$, $\mathrm{C}(3)$ of Leu); $33.6(t, \mathrm{C}(4)$ of Gln); 30.0 ($d, \mathrm{C}(3)$ of Valol); $26.6(t, \mathrm{C}(3)$ of Gln); $26.1(d$, C(4) of Leu); 28.5, 25.3, 25.1, 24.6, 23.4, 22.1 ($6 q, 4 \mathrm{Me}$ of $2 \mathrm{Aib}, 2 \mathrm{Me}$ of Leu); 20.1, 19.3 (2q, 2 Me of Valol). ESI-MS (TFA): $737\left(6,[M+\mathrm{K}]^{+},{ }^{81} \mathrm{Br}\right), 721\left(39,[M+\mathrm{Na}]^{+}\right.$, $\left.{ }^{81} \mathrm{Br}\right), 699\left(100,[M+1]^{+},{ }^{81} \mathrm{Br}\right), 681\left(13,[M-\mathrm{OH}]{ }^{+},{ }^{81} \mathrm{Br}\right), 596\left(18,[M-\right.$ Valol $\left.]{ }^{+},{ }^{81} \mathrm{Br}\right)$, 468 (15, $[M-\text { Gln-Valol }]^{+},{ }^{81} \mathrm{Br}$). Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{BrN}_{6} \mathrm{O}_{7}$ (697.67): C 53.37, H 7.08, N 12.05; found: C 53.26, H 7.12, N 11.99 .

Crystals suitable for an X-ray crystal-structure determination were obtained from a mixture of $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}$, and petroleum ether by slow evaporation of the solvent.
4. Peptides with Xaa $=A c_{5} c .4 .1$. Benzyl $\{(\mathrm{S})-1-[(\{1,1-$ Dimethyl-2-[(1-\{[methyl(phe-nyl)amino]carbonyl\}cyclopentyl)amino]-2-oxoethyl\}amino)carbonyl]-3-methylbutyl\}carbamate (Z-Leu-Aib-Acsc-N(Me)Ph; 3b). As described for 3a, with 5 [19] ($0.705 \mathrm{~g}, 2.01$ $\mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, N -methyl- N -phenyl-1-azaspiro[2.4]hept-1-en-2-amine (1b [39], 0.439 g (containing 12.5% amide), 1.92 mmol): $1.030 \mathrm{~g}(97 \%)$ of 3b. Colorless solid. M.p. $67.7-69.1^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.52 ; R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) 0.16$. IR: $3310 s$, $3060 \mathrm{~m}, 3030 \mathrm{~m}, 2955 \mathrm{~s}, 2870 \mathrm{~m}, 1950 \mathrm{w}, 1810 \mathrm{w}, 1705 \mathrm{vs}, 1660 \mathrm{vs}, 1595 \mathrm{~s}, 1520 \mathrm{vs}, 1495 \mathrm{vs}$, $1470 s, 1455 s, 1380 s, 1310 m, 1260 \mathrm{vs}, 1220 s, 1170 m, 1120 m, 1045 s, 1030 m, 1005 w, 985 w$,
$955 w, 910 w, 840 w, 765 m, 735 m, 700 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.4-7.2(m, 10$ arom. H$)$; 5.13, $5.11\left(A B, J=12.8, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.00\left(t, J=7.5, \mathrm{CH}_{2}(2)\right.$ of Leu); 3.22 (br. $\left.s, \mathrm{MeN}\right) ; 2.4$ - 2.35, 2.3-2.2, 2.2-1.95 (3m, $4 \mathrm{H}^{2}$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right)$; $1.75-1.65\left(m, \mathrm{CH}(4)\right.$ of Leu, 4 H of $\left.\mathrm{Ac}_{5} \mathrm{c}\right)$; $1.6-1.5\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu); 1.47, $1.40(2 s, 2 \mathrm{Me}$ of Aib$) ; 0.96,0.93(2 d, J=6.6,2 \mathrm{Me}$ of Leu). ${ }^{13} \mathrm{C}$-NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 176.3, 175.6, 175.3 ($3 \mathrm{~s}, 3 \mathrm{CONH}$); 159.0 (s, OCONH); 147.0 ($s, 1$ arom. CN); 138.6 ($s, 1$ arom. C); 130.5, 129.8, 129.3, 128.7, 128.5, 128.3 ($6 d, 10$ arom. CH$) ; 68.8\left(s, \mathrm{C}(2)\right.$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ; 67.8\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 58.4(s, \mathrm{C}(2)$ of Aib$) ; 55.8(d, \mathrm{C}(2)$ of Leu); 41.7 ($t, \mathrm{C}(3)$ of Leu); 41.1 (q, MeN); 38.7, 38.2 ($2 t, 2 \mathrm{C}(3)$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ; 26.1(d, \mathrm{C}(4)$ of Leu); 25.7, 25.6 ($2 t, 2 \mathrm{C}(4)$ of $\mathrm{Ac}_{5} \mathrm{c}$); 26.8, 24.9, 23.5, 22.5 ($4 q, 2 \mathrm{Me}$ of Aib, 2 Me of Leu). ESI-MS (NaI): $573\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$ (556.71): C 66.88, H 7.72, N 10.06; found: C 67.12, H 7.64, N 10.02.
4.2. 1-(\{2-[((S)-2-\{[(Benzyloxy)carbonyl]amino\}-4-methyl-1-oxopentyl)amino]-2-methyl-1-oxopropyl\}amino)cyclopentan-1-carboxylic Acid (Z-Leu-Aib-Acsc-OH; 6b). As described for $\mathbf{6 a}$, with 3b ($750 \mathrm{mg}, 1.36 \mathrm{mmol}$), $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 1: 1,30 \mathrm{ml}\right), 2.5 \mathrm{~h}$ at r.t., $2 \mathrm{~N} \mathrm{HCl}(15 \mathrm{ml})$, recrystallization from AcOEt/hexane: $566 \mathrm{mg}(90 \%)$ of $\mathbf{6 b}$. Colorless crystals. M.p. $175.0-176.5^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.13$. IR: $3300 s, 3060 m, 3030 m$, $2955 s, 2870 \mathrm{~m}, 1740 \mathrm{~s}, 1720 \mathrm{vs}, 1695 \mathrm{vs}, 1660 \mathrm{vs}, 1590 \mathrm{w}, 1530 \mathrm{vs}, 1470 \mathrm{~m}, 1455 \mathrm{~s}, 1410 \mathrm{~m}$, $1390 m, 1365 m, 1345 m, 1330 m, 1315 m, 1250 s, 1175 m, 1120 m, 1050 m, 1030 m, 1005 w$, $950 w, 910 w, 770 w, 735 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.49$ (br. s, NH); $7.35-7.3$ ($m, 5$ arom. H); $5.15-5.05\left(m, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.02(t, J=7.5, \mathrm{CH}(2)$ of Leu$) ; 2.25-2.0\left(m, 4 \mathrm{H}\right.$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ; 1.7$ - $1.65\left(m, \mathrm{CH}(4)\right.$ of Leu, 4 H of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ; 1.52\left(d d, J=7.5,6.2, \mathrm{CH}_{2}(3)\right.$ of Leu); 1.43 (br. $s, 2$ Me of Aib); 0.96, 0.93 (2d, $J=6.7,2 \mathrm{Me}$ of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.8,176.4,175.0$ (3s, COOH, 2 CONH); 158.7 (s, OCONH); 138.2 ($s, 1$ arom. C); 129.5, 129.1, 128.7 (3d, 5 arom. CH$) ; 67.7\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 67.3\left(s, \mathrm{C}(2)\right.$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ; 57.8(s, \mathrm{C}(2)$ of Aib$) ; 55.5(d, \mathrm{C}(2)$ of

Leu); 41.5 ($t, \mathrm{C}(3)$ of Leu); 38.1, 37.7 ($2 t, 2 \mathrm{C}(3)$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right)$; 25.9 ($d, \mathrm{C}(4)$ of Leu); 25.6 ($t, 2$ $\mathrm{C}(4)$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right)$; 26.0, 24.7, 23.3, 22.2 ($4 q, 2 \mathrm{Me}$ of Aib, 2 Me of Leu). ESI-MS (NaI): 506 $\left(4,[M+2 \mathrm{Na}-1]^{+}\right), 484\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$ (467.57): C 61.65, H 7.69, N 8.99; found: C 61.95, H 7.52, N 9.03.
4.3. Benzyl ((S)-1-\{[(2-\{[1-(\{[4-Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-methylpropyl]amino\} carbonyl)-4-oxobutyl]amino\}carbonyl)cyclopentyl]amino\}-1,1-dimethyl-2-oxoethyl)amino]carbonyl\}-3-methylbutyl)carbamate (Z-Leu-Aib-Acsc-Gln-Valol; 2b). A soln. of $\mathbf{6 b}(239 \mathrm{mg}, 0.518 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(108 \mathrm{mg}, 1.069 \mathrm{mmol})$ in abs. DMF $(3.5 \mathrm{ml})$ was stirred for 10 min at 0°, then, HATU ($217 \mathrm{mg}, 0.571 \mathrm{mmol}$) was added. After stirring at 0° for $8 \mathrm{~min}, \mathbf{1 1}(132 \mathrm{mg}, 0.57 \mathrm{mmol})$ was added and the mixture was stirred for 90 min at 0° and 40 h at r.t. The solvent was evaporated, the residue dissolved in AcOEt and a small amount of MeOH , washed with 2 N HCl and 1 N NaOH -soln., dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ yielded 304 mg (87\%) of 2b. Colorless solid. M.p. $97.6-98.1^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.17$. IR: $3300 s, 3035 w, 2960 m, 2870 w, 1665 \mathrm{vs}$, $1535 s, 1470 m, 1455 m, 1405 w, 1390 m, 1365 w, 1315 m, 1270 m, 1220 m, 1170 w, 1130 w$, $1120 w, 1045 w, 1030 w, 960 w, 925 w, 910 w, 890 w, 850 w, 820 w, 790 w, 740 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.35-7.25\left(m, 5\right.$ arom. H); 5.16, $5.11\left(A B, J=12.7, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.16(t, J=7.3$, $\mathrm{CH}(2)$ of Gln$)$; $4.02\left(t, J=7.5, \mathrm{CH}(2)\right.$ of Leu); $3.7-3.6\left(m, \mathrm{CH}(2)\right.$ and $\mathrm{CH}_{2}(1)$ of Valol); $2.4-2.3\left(m, \mathrm{CH}_{2}(4)\right.$ of Gln, $\mathrm{CH}(3)$ of Valol); $2.25-2.15\left(m, \mathrm{CH}_{2}(3)\right.$ of Gln $) ; 2.0-1.85$ ($m, 4 \mathrm{H}$ of $\mathrm{Ac}_{5} \mathrm{c}$); $1.75-1.55\left(m, 4 \mathrm{H}\right.$ of $\mathrm{Ac}_{5} \mathrm{c}, \mathrm{CH}(4)$ and $\mathrm{CH}_{2}(3)$ of Leu); 1.40, $1.38(2 s, 2$ Me of Aib); $1.0-0.9$ ($m, 2 \mathrm{Me}$ of Leu, 2 Me of Valol). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.8,177.4$, 177.2, 176.1, 174.4 ($5 s, 5 \mathrm{CONH}$); 159.1 (s, OCONH); 138.4 ($s, 1$ arom. C); 129.6, 129.0, 128.4 ($3 d, 5$ arom. CH); $68.1\left(s, \mathrm{C}(2)\right.$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right)$; $67.8\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; $63.6(t, \mathrm{C}(1)$ of Valol); 58.5 ($d, \mathrm{C}(2)$ of Gln$) ; 57.8(s, \mathrm{C}(2)$ of Aib$) ; 56.2,56.1$ (2d, C(2) of Leu, $\mathrm{C}(2)$ of Valol);
$41.3,38.8,37.4\left(3 t, \mathrm{C}(3)\right.$ of $\mathrm{Leu}, 2 \mathrm{C}(3)$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ; 33.4(t, \mathrm{C}(4)$ of Gln$) ; 30.1(d, \mathrm{C}(3)$ of Valol); 28.5 ($t, \mathrm{C}(3)$ of Gln); 25.9 ($d, \mathrm{C}(4)$ of Leu$) ; 25.7,25.6$ ($2 t, 2 \mathrm{C}(4)$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ;$ 24.7, 23.2, 22.4 (3q, 2 Me of Aib, 2 Me of Leu); 20.1, 19.4 (2q, 2 Me of Valol). ESI-MS (TFA): $698\left(20,[M+\mathrm{Na}]^{+}\right), 675\left(100,[M+1]^{+}\right), 657\left(15,[M-\mathrm{OH}]^{+}\right), 572\left(19,[M-\text { Valol }]^{+}\right)$, 444 (22, $[M \text { - Gln-Valol }]^{+}$). Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (683.85): C 59.72, H 8.11, N 12.29; found: C 59.48, H 8.20, N 12.28 .
4.4. $\mathrm{N}-($ (S$)-1-\{[(2-\{[1-(\{[4-$ Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-methylpropyl]amino\} carbonyl)-4-oxobutyl]amino\} carbonyl)cyclopentyl]amino\}-1,1-dimethyl-2-oxoethyl)amino]carbonyl\}-3-methylbutyl) 4-Bromobenzamide (pBrBz-Leu-Aib-Acsc-GlnValol; 13b). As described for 13a, with 2b ($83 \mathrm{mg}, 0.123 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{C}(10 \%$ on activated charcoal, 9 mg), $\mathrm{MeOH}\left(5 \mathrm{ml}\right.$), and $\mathrm{H}_{2}, 2 \mathrm{~h}$ at r.t., filtration over Celite, with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(18 \mathrm{mg}, 0.178 \mathrm{mmol})$, 4-bromobenzoylchloride ($27 \mathrm{mg}, 0.123 \mathrm{mmol}$), 1.5 h at r.t.; purification with $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$: $76 \mathrm{mg}(85 \%)$ of 13b. Colorless solid. M.p. $242.8-243.6^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.18$. IR: 3405 s , 3340 vs , $3250 s, 3060 w, 2960 s$, $2875 m, 1675 \mathrm{vs}, 1655 \mathrm{vs}, 1590 s, 1540 \mathrm{vs}, 1485 s, 1470 \mathrm{~m}, 1455 s, 1440 \mathrm{~m}, 1410 \mathrm{~m}, 1390 \mathrm{~m}$, $1360 m, 1340 m, 1315 m, 1295 m, 1255 m, 1220 m, 1180 m, 1170 m, 1150 w, 1140 w, 1130 w$, $1110 w, 1095 w, 1070 w, 1020 w, 1010 m, 980 w, 940 w, 920 w, 870 w, 850 w, 820 w, 790 w$, $760 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.82,7.63\left(A A^{\prime} B B^{\prime}, J=8.4,8.5,4\right.$ arom. H); $4.5-4.45(\mathrm{~m}$, $\mathrm{CH}(2)$ of Gln); $4.15-4.1\left(m, \mathrm{CH}(2)\right.$ of Leu); $3.65-3.55\left(m, \mathrm{CH}(2)\right.$ and $\mathrm{CH}_{2}(1)$ of Valol); $2.35-2.3\left(m, \mathrm{CH}_{2}(4)\right.$ of Gln$) ; 2.3-2.0\left(m, \mathrm{CH}_{2}(3)\right.$ of $\mathrm{Gln}, \mathrm{CH}(3)$ of Valol, 2 H of $\left.\mathrm{Ac}_{5} \mathrm{c}\right)$; $1.9-1.85\left(m, \mathrm{CH}(4)\right.$ of Leu); $1.85-1.65\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu, 6 H of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ; 1.43(s, 2 \mathrm{Me}$ of Aib); $1.02,0.99,0.86,0.78\left(4 d, J=6.0,6.2,6.8,6.8,2 \mathrm{Me}\right.$ of Leu, 2 Me of Valol). ${ }^{13} \mathrm{C}-$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): 177.8,177.4,177.2,175.7,174.2(5 s, 5 \mathrm{CONH}) ; 169.8(s, 1 \mathrm{CO}$ (amide, $p \mathrm{BrBz})$); 133.9 ($s, 1$ arom. C); 132.8, 130.6 ($2 d, 4$ arom. CH); 127.5 ($s, 1$ arom. CBr); 68.2
($s, \mathrm{C}(2)$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right) ; 63.5$ ($t, \mathrm{C}(1)$ of Valol); 58.4 ($d, \mathrm{C}(2)$ of Gln$) ; 57.9$ ($s, \mathrm{C}(2)$ of Aib$) ; 55.9$, 55.0 (2d, C(2) of Leu, C(2) of Valol); 41.0, 38.5, 37.8 (3t, C(3) of Leu, $2 \mathrm{C}(3)$ of $\left.\mathrm{Ac}_{5} \mathrm{c}\right)$; $33.4(t, \mathrm{C}(4)$ of Gln$) ; 30.0(d, \mathrm{C}(3)$ of Valol); 28.3 ($t, \mathrm{C}(3)$ of Gln$) ; 26.1$ ($d, \mathrm{C}(4)$ of Leu); 25.7 ($t, 2 \mathrm{C}(4)$ of $\mathrm{Ac}_{5} \mathrm{c}$); 25.7, 25.3, 23.3, 22.3 ($4 q, 2 \mathrm{Me}$ of Aib, 2 Me of Leu); 20.0, 19.3 ($2 q, 2 \mathrm{Me}$ of Valol). ESI-MS (TFA): $763\left(6,[M+\mathrm{K}]^{+},{ }^{81} \mathrm{Br}\right), 745\left(35,[M+\mathrm{Na}]^{+},{ }^{81} \mathrm{Br}\right)$, 725 (100, $\left.[M+1]^{+},{ }^{81} \mathrm{Br}\right), 707\left(22,[M-\mathrm{OH}]^{+},{ }^{81} \mathrm{Br}\right), 622\left(31,[M-\mathrm{Valol}]^{+},{ }^{81} \mathrm{Br}\right), 494$ (33, [M - Gln-Valol] ${ }^{+},{ }^{81} \mathrm{Br}$). Anal. calc. for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{7}$: C 54.77, H 7.10, N 11.61; found: C 54.49, H 7.20, N 11.76.

Recrystallization from $\mathrm{AcOEt}, \mathrm{MeOH}$, and petroleum ether gave crystals suitable for an X-ray crystal-structure determination.
5. Tripeptide with (S)-Iva. N-[(Benzyloxy)carbonyl]-leucyl- α-aminoisobutyryl-(S)isovaline (Z-Leu-Aib-(S)-Iva-OH; (S)-6c). A soln. of (S)-3c [19] (438 mg, 0.710 mmol) in $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ 1:1, 10 ml) was stirred for 3 h at 60°. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ yielded 118 mg (37\%) of (S)-6c and $98 \mathrm{mg}(30 \%)$ of benzyl [(S)-1-(\{[1,1-dimethyl-2-($\{(\mathrm{S})-1-m e t h y l-1-$ [(methylamino)carbonyl]propyl\}amino)-2-oxoethyl]amino\}carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-(S)-Iva-NHMe; (S)-7c).

Data of (S)-6c: Colorless solid. M.p. $78-80^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.06$. IR: $3320 m, 2960 m, 1710 s, 1660 s, 1525 s, 1455 m, 1385 m, 1365 w, 1315 w, 1245 m, 1165 m$, $1130 w, 1050 m, 945 w, 800 w, 780 w, 740 w, 700 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 7.35-7.3$ ($m, 5$ arom. H); 7.18 (br. s, NH); 7.08 (br. s, NH); 5.75 ($d, J=5.7$, NH of Leu); 5.10 (br., $\mathrm{PhCH}_{2} \mathrm{O}$); $4.15-4.1$ ($m, \mathrm{CH}(2)$ of Leu); $2.05-1.9\left(m, \mathrm{CH}_{2}(3)\right.$ of Iva or Leu); $1.7-1.5\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu or Iva, Me(3) of Iva, 2 Me of Aib, $\mathrm{CH}(4)$ of Leu); $0.95-0.9$ ($m, 2 \mathrm{Me}$ of Leu); $0.82(t, J=$ 7.4, MeCH_{2} of Iva). ${ }^{13} \mathrm{C}$-NMR: 173.8, 172.9 ($2 s, 2 \mathrm{CONH}, \mathrm{COOH}$); 156.7 (s, OCONH);
136.0 ($s, 1$ arom. C); 128.5, 128.2, 127.8 ($3 d, 5$ arom. CH); $67.1\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 60.3,57.2$ (2s, C(2) of Iva, $\mathrm{C}(2)$ of Aib$)$; 54.3 ($d, \mathrm{C}(2)$ of Leu$) ; 40.7,29.1$ (2t, $\mathrm{C}(3)$ of Leu, $\mathrm{C}(3)$ of Iva); 24.6 ($d, \mathrm{C}(4)$ of Leu); 25.1, 22.8, 22.0, 21.7, 8.0 ($5 q, 2 \mathrm{Me}$ of Aib, Me(3) of Iva, Me(4) of Iva, 2 Me of Leu). ESI-MS (MeOH): 504 (15, $\left.[M+\mathrm{Na}+\mathrm{MeOH}]^{+}\right), 488(50,[M$ $\left.+\mathrm{K}]^{+}\right), 472\left(62,[M+\mathrm{Na}]^{+}\right), 450\left(100,[M+1]^{+}\right), 432\left(14,[M-\mathrm{OH}]^{+}\right), 333(10,[M-$ Iva] ${ }^{+}$). Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}$ (449.55): C 61.45 , H 7.85, N 9.35; found: C $61.58, \mathrm{H}$ 7.65, N 9.34 .

Data of (S)-7c: Colorless solid. M.p. $204-205^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.43$. IR: $3385 m, 3314 s, 3017 w, 2969 m, 2871 w, 1703 \mathrm{vs}$, 1648vs, 1523vs, 1462m, 1442w, 1410w, $1385 w, 1372 w, 1362 w, 1341 w, 1312 w, 1291 w, 1271 w, 1243 s, 1216 m, 1175 w, 1134 w$, $1118 w, 1083 w, 1047 m, 1030 w, 969 w, 944 w, 916 w, 846 w, 804 w, 790 w, 749 w, 737 w, 699 w$, $670 w, 630 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.35-7.3$ ($m, 5$ arom. H); $5.07\left(s, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.04$ (dd, J $=8.9,6.1, \mathrm{CH}(2)$ of Leu); $2.69(s, \mathrm{MeN}) ; 2.2-2.05,1.85-1.65,1.65-1.45\left(3 m, \mathrm{CH}_{2}(3)\right.$ of Iva, $\mathrm{CH}_{2}(3)$ of $\mathrm{Leu}, \mathrm{CH}(4)$ of Leu); 1.42, 1.39, 1.33 ($3 \mathrm{~s}, \mathrm{Me}(3)$ of Iva, 2 Me of Aib); $0.97,0.95\left(2 d, J=6.8,6.7,2 \mathrm{Me}\right.$ of Leu); $0.78\left(t, J=7.5, \mathrm{Me}(4)\right.$ of Iva). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\mathrm{CD}_{3} \mathrm{OD}$): $c a .177 .5,176,175.5$ (3s, 3 CONH); ca. 159 (s, OCONH); ca. 138 ($s, 1$ arom. C); 129.4, 128.9, 128.5 ($3 d$, 5 arom. CH); $67.5\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 61.4,58.0(2 s, \mathrm{C}(2)$ of Iva, $\mathrm{C}(2)$ of Aib$) ; 55.2(d, \mathrm{C}(2)$ of Leu); 41.2, 29.4 (2t, $\mathrm{C}(3)$ of Leu, $\mathrm{C}(3)$ of Iva); 25.7 ($d, \mathrm{C}(4)$ of Leu); 26.4, 26.1, 24.4, 23.2, 23.0, 22.0, 8.0 (7q, MeN, 2 Me of Aib, Me(3) of Iva, Me(4) of Iva, 2 Me of Leu). CI-MS $\left(\mathrm{NH}_{3}\right): 464(16), 463\left(56,[M+1]^{+}\right), 432\left(14,[M-\mathrm{HNMe}]^{+}\right)$, 356 (20), 355 (10, $\left.[M-\mathrm{OBn}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ (466.19): C 61.83, H 8.30, N 12.02; found: C 61.85, H 8.24, N 11.94 .
6. Tripeptide with (R)-Iva. N-[(Benzyloxy)carbonyl]-leucyl- α-aminoisobutyryl-(R)isovaline (Z-Leu-Aib-(R)-Iva-OH; (R)-6c). 6.1. Hydrolysis of (R)-3c. As described for (S)-
$\mathbf{6 c}$, with (R) - $\mathbf{3 c}[19](437 \mathrm{mg}, 0.710 \mathrm{mmol})$, and $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 1: 1,8 \mathrm{ml}\right), 3 \mathrm{~h}$ at 60°, $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 2\right.$, then $\left.100: 3,20: 1,10: 1\right)$ and prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$: $123 \mathrm{mg}(39 \%)$ of $(R) \mathbf{- 6 c}$ (colorless solid) and $95 \mathrm{mg}(29 \%)$ of benzyl [(S)-1-(\{[1,1-dimethyl-2-(\{(R)-1-methyl-1-[(methylamino)carbonyl]propyl\}amino)-2-oxoethyl]amino\}-carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-(R)-Iva-NHMe; (R)-7c, colorless solid). Crystals of $(R)-7 \mathbf{c}$ suitable for an X-ray crystal-structure determination were grown from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
6.2. Hydrolysis of (R)-3i. As described for $(S)-\mathbf{6 c}$, with $(R)-\mathbf{3 i}$ [18] ($56 \mathrm{mg}, 0.099$ $\mathrm{mmol})$, and $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ 1:1, 0.5 ml$), 3 \mathrm{~h}$ at 60°, prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$: $37 \mathrm{mg}(84 \%)$ of $(R)-\mathbf{6 c}$.

Data of (R)-6c: Colorless solid. M.p. $69-71^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.06$. IR: $3393 s, 3344 s, 3280 s 3065 m, 2955 s$, $1738 \mathrm{vs}, 1706 \mathrm{vs}$, 1664vs, 1522 vs , 1456 m , 1388 m , $1376 m, 1329 m, 1272 \mathrm{v} s, 1244 s, 1216 s, 1172 w, 1135 w, 1046 s, 975 w, 914 w, 848 w, 788 w$, $733 w, 697 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.4-7.3$ ($\mathrm{m}, 5$ arom. H); 7.16 (br. s, NH); 6.95 (br., NH); 5.60 (br., NH); 5.11 (br., $\mathrm{PhCH}_{2} \mathrm{O}$); 4.11 (br., $\mathrm{CH}(2)$ of Leu); $2.05-1.9$ ($m, \mathrm{CH}_{2}(3)$ of Iva or Leu); 1.7 - $1.5\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu or Iva, $\mathrm{Me}(3)$ of Iva, 2 Me of $\mathrm{Aib}, \mathrm{CH}(4)$ of Leu$) ; 0.95-0.9$ ($m, 2 \mathrm{Me}$ of Leu); 0.83 ($t, J=7.3, \mathrm{MeCH}_{2}$ of Iva). ${ }^{13} \mathrm{C}-\mathrm{NMR}: c a .177,173(2 s, 2 \mathrm{CONH}$, $\mathrm{COOH})$; ca. 157 (s, OCONH); ca. 136 ($s, 1$ arom. C); 128.5, 128.2, 127.9 ($3 d, 5$ arom. $\mathrm{CH}) ; 67.2\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 60.4, c a .58(2 s, \mathrm{C}(2)$ of Iva, $\mathrm{C}(2)$ of Aib); 54.2 ($d, \mathrm{C}(2)$ of Leu); 40.8, 29.6 ($2 t, \mathrm{C}(3)$ of Leu, C(3) of Iva); 24.6 ($d, \mathrm{C}(4)$ of Leu); 25.3, 22.8, 21.9, 7.9 (4q, 2 Me of Aib, Me(3) of Iva, Me(4) of Iva, 2 Me of Leu). ESI-MS (MeOH, NaI): 953 (10, [2M $\left.+\mathrm{Na}+\mathrm{MeOH}]^{+}\right), 921\left(14,[2 M+\mathrm{Na}]^{+}\right), 473(16), 472\left(59,[M+\mathrm{Na}]^{+}\right), 451(26), 450(100$, $\left.[M+1]^{+}\right), 432\left(10,[M-\mathrm{OH}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$ (455.56): C $60.64, \mathrm{H}$ 7.89, N 9.22; found: C 60.59, H 7.61, N 9.02 .

Crystals suitable for an X-ray crystal-stucture determination were grown from MeOH .

Data of (R)-7c: M.p. $212.8-213.6^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.40$. IR: $3385 m$, $3314 s, 3017 w, 2969 s, 2954 m, 2871 w, 2513 w, 2483 w, 1703 s, 1648 \mathrm{vs}, 1523 s, 1462 m$, $1406 w, 1385 w, 1372 w, 1361 w, 1349 w, 1312 w, 1291 m, 1272 m, 1244 m, 1216 m, 1175 w$, $1134 w, 1118 w, 1047 m, 1030 w, 968 w, 944 w, 917 w, 848 w, 789 w, 748 w, 699 w, 629 w .{ }^{1} \mathrm{H}-$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 7.5 (br., NH); $7.35-7.3$ ($m, 5$ arom. H); 7.13 (br. s, NH); 5.10, $5.06(A B$, $\left.J=12.6, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.05(d d, J=8.7,6.4, \mathrm{CH}(2)$ of Leu); $2.70(s, \mathrm{MeN}) ; 1.9-1.85(m, 1$ H of $\mathrm{CH}_{2}(3)$ of Iva, $\mathrm{CH}_{2}(3)$ of Leu , or $\mathrm{CH}(4)$ of Leu$)$; $1.75-1.65\left(m, 2 \mathrm{H}\right.$ of $\mathrm{CH}_{2}(3)$ of Iva, $\mathrm{CH}_{2}(3)$ of Leu, or $\mathrm{CH}(4)$ of Leu); $1.55-1.5\left(m, 2 \mathrm{H}\right.$ of $\mathrm{CH}_{2}(3)$ of Iva, $\mathrm{CH}_{2}(3)$ of Leu, or $\mathrm{CH}(4)$ of Leu$) ; 1.41,1.40,1.39$ (3s, Me(3) of Iva, 2 Me of Aib$) ; 0.96(2 d, J=6.4,6.6,2$ Me of Leu); $0.79\left(t, J=7.5, \mathrm{Me}(4)\right.$ of Iva). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.1,175.9,175.3$ (3s, 3 CONH); 158.3 (s, OCONH); 137.9 ($s, 1$ arom. C); 129.3, 128.8, 128.3 ($3 d, 5$ arom. CH); $67.4\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 61.1,57.8(2 s, \mathrm{C}(2)$ of Iva, $\mathrm{C}(2)$ of Aib$) ; 55.1(d, \mathrm{C}(2)$ of Leu); 41.1, 31.6 (2t, C(3) of Leu, C(3) of Iva); 25.6 (d, C(4) of Leu); 26.4, 25.9, 24.5, 23.1, 22.1, 21.7, 8.1 (7q, MeN, 2 Me of Aib, Me(3) of Iva, Me(4) of Iva, 2 Me of Leu). CI-MS $\left(\mathrm{NH}_{3}\right): 465$ (10), 464 (45), $463\left(100,[M+1]^{+}\right), 433$ (19), $432\left(56,[M-N H M e]^{+}\right), 355(5,[M-$ $\left.\mathrm{OBn}^{+}\right)$, $329\left(8,[M-\text { benzyloxycarbonyl }+2]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ (466.64): C 61.71, H 8.31, N 11.99; found: C 61.74, H 8.05, N 11.91.
7. Peptides with Xaa $=(\mathrm{S})-\operatorname{Val}(2 \mathrm{Me}) .7 .1 .(\mathrm{S})-2-(\{2-[((\mathrm{S})-2-\{[($ Benzyloxy $)$ carbonyl]amino $\}$-4-methyl-1-oxopentyl)amino]-2-methyl-1-oxopropyl\}amino)-2,3-dimethylbutanoic Acid (Z-Leu-Aib-(S)-Val(2Me)-OH; (S)-6d). As described for (S)-6c, with (S)-3d [19] $(1.480 \mathrm{~g}, 2.35 \mathrm{mmol}), 3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 1: 1,20 \mathrm{ml}\right), 90 \mathrm{~min}$ at $60^{\circ} ; \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $100: 2$, then $100: 3$) and prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$: 711 mg (65%) of (S$)-\mathbf{6 d}$ and 239
mg (21\%) of benzyl [(S)-1-(\{[1,1-dimethyl-2-(\{(S)-1,2-dimethyl-1-[(methylamino)-carbonyl]propyl\}amino)-2-oxoethyl]amino\}carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-(S)-Val(2Me)-NHMe; (S)-7d).

Data of (S)-6d: Colorless solid. M.p. $69-70^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.15$. IR: $3320 s, 2970 s, 1715 s, 1670 s, 1535 s, 1460 m, 1390 m, 1370 m, 1250 s, 1180 m, 1165 m, 1130 w$, $1050 m, 955 w, 785 w, 745 w, 705 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.35-7.3$ ($m, 5$ arom. H, NH); 6.90 (br. s, NH); 5.62 ($d, J=6.5, \mathrm{NH}$); 5.10 (br., $\mathrm{PhCH}_{2} \mathrm{O}$); $4.15-4.1$ ($m, \mathrm{CH}(2)$ of Leu); $2.35-2.3$ ($m, \mathrm{CH}(3)$ of $\mathrm{Val}(2 \mathrm{Me})$); $1.7-1.4\left(m, \mathrm{CH}_{2}(3)\right.$ and $\mathrm{CH}(4)$ of $\mathrm{Leu}, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\operatorname{Val}(2 \mathrm{Me})) ; 0.95-0.85(m, 2 \mathrm{Me}$ of Leu, $2 \mathrm{Me}(4)$ of $\operatorname{Val}(2 \mathrm{Me})) .{ }^{13} \mathrm{C}$-NMR: 175.4, 174.5, 173.0 ($3 s, 2 \mathrm{CONH}, \mathrm{COOH}$); 156.5 (s, OCONH); 136.0 ($s, 1$ arom. C); 128.5, 128.2, 127.9 ($3 d, 5$ arom. CH); $67.1\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 63.5,57.5(2 s, \mathrm{C}(2)$ of $\operatorname{Val}(2 \mathrm{Me}), \mathrm{C}(2)$ of Aib$) ; 54.3$ (d, C(2) of Leu); 40.7 ($t, \mathrm{C}(3)$ of Leu); 33.5, 24.7 (2d, C(3) of Val(2Me), C(4) of Leu); 25.1, 24.9, 22.8, 21.7, 18.0, 17.3, 16.9 ($7 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ and $2 \mathrm{Me}(4)$ of $\operatorname{Val}(2 \mathrm{Me})$, 2 Me of Leu). ESI-MS (MeOH): $502\left(11,[M+\mathrm{K}]^{+}\right), 486\left(94,[M+\mathrm{Na}]^{+}\right), 464(100,[M+$ $\left.1]^{+}\right), 446\left(28,\left[M-\mathrm{OH}^{+}\right), 333\left(13,[M-\mathrm{Val}(2 \mathrm{Me})]^{+}\right)\right.$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.33$ $\mathrm{H}_{2} \mathrm{O}$ (469.58): C 61.39, H 7.94, N 8.95; found: C 61.34, H 8.17, N 8.79.

Data of (S)-7d: Colorless solid. M.p. $67-69^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.41$. IR: $3304 s, 3035 w, 2964 s, 2873 w, 1708 s, 1664 \mathrm{vs}, 1540 s, 1455 m, 1411 w, 1370 w, 1311 w$, 1267s, 1222m, 1173w, 1120w, 1054m, 915w, 788w, 742w, 696w, 620w. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.35-7.25\left(m, 5\right.$ arom. H); 5.13, $5.09\left(A B, J=12.6, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.05(d d, J=$ 8.7, 6.2, $\mathrm{CH}(2)$ of Leu); $2.71(s, \mathrm{MeN}) ; 2.1-1.95,1.8-1.65,1.65-1.45(3 m, \mathrm{CH}(3)$ of $\mathrm{Val}(2 \mathrm{Me}), \mathrm{CH}_{2}(3)$ of $\mathrm{Leu}, \mathrm{CH}(4)$ of Leu$) ; 1.39(s, \mathrm{Me}(3)$ of $\mathrm{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Aib$) ; 0.96$, $0.94,0.89(3 d, J=7.5,7.0,6.8,2 \mathrm{Me}$ of Leu, $2 \mathrm{Me}(4)$ of $\operatorname{Val}(2 \mathrm{Me})) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $c a .176 .5, c a .176, c a .175 .5$ ($3 s, 3 \mathrm{CONH}$); ca. 159 (s, OCONH); 138.2 ($s, 1$ arom. C);
129.4, 129.0, 128.5 ($3 d, 5$ arom. CH); $67.6\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 61.4,58.0(2 s, \mathrm{C}(2)$ of $\mathrm{Val}(2 \mathrm{Me})$, $\mathrm{C}(2)$ of Aib$) ; 55.6(d, \mathrm{C}(2)$ of Leu); $41.6(t, \mathrm{C}(3)$ of Leu); $36.5(d, \mathrm{C}(3)$ of $\mathrm{Val}(2 \mathrm{Me})) ; 25.8$ ($d, \mathrm{C}(4)$ of Leu); 26.4, 25.9, 24.6, 23.2, 21.9, 18.5, 17.8, 17.7 ($8 q, \mathrm{MeN}, 2 \mathrm{Me}$ of Aib, $\mathrm{Me}(3)$ of $\mathrm{Val}(2 \mathrm{Me}), 2 \mathrm{Me}(4)$ of $\operatorname{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (MeOH, NaI): 499 (100, $\left.[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ (481.12): C 62.41, H 8.48, N 11.65 ; found: C 62.50, H 8.47, N 11.47 .
7.2. Benzyl ((S)-1-\{[(2-\{[(S)-1-(\{[4-Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-me-thylpropyl]amino\}carbonyl)-4-oxobutyl]amino\}carbonyl)-1,2-dimethylpropyl]amino\}-1,1-dimethyl-2-oxoethyl)amino] carbonyl\}-3-methylbutyl)carbamate (Z-Leu-Aib-(S)-Val(2Me)-Gln-Valol; (S)-2d). To a soln. of (S)-6d (176 mg, 0.380 mmol$)$ and $\mathrm{Et}_{3} \mathrm{~N}(115 \mathrm{mg}, 1.14$ $\mathrm{mmol})$ in abs. DMF (2.5 ml) at r.t., HATU ($144 \mathrm{mg}, 0.380 \mathrm{mmol}$) was added. After 2 min , HOBt ($57 \mathrm{mg}, 0.380 \mathrm{mmol}$), and after further $4 \mathrm{~min}, 11(88 \mathrm{mg}, 0.38 \mathrm{mmol})$ were added, and the mixure was stirred for 91 h at r.t. and evaporated. The residue was dissolved in AcOEt, washed with 1 N HCl and 1 N NaOH -soln., dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. From the residue, crystals formed over night. They were separated and dried. The filtrate was purified by prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$. Total yield of $(S) \mathbf{- 2 d}: 94 \mathrm{mg}(37 \%)$. Colorless solid. M.p. $202-203^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.17$. IR: $3455 m, 3335 s, 3213 m$, $2957 m, 2870 m, 2369 w, 2352 w, 1706 s, 1659 s, 1615 m, 1540 s, 1456 m, 1389 m, 1274 m$, $1262 m, 1171 m, 1129 w, 1043 w, 698 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 7.93$ (br. s, NH); 7.80 (br., NH); 7.35 7.25 ($m, 5$ arom. H); 7.05 (br., NH); 6.93 (br. s, NH); 6.73 (br., NH); 5.58 (br., NH); 5.15, $5.12\left(A B, J=12.7, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.15-4.0,3.85-3.8,3.7-3.55(3 m, \mathrm{CH}(2)$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of Leu, $\mathrm{CH}(2)$ and $\mathrm{CH}_{2}(1)$ of Valol); 3.19 (br., OH); $2.45-2.2\left(m, \mathrm{CH}_{2}(4)\right.$ and $\mathrm{CH}_{2}(3)$ of Gln); $1.95-1.9,1.8-1.6\left(2 m, \mathrm{CH}_{2}(3)\right.$ of Leu, $\mathrm{CH}(3)$ of Valol, $\mathrm{CH}(3)$ of $\left.\operatorname{Val}(2 \mathrm{Me})\right) ; 1.4-$ $1.35(m, \mathrm{CH}(4)$ of Leu, 2 Me of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Val}(2 \mathrm{Me})) ; 1.0-0.85(m, 2 \mathrm{Me}$ of Valol, 2
$\mathrm{Me}(4)$ of $\operatorname{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 175.1,174.9,172.8$ ($3 s, 5 \mathrm{CONH}$); 157.1 (s, OCONH); 136.5 ($s, 1$ arom. C); 128.5, 128.0, 127.4 ($3 d, 5$ arom. CH); 66.8, 63.5 ($2 t$, $\mathrm{PhCH}_{2} \mathrm{O}, \mathrm{C}(1)$ of Valol); 63.0, $57.0(2 s, \mathrm{C}(2)$ of $\mathrm{Aib}, \mathrm{C}(2)$ of $\mathrm{Val}(2 \mathrm{Me})) ; 57.5,55.8$ (2d, $\mathrm{C}(2)$ of Gln, $\mathrm{C}(2)$ of Valol, $\mathrm{C}(2)$ of Leu); 39.9, 32.7, 27.7 (3t, C(4) and $\mathrm{C}(3)$ of $\mathrm{Gln}, \mathrm{C}(3)$ of Leu); 35.6, 28.9, 24.6 (3d, C(3) of Valol, C(3) of $\operatorname{Val}(2 \mathrm{Me}), \mathrm{C}(4)$ of Leu); 26.6, 22.9, 22.7, $21.5,19.5,19.2,17.3,17.2,17.1$ ($9 q, 2 \mathrm{Me}$ of Aib, Me(3) of $\operatorname{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Valol, 2 $\mathrm{Me}(4)$ of $\mathrm{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (MeOH, AcOH): 699 (9, $\left.[M+\mathrm{Na}]^{+}\right), 680(9)$, 679 (36), $678\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$ (682.86): C 59.80, H 8.30, N 12.31 ; found: C 59.67, H 8.53, N 12.13 .
8. Peptides with Xaa $=(\mathrm{R})-\operatorname{Val}(2 \mathrm{Me}) .8 .1 .(\mathrm{R})-2-(\{2-[(\mathrm{S})-2-\{[($ Benzyloxy $)$ carbonyl]-amino\}-4-methyl-1-oxopentyl)amino]-2-methyl-1-oxopropyl\}amino)-2,3-dimethylbutanoic Acid (Z-Leu-Aib-(R)-Val(2Me)-OH; (R)-6d). As described for (S)-6c, with (R)-3d [19] $(1.394 \mathrm{mg}, 2.21 \mathrm{mmol}), 3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 1: 1,20 \mathrm{ml}\right), 2 \mathrm{~h}$ at $60^{\circ} ; \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 100:2) and prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 817 \mathrm{mg}(80 \%)$ of $(R)-\mathbf{6 d}$ and $92 \mathrm{mg}(9 \%)$ of benzyl [(S)-1-(\{[1,1-dimethyl-2-(\{(R)-1,2-dimethyl-1-[(methylamino)carbonyl]propyl\}ami-no)-2-oxoethyl]amino\}carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-(R)-Val(2Me)NHMe; (R)-7d).

Data of (R)-6d: Colorless solid. M.p. $163-164^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.20$. IR: $3320 s, 2970 m, 1720 s, 1670 s, 1540 s, 1460 m, 1390 m, 1370 m, 1250 m, 1180 m, 1165 m$, $1130 w, 1050 m, 745 w, 707 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.4-7.3$ ($m, 5$ arom. H); 7.03 (br., NH); 5.57 (d, J $=6.6, \mathrm{NH}) ; 5.10\left(\mathrm{br} ., \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.15-4.05(m, \mathrm{CH}(2)$ of Leu); $2.3-2.25(m, \mathrm{CH}(3)$ of $\operatorname{Val}(2 \mathrm{Me})) ; 1.7-1.4\left(m, \mathrm{CH}_{2}(3)\right.$ and $\mathrm{CH}(4)$ of $\mathrm{Leu}, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\left.\mathrm{Val}(2 \mathrm{Me})\right)$; $0.95-0.9\left(m, 2 \mathrm{Me}\right.$ of Leu, $2 \mathrm{Me}(4)$ of $\operatorname{Val(2\mathrm {Me})).{}^{13}\mathrm {C}-\mathrm {NMR}:ca.175,174,173(3s,2}$ CONH, COOH); ca. 157 (s, OCONH); 135.8 ($s, 1$ arom. C); 128.5, 128.3, 127.9 (3d, 5
arom. CH$) ; 67.2\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 63.7,57.6(2 s, \mathrm{C}(2)$ of $\mathrm{Val}(2 \mathrm{Me}), \mathrm{C}(2)$ of Aib$) ; 54.0(d, \mathrm{C}(2)$ of Leu); $41.0(t, \mathrm{C}(3)$ of Leu$) ; 33.3,24.6$ (2d, $\mathrm{C}(3)$ of $\mathrm{Val}(2 \mathrm{Me}), \mathrm{C}(4)$ of Leu); 25.6, 24.5, $22.8,21.8,17.9,17.2,16.7$ ($7 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ and $2 \mathrm{Me}(4)$ of $\mathrm{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (MeOH): $502\left(12,[M+\mathrm{K}]^{+}\right), 486\left(90,[M+\mathrm{Na}]^{+}\right), 464\left(100,[M+1]^{+}\right), 446$ $\left(15,[M-\mathrm{OH}]^{+}\right), 333\left(16,[M-\operatorname{Val}(2 \mathrm{Me})]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$ (469.58): C 61.37, H 8.09, N 8.95; found: C 61.38, H 8.01, N 8.53.

Data of (R)-7d: Colorless solid. M.p. $195.8-196.9^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ 0.41. IR: $3287 s, 2966 m, 2875 w, 1703 s, 1673 v s, 1518 s, 1463 w, 1412 w, 1362 w, 1315 w, 1271 s$, $1234 m, 1216 m, 1175 w, 1117 w, 1047 m, 1029 w, 971 w, 943 w, 914 w, 789 w, 747 w, 699 w$, $625 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.4-7.25(m, 5$ arom. H$) ; 5.09,5.05\left(A B, J=12.5, \mathrm{PhCH}_{2} \mathrm{O}\right)$; $4.09(d d, J=8.9,6.1, \mathrm{CH}(2)$ of Leu); $2.69(s, \mathrm{MeN}) ; 2.05-1.9,1.75-1.45(2 m, \mathrm{CH}(3)$ of $\operatorname{Val}(2 \mathrm{Me}), \mathrm{CH}_{2}(3)$ of $\mathrm{Leu}, \mathrm{CH}(4)$ of Leu$) ; 1.40(s, \mathrm{Me}(3)$ of $\mathrm{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Aib$) ; 0.97$, $0.95,0.91,0.79(4 d, J=7.7,7.0,6.8,6.8,2 \mathrm{Me}$ of Leu, $2 \mathrm{Me}(4)$ of $\mathrm{Val}(2 \mathrm{Me})) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\mathrm{CD}_{3} \mathrm{OD}$): ca. 176.5, 176.2, ca. 175.5 ($3 s, 3 \mathrm{CONH}$); ca. 159 (s, OCONH); 138.1 ($s, 1$ arom. C); 129.4, 128.9, 128.4 ($3 d, 5$ arom. CH); $67.3\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 64.1,58.1(2 s, \mathrm{C}(2)$ of $\operatorname{Val}(2 \mathrm{Me}), \mathrm{C}(2)$ of Aib$) ; 54.9$ (d, $\mathrm{C}(2)$ of Leu$) ; 41.4$ ($t, \mathrm{C}(3)$ of Leu$) ; 36.7$ ($d, \mathrm{C}(3)$ of $\operatorname{Val}(2 \mathrm{Me})) ; 25.7$ ($d, \mathrm{C}(4)$ of Leu); 26.9, 26.4, 23.5, 23.1, 22.1, 17.6, 17.5, 17.2 ($8 q, \mathrm{MeN}, 2$ Me of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\operatorname{Val}(2 \mathrm{Me}), 2 \mathrm{Me}(4)$ of $\operatorname{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (MeOH, $\mathrm{NaI}): 499$ (100, $[M+\mathrm{Na}]^{+}$). Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$ (482.63): C 62.22, H 8.49, N 11.61; found: C 62.12, H 8.47, N 12.06.

Crystals suitable for X-ray-analysis were grown from $\mathrm{CD}_{3} \mathrm{OD}$.
8.2. Benzyl ((S)-1-\{[(2-\{[(R)-1-(\{[4-Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2methylpropyl]amino\} carbonyl)-4-oxobutyl]amino\}carbonyl)-1,2-dimethyl-propyl]amino\}-1,1-dimethyl-2-oxoethyl)amino]carbonyl\}-3-methylbutyl)carbamate (Z-Leu-Aib-(R)-
$\operatorname{Val}(2 \mathrm{Me})$-Gln-Valol; $(R) \mathbf{- 2 d})$. As described for 2a, with $(R) \mathbf{- 6 d}(599 \mathrm{mg}, 1.29 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($0.54 \mathrm{ml}, 392 \mathrm{mg}, 3.90 \mathrm{mmol}$), abs. DMF (13 ml), and HATU ($491 \mathrm{mg}, 1.29 \mathrm{mmol}$), 3 min at r.t., $\mathrm{HOBt}(196 \mathrm{mg}, 1.30 \mathrm{mmol}), 4 \mathrm{~min}$ at r.t., $11(301 \mathrm{mg}, 1.30 \mathrm{mmol}), 65 \mathrm{~h}$ at r.t.; CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right): 357 \mathrm{mg}(41 \%)$ of (R)-2d and 202 mg of starting material $(R)-\mathbf{6 d}$ (34\%). Colorless solid. M.p. $110-111^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ 0.15. IR: $3416 s, 2962 s$, $1664 s, 1534 s, 1456 m, 1388 m, 1375 m, 1264 m, 1179 w, 1122 w, 1049 w, 849 s, 740 m, 698 m$. ${ }^{1}$ H-NMR: 7.70 (br., 2 NH); $7.35-7.3$ ($m, 5$ arom. H); 6.94 (br., NH); 6.84 (br. s, NH); 6.79 (br., NH); 6.22 (br., NH); $5.15-5.05\left(m, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.25-4.15,4.15-4.05,3.75-$ 3.55 ($3 m, \mathrm{CH}(2)$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of $\mathrm{Leu}, \mathrm{CH}(2)$ and $\mathrm{CH}_{2}(1)$ of Valol); 2.45 - 2.15 (m, $\mathrm{CH}_{2}(4)$ and $\mathrm{CH}_{2}(3)$ of Gln$) ; 1.8-1.55\left(m, \mathrm{CH}_{2}(3)\right.$ of $\mathrm{Leu}, \mathrm{CH}(3)$ of Valol, $\mathrm{CH}(3)$ of $\operatorname{Val}(2 \mathrm{Me})) ; 1.45-1.25(m, \mathrm{CH}(4)$ of Leu, 2 Me of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\operatorname{Val(2\mathrm {Me}));1.0-0.75}$
 172.7 ($4 s, 5 \mathrm{CONH}$); ca. 157 (s, OCONH); 136.4 ($s, 1$ arom. C); 128.5, 128.1, 127.5 (3d, 5 arom. CH$)$; $66.8,63.2\left(2 t, \mathrm{PhCH}_{2} \mathrm{O}, \mathrm{C}(1)\right.$ of Valol); 62.2, $57.2(2 s, \mathrm{C}(2)$ of $\mathrm{Aib}, \mathrm{C}(2)$ of $\operatorname{Val}(2 \mathrm{Me})$); 57.1, 54.9, 54.4 (3d, C(2) of Gln, C(2) of Valol, C(2) of Leu); 40.1, 32.3, 27.3 (3t, C(4) and $\mathrm{C}(3)$ of $\mathrm{Gln}, \mathrm{C}(3)$ of Leu$) ; 33.4,28.9,24.6$ (3d, $\mathrm{C}(3)$ of Valol, $\mathrm{C}(3)$ of $\operatorname{Val}(2 \mathrm{Me}), \mathrm{C}(4)$ of Leu); 22.7, 21.8, 19.5, 19.1, 17.8, 17.7 ($6 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\operatorname{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Valol, $2 \mathrm{Me}(4)$ of $\operatorname{Val}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (MeOH, AcOH): 701 (11), $700(46), 699\left(100,[M+\mathrm{Na}]^{+}\right), 586\left(10,\left[M-\mathrm{C}_{7} \mathrm{H}_{7}+1\right]^{+}\right)$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (685.86): C 59.54, H 8.38, N 12.25 ; found: C 59.25 , H 8.52, N 12.16.
9. Peptides with Xaa = (S)-Ala(2cPent). 9.1. (S)-2-(\{2-[((S)-2-\{[(Benzyloxy)carbonyl]amino \}-4-methyl-1-oxopentyl)amino]-2-methyl-1-oxopropyl\}amino)-2-cyclopentylpropanoic Acid (Z-Leu-Aib-(S)-Ala(2cPent)-OH; (S)-6e). As described for (S)-6c, with (S)$\mathbf{3 e}[19](98 \mathrm{mg}, 0.149 \mathrm{mmol}), 3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 1: 1,1.5 \mathrm{ml}\right), 3 \mathrm{~h}$ at 60°; prep. TLC
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 54 \mathrm{mg}(74 \%)$ of $(S)-6 e$. Colorless solid. M.p. $79-81^{\circ} . R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.26$. IR: $3321 \mathrm{~m}, 2956 \mathrm{~s}, 2871 \mathrm{~m}, 1706 \mathrm{vs}, 1668 \mathrm{vs}, 1526 \mathrm{vs}, 1455 \mathrm{~m}$, $1386 w, 1249 m, 1047 w, 738 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.35-7.25$ ($m, 5$ arom. H); 7.21 (br. s, NH); 7.06 (br. s, NH); 5.80 (br., NH); 5.10 (br. $s, \mathrm{PhCH}_{2} \mathrm{O}$); $4.15-4.1$ ($m, \mathrm{CH}(2)$ of Leu); $2.45-2.35$ ($m, \mathrm{CH}(3)$ of $\mathrm{Ala}(2 \mathrm{cPent})$); $1.75-1.35\left(m, \mathrm{CH}_{2}(3)\right.$ and $\mathrm{CH}(4)$ of Leu, 2 Me of Aib, Me of $\mathrm{Ala}(2 \mathrm{cPent}), 4 \mathrm{CH}_{2}$ of $\mathrm{Ala}(2 \mathrm{cPent})$); $0.95-0.9$ ($m, 2 \mathrm{Me}$ of Leu). ${ }^{13} \mathrm{C}$-NMR: 175.7, 174.0, 173.2 ($3 \mathrm{~s}, 2 \mathrm{CONH}, \mathrm{COOH}$); 156.5 (s, OCONH); 136.1 ($s, 1$ arom. C); 128.4, 128.1, 127.7 ($3 d, 5$ arom. CH); $67.0\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 61.8,57.4(2 s, \mathrm{C}(2)$ of $\mathrm{Ala}(2 \mathrm{cPent}), \mathrm{C}(2)$ of Aib); 54.3 ($d, \mathrm{C}(2)$ of Leu); 46.1 ($d, \mathrm{C}(3)$ of $\mathrm{Ala}(2 \mathrm{cPent})$); $40.7(t, \mathrm{C}(3)$ of Leu); 27.0, 26.8, 25.3 (3t, 4 CH_{2} of cPent); 25.0 (q, MeN); 24.6 ($d, \mathrm{C}(4)$ of Leu); 22.8, 21.7, 19.5, 14.0 ($4 q, 2 \mathrm{Me}$ of Aib, Me of Ala(2cPent), 2 Me of Leu). ESI-MS (MeOH): 512 (100, [$M+\mathrm{Na}]^{+}$), 490 (52, $\left.[M+1]^{+}\right), 307$ (13). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ (489.61): C 63.78, H 8.03, N 8.58 ; found: C 63.80, H 8.12, N 8.24.
9.2. Benzyl \{(S)-1-[(\{2-[((S)-2-\{[4-Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-methylpropyl]amino\}carbonyl)-4-oxobutyl]amino\}-1-cyclopentyl-1-methyl-2-oxo-ethyl)amino]-1,1-dimethyl-2-oxoethyl\}amino)carbonyl]-3-methylbutyl\}carbamate (Z-Leu-Aib-(S)-Ala(2cPent)-Gln-Valol; (S)-2e). As described for 2a, with (S)-6e (149 mg, 0.304 $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{ml}, 72.6 \mathrm{mg}, 0.720 \mathrm{mmol})$, abs. DMF (2 ml), and HATU ($117 \mathrm{mg}, 0.308$ $\mathrm{mmol}), 2 \mathrm{~min}$ at $0^{\circ}, \mathrm{HOAt}(0.5 \mathrm{~m}$ soln. in DMF, $0.6 \mathrm{ml}, 0.3 \mathrm{mmol}), 3 \mathrm{~min}$ at $0^{\circ}, 11(70.5$ $\mathrm{mg}, 0.305 \mathrm{mmol}$), 20 min at 0° and 70 h at r.t.; after the washing procedure described for 2a, crystals suitable for X-ray crystal-structure determination were obtained. Prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ of the rest; total yield: $93 \mathrm{mg}(43 \%)$ of $(S)-\mathbf{2 e}$. Colorless solid. M.p. $208.0-209.1^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ 0.37. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $7.35-7.3$ ($m, 5$ arom. H); $5.25-5.05\left(m, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.1-4.05,3.7-3.65(2 m, \mathrm{CH}(2)$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of Leu,
$\mathrm{CH}(2)$ and $\mathrm{CH}_{2}(1)$ of Valol); $2.45-2.3,2.25-2.15,1.95-1.85,1.8-1.5\left(4 m, \mathrm{CH}_{2}(4)\right.$ and $\mathrm{CH}_{2}(3)$ of Gln, $\mathrm{CH}_{2}(3)$ of Leu, $4 \mathrm{CH}_{2}$ of Ala(2cPent), $\mathrm{CH}(4)$ of $\mathrm{Leu}, \mathrm{CH}(3)$ of Valol, $\mathrm{CH}(3)$ of $\mathrm{Ala}(2 \mathrm{cPent})$); 1.44 (s, Me of Ala(2cPent)); 1.39 ($s, 2 \mathrm{Me}$ of Aib); $0.95-0.9$ ($m, 2$ Me of Valol, 2 Me of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.4, c a .176 .5,176.2,174.5$ (4s, 5 CONH); 158.7 (s, OCONH); ca. 143 ($s, 1$ arom. C); 129.4, 128.9, 128.4 (3d, 5 arom. CH); 67.5, $63.6\left(2 t, \mathrm{PhCH}_{2} \mathrm{O}, \mathrm{C}(1)\right.$ of Valol); 63.0, $58.0(2 s, \mathrm{C}(2)$ of Aib, C(2) of Ala(2cPent)); $58.6,56.6,55.7$ ($3 d, \mathrm{C}(2)$ of $\mathrm{Gln}, \mathrm{C}(2)$ of Valol, $\mathrm{C}(2)$ of Leu); 49.1 (d, $\mathrm{C}(3)$ of $\mathrm{Ala}(2 \mathrm{cPent})$); 41.8, 33.6, 28.4, 28.1, 27.8, 26.1, 26.1 ($7 \mathrm{t}, 4 \mathrm{CH}_{2}$ of $\mathrm{Ala}(2 \mathrm{cPent}), \mathrm{C}(4)$ and $\mathrm{C}(3)$ of Gln, $\mathrm{C}(3)$ of Leu); 29.9, 25.8 (2d, C(3) of Valol, C(4) of Leu); 26.4, 23.9, 23.2, 21.9, 20.0, 19.7, 19.3 (7q, 2 Me of Aib, Me of Ala(2cPent), 2 Me of Valol, 2 Me of Leu). ESI-MS (MeOH, NaI): 725 (100, $\left.[M+\mathrm{Na}]^{+}\right)$, $703\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{8}$ (702.89): C 61.52, H 8.32, N 11.96; found: C 61.33, H 8.44, N 12.04 .
10. Peptides with Xaa $=(\mathrm{R})-$ Ala $(2 c$ Pent $)$. 10.1. (R)-2-(\{2-[((S)-2-\{[(Benzyloxy)-carbonyl]amino\}-4-methyl-1-oxopentyl)amino]-2-methyl-1-oxopropyl\}amino)-2cyclopentylpropanoic Acid (Z-Leu-Aib-(R)-Ala(2cPent)-OH; (S)-6e). As described for (S)6c, with $(R)-3 \mathbf{e}[19](200 \mathrm{mg}, 0.304 \mathrm{mmol}), 3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 1: 1,3 \mathrm{ml}\right), 3 \mathrm{~h}$ at 60°; prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$: $113 \mathrm{mg}(76 \%)$ of $(R)-6 e$. Colorless solid. M.p. $144-$ $145^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.37$. IR: $3309 m, 2957 s, 2871 w, 1724 s, 1662 \mathrm{vs}, 1526 s$, $1455 w, 1387 w, 1246 w, 1049 w, 737 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 7.33$ (br., 5 arom. H); 7.23 (br. s, NH); 7.03 (br. s, NH); 5.52 (br., NH of Leu); 5.10 (br. $s, \mathrm{PhCH}_{2} \mathrm{O}$); 4.2 - 4.1 ($m, \mathrm{CH}(2)$ of Leu); $2.5-2.35(m, \mathrm{CH}(3)$ of $\mathrm{Ala}(2 \mathrm{cPent})) ; 1.8-1.3\left(m, \mathrm{CH}_{2}(3)\right.$ and $\mathrm{CH}(4)$ of Leu, 2 Me of Aib, Me of $\mathrm{Ala}(2 \mathrm{cPent}), 4 \mathrm{CH}_{2}$ of $\mathrm{Ala}(2 \mathrm{cPent})$); $0.95-0.9$ ($m, 2$ Me of Leu). ${ }^{13} \mathrm{C}$-NMR: 173.9, 172.8 ($2 s, 2 \mathrm{CONH}, \mathrm{COOH}$); 156.7 (s, OCONH); 136.0 ($s, 1$ arom. C); 128.5, 128.2, $127.9(3 d, 5$ arom. CH$) ; 67.2\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 61.9,57.4$ ($2 s, \mathrm{C}(2)$ of Ala(2cPent), $\mathrm{C}(2)$
of Aib); 53.9 ($d, \mathrm{C}(2)$ of Leu); 46.2 (d, $\mathrm{C}(3)$ of $\mathrm{Ala}(2 \mathrm{cPent})) ; 41.1$ ($t, \mathrm{C}(3)$ of Leu); 27.0, 26.7, 25.3 ($3 t, 4 \mathrm{CH}_{2}$ of cPent); 24.6 (d, $\mathrm{C}(4)$ of Leu); 22.8, 21.8, 19.5 ($3 q, 2 \mathrm{Me}$ of Aib, Me of Ala(2cPent), 2 Me of Leu). ESI-MS (MeOH, NaI): 525 (10), 513 (32), 512 (100, [M $\left.+\mathrm{Na}]^{+}\right), 503(6), 491(29), 490\left(99,[M+1]^{+}\right), 472\left(47,[M-\mathrm{OH}]^{+}\right), 333(8,[M-$ $\left.\operatorname{Ala}(2 \mathrm{cPent})]^{+}\right)$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ (489.61): C 63.78, H 8.03, N 8.58; found: C 63.50, H 8.08, N 8.53.
10.2. Benzyl \{(S)-1-[(\{2-[((R)-2-\{[4-Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2methylpropyl]amino? carbonyl)-4-oxobutyl]amino\}-1-cyclopentyl-1-methyl-2-oxo-ethyl)amino]-1,1-dimethyl-2-oxoethyl\}amino)carbonyl]-3-methylbutyl\}carbamate (Z-Leu-Aib-(R)-Ala(2cPent)-Gln-Valol; (R)-2e). As described for 2a, with (R)-6e (220 mg, 0.449 $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(136 \mathrm{mg}, 1.35 \mathrm{mmol})$, abs. DMF (3.5 ml), HATU ($\left.171 \mathrm{mg}, 0.450 \mathrm{mmol}\right), 4$ \min at 0°, $\mathrm{HOAt}(62 \mathrm{mg}, 0.456 \mathrm{mmol}), 4 \mathrm{~min}$ at $0^{\circ}, \mathbf{1 1}(106 \mathrm{mg}, 0.458 \mathrm{mmol}), 3 \mathrm{~h}$ at 0° and 47 h at r.t.; $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ and prep. $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 88 \mathrm{mg}$ (28%) of $(R) \mathbf{- 2 e}$ and 78 mg of starting material (R)-6e(35\%). Colorless solid. M.p. $209.5-$ $210.8^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.23$. IR: $3426 \mathrm{vs}, 2959 \mathrm{~s}$, $2871 \mathrm{~m}, 1661 \mathrm{vs}, 1532 \mathrm{~s}, 1455 \mathrm{w}$, $1386 w, 1261 w, 1175 w, 1121 w, 1048 w, 741 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 8.09$ (br., NH); 7.70 (br., 2 NH); $7.35-7.3$ ($m, 5$ arom. H); 7.09 (br., 2 NH); 5.37 (br., 2 NH); 5.14, 5.07 ($A B, J=13.1$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right)$; $4.35-4.0,3.75-3.6\left(2 m, \mathrm{CH}(2)\right.$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of $\mathrm{Leu}, \mathrm{CH}(2)$ and $\mathrm{CH}_{2}(1)$ of Valol); 2.65-2.45, 2.35-2.25 (2m, $\mathrm{CH}_{2}(4)$ and $\mathrm{CH}_{2}(3)$ of Gln$) ; 1.85-1.25\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu, $4 \mathrm{CH}_{2}$ of Ala(2cPent), $\mathrm{CH}(4)$ of Leu, $\mathrm{CH}(3)$ of Valol, $\mathrm{CH}(3)$ of Ala(2cPent)); 1.45, $1.42(2 s, 2 \mathrm{Me}(3)$ of Aib$) ; 1.28(s, \mathrm{Me}(3)$ of $\mathrm{Ala}(2 \mathrm{cPent})) ; 0.95-0.85$ ($m, 2 \mathrm{Me}(4)$ of Valol, $2 \mathrm{Me}(5)$ of Leu). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 8.51$ (br. $\left.S, \mathrm{NH}\right) ; 7.74$ ($\left.d, J=7.2, \mathrm{NH}\right) ; 7.56$ $(d, J=8.9, \mathrm{NH}) ; 7.4-7.25(m, 5$ arom. H); 7.11 (br. $s, \mathrm{NH}) ; 5.15-5.05\left(m, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.25$ - 4.1 ($m, \mathrm{CH}(2)$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of Leu); $3.7-3.6\left(m, \mathrm{CH}(2)\right.$ and $\mathrm{CH}_{2}(1)$ of Valol); $2.5-$
2.35, 2.2-2.15, 1.9-1.85, 1.7-1.4 (4m, $\mathrm{CH}(3)$ of Valol, $\mathrm{CH}(3)$ of Ala(2cPent), $\mathrm{CH}_{2}(3)$ of Leu, $\mathrm{CH}_{2}(4)$ and $\mathrm{CH}_{2}(3)$ of Gln, $4 \mathrm{CH}_{2}$ of $\mathrm{Ala}(2 \mathrm{cPent}), \mathrm{CH}(4)$ of Leu, Me of Ala(2cPent), 2 Me of Aib); $1.0-0.9$ ($m, 2$ Me of Valol, 2 Me of Leu). ${ }^{13}$ C-NMR: 177.5, 176.0, 174.9, 174.6, 173.5 ($5 s, 5 \mathrm{CONH}$); 157.1 (s, OCONH); $c a .137$ ($s, 1$ arom. C); 128.5, 127.9, 127.2 (3d, 5 arom. CH); 67.0, $61.6\left(2 t, \mathrm{PhCH}_{2} \mathrm{O}, \mathrm{C}(1)\right.$ of Valol); 58.0, 55.3, 54.0 (3d, $\mathrm{C}(2)$ of $\mathrm{Gln}, \mathrm{C}(2)$ of Valol, $\mathrm{C}(2)$ of Leu$) ; 57.0(s, \mathrm{C}(2)$ of $\mathrm{Aib}, \mathrm{C}(2)$ of Ala(2cPent)); 44.4 (d, C(3) of Ala(2cPent)); ca. 39.5, ca. 31, ca. 27, $25.0\left(4 t, 4 \mathrm{CH}_{2}\right.$ of Ala(2cPent), $\mathrm{C}(4)$ and $\mathrm{C}(3)$ of $\mathrm{Gln}, \mathrm{C}(3)$ of Leu); 28.8, 24.7 (2d, $\mathrm{C}(3)$ of Valol, $\mathrm{C}(4)$ of Leu); 22.6, 21.8, 20.3, 19.4, 19.0 (5q, 2 Me of Aib, Me of Ala(2cPent), 2 Me of Valol, 2 Me of Leu). ${ }^{13} \mathrm{C}$-NMR ($\mathrm{CD}_{3} \mathrm{OD}$): 178.1, 176.6, 176.0, 175.8, 174.2 ($5 \mathrm{~s}, 5 \mathrm{CONH}$); 158.7 (s, OCONH); 138.2 ($s, 1$ arom. C); 129.4, 128.9, 128.5 (3d, 5 arom. CH); 67.6, 63.3 (2t, $\mathrm{PhCH}_{2} \mathrm{O}, \mathrm{C}(1)$ of Valol); 62.9, 57.9 (2s, C(2) of Aib, C(2) of Ala(2cPent)); 58.3, 55.3, 55.2 (3d, $\mathrm{C}(2)$ of $\mathrm{Gln}, \mathrm{C}(2)$ of Valol, $\mathrm{C}(2)$ of Leu); 47.6 ($d, \mathrm{C}(3)$ of Ala(2cPent)); 41.6, 33.2, 28.7, 28.4, 28.2, 26.6, 26.2 (7t, $4 \mathrm{CH}_{2}$ of Ala(2cPent), $\mathrm{C}(4)$ and $\mathrm{C}(3)$ of $\mathrm{Gln}, \mathrm{C}(3)$ of Leu); 30.0, 25.8 (2d, C(3) of Valol, C(4) of Leu); 24.6, 23.2, 22.2, 20.0, 19.7, 19.1 ($6 q, 2 \mathrm{Me}$ of Aib, Me of Ala(2cPent), 2 Me of Valol, 2 Me of Leu). ESI-MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}\right): 725$ (29, $\left.[M+\mathrm{Na}]^{+}\right), 703\left(100,[M+1]^{+}\right), 685\left(7,[M-\mathrm{OH}]^{+}\right), 600\left(28,[M-\text { Valol }]^{+}\right), 472(30,[M-$ Gln-Valol] ${ }^{+}$). Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{8}$ (702.89): C 61.52, H 8.32, N 11.96 ; found: C 61.36, H 8.31, N 11.70.

Crystals suitable for an X-ray crystal-structure determination were obtained from $\mathrm{AcOEt} / \mathrm{MeOH}$ by slow evaporation of the solvent.
11. Peptides with Xaa $=(\mathrm{S})-L e u(2 M e) .11 .1 .(\mathrm{S})-2-(\{2-[(\mathrm{S})-2-\{[($ Benzyloxy)carbonyl]amino \}-4-methyl-1-oxopentyl)aminol-2-methyl-1-oxopropyl\}amino)-2,4-dimethylpentanoic Acid (Z-Leu-Aib-(S)-Leu(2Me)-OH; (S)-6f). As described for (S)-6c, with (S)-3f
[19] ($249 \mathrm{mg}, 0.390 \mathrm{mmol}$), $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 1: 1,2 \mathrm{ml}\right), 4 \mathrm{~h}$ at 60°; prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 87 \mathrm{mg}(47 \%)$ of (S)-6f and $28 \%{ }^{2}$) of benzyl [(S)-1-(\{[1,1-dimethyl-2-(\{(S)-1,3-dimethyl-1-[(methylamino)carbonyl]butyl\}amino)-2-oxoethyl]amino\}-carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-(S)-Leu(2Me)-NHMe; (S)-7f).

Data of (S)-6f: Colorless solid. M.p. $107-108^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.19$. IR: $3306 m, 2958 s, 1717 s, 1659 s, 1523 s, 1454 m, 1388 m, 1367 m, 1237 m, 1159 m, 1045 m, 954 w$, $908 w, 855 w, 789 w, 757 w, 736 w, 697 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 7.3-7.25$ ($m, 5$ arom. H, NH); 7.19 (s, $\mathrm{NH}) ; 5.85(d, J=6.9, \mathrm{NH}) ; 5.1-5.05\left(m, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.2-4.15(m, \mathrm{CH}(2)$ of Leu); $2.15-$ $2.1(m, \mathrm{CH}(4)$ of $\mathrm{Leu}(2 \mathrm{Me})) ; 1.8-1.5\left(m, \mathrm{CH}_{2}(3)\right.$ and $\mathrm{CH}(4)$ of $\mathrm{Leu}, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{CH}_{2}(3)$ and $\mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$); $0.95-0.85$ ($m, 2 \mathrm{Me}$ of $\mathrm{Leu}, 2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me})$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$: 177.5 (s, COOH); 173.4, 172.8 ($2 s, 2 \mathrm{CONH}$); 156.5 (s, OCONH); 136.0 ($s, 1$ arom. C); 128.4, 128.1, 127.8 (3d, 5 arom. CH); $67.0\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 59.8, 57.3 ($2 s, \mathrm{C}(2)$ of Aib, $\mathrm{C}(2)$ of $\mathrm{Leu}(2 \mathrm{Me})) ; 54.0(d, \mathrm{C}(2)$ of Leu$) ; 44.5,40.9$ ($2 t, \mathrm{C}(3)$ of Leu, C(3) of Leu(2Me)); 24.6, 24.4 (2d, C(4) of Leu(2Me), C(4) of Leu); 25.0, 23.9, 23.5, 23.1, 22.9, 21.8 ($6 q, 2 \mathrm{Me}$ of Aib, Me (3) and $2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (MeOH): 522 (27), 500 (100, $[M+\mathrm{Na}]^{+}$). Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ (477.60): C 62.87, H 8.23, N 8.80; found: C 62.77, H 8.14, N 8.68.

Data of (S)-7f: Colorless solid. M.p. $78.5-79.5^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.44$. IR: $3321 s, 3038 w, 2957 s, 2871 w, 1704 \mathrm{v} s, 1652 \mathrm{v} s, 1537 s, 1455 m, 1411 w, 1382 m, 1365 w$, $1331 w, 1261 s, 1223 w, 1173 w, 1115 w, 1051 w, 1031 w, 907 w, 789 w, 726 w, 693 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.35-7.3$ ($m, 5$ arom. H); 5.08 (br. $s, \mathrm{PhCH}_{2} \mathrm{O}$); $4.06(d d, J=8.4,6.5, \mathrm{CH}(2)$ of

[^1]Leu); $2.69(s, \mathrm{MeN}) ; 2.0-1.5\left(m, \mathrm{CH}_{2}(3)\right.$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{CH}_{2}(3)$ of $\mathrm{Leu}, \mathrm{CH}(4)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{CH}(4)$ of Leu$) ; 1.40$ ($s, 2 \mathrm{Me}$ of Aib$) ; 1.38$ ($s, \mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$); 0.97, 0.95, $0.92,0.86\left(4 d, J=7.3,7.5,6.9,6.6,2 \mathrm{Me}\right.$ of Leu, $2 \mathrm{Me}(5)$ of Leu(2Me)). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\mathrm{CD}_{3} \mathrm{OD}$): ca. 177.5, 175.9, 175.5 ($3 s, 3 \mathrm{CONH}$); ca. 158.5 (s, OCONH); ca. 138 ($s, 1$ arom. C); 129.4, 128.9, 128.5 (3d, 5 arom. CH); $67.5\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 61.1,58.0(2 s, \mathrm{C}(2)$ of Leu(2Me), C(2) of Aib); 55.1 (d, C(2) of Leu); 45.2, 41.4 (2t, C(3) of Leu(2Me), C(3) of Leu); 25.8, 24.9 (2d, C(4) of Leu(2Me), C(4) of Leu); 26.5, 24.6, 24.4, 24.2, 23.2, 22.0 ($6 q$, MeN, 2 Me of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). CI-MS $\left(\mathrm{NH}_{3}\right): 492(10), 491\left(32,[M+1]^{+}\right), 460\left(32,[M-\mathrm{HNMe}]^{+}\right), 384(22), 383(32,[M-$ OBn^{+}), 357 (9), 231 (12), 214 (7). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ (494.24): C 63.18, H 8.65, N 11.34; found: C 63.24, H 8.60, N 11.28.
11.2. Benzyl \{(S)-1-[(\{2-[((S)-1-\{[(4-Amino-(S)-1-\{[((S)-1-\{hydroxymethyl\}-2methylpropyl)amino] carbonyl\}-4-oxobutyl)amino]carbonyl\}-1,3-dimethylbutyl)amino]-1,1-dimethyl-2-oxoethyl\}amino)carbonyl]-3-methylbutyl\}carbamate (Z-Leu-Aib-(S)-Leu(2Me)-Gln-Valol; (S)-2f). As described for 2a, with (S)-6f (161 mg, 0.337 mmol), $\mathrm{Et}_{3} \mathrm{~N}$ ($102 \mathrm{mg}, 1.011 \mathrm{mmol}$), abs. DMF (2.5 ml), HATU ($128 \mathrm{mg}, 0.337 \mathrm{mmol}$), 4 min at r.t., HOBt ($51 \mathrm{mg}, 0.337 \mathrm{mmol}$), 5 min at r.t., $11(78 \mathrm{mg}, 0.337 \mathrm{mmol}), 42 \mathrm{~h}$ at r.t.; CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 139 \mathrm{mg}(60 \%)$ of (S)-2f. Colorless solid. M.p. $154-155^{\circ} . R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.17$. IR: $3312 m, 2956 m, 1653 s, 1534 s, 1466 m, 1386 w, 1360 m$, $1260 m, 1046 w, 847 w, 814 w, 738 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 7.96$ (br., NH); 7.81 (br., NH); $7.35-7.2$ (m, 5 arom. H, NH); 7.04 (br., NH); 6.88 (br. s, NH); 6.71 (br., NH); 5.68 (br., NH); 5.15, 5.12 $\left(A B, J=12.7, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.0-3.8,3.7-3.55(2 m, \mathrm{CH}(2)$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of $\mathrm{Leu}, \mathrm{CH}(2)$ and $\mathrm{CH}_{2}(1)$ of Valol); $2.35-2.15\left(m, \mathrm{CH}_{2}(4)\right.$ and $\mathrm{CH}_{2}(3)$ of Gln$) ; 1.8-1.6\left(m, \mathrm{CH}_{2}(3)\right.$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{CH}_{2}(3)$ of $\mathrm{Leu}, \mathrm{CH}(3)$ of Valol, $\mathrm{CH}(4)$ of $\mathrm{Leu}, \mathrm{CH}(4)$ of $\mathrm{Leu}(2 \mathrm{Me})$); $1.5-1.25$
($m, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$); $0.95-0.8$ ($m, 2 \mathrm{Me}$ of Valol, $2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me})$, 2 Me of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 175.6,175.2,175.1,174.8,172.8$ ($5 s, 5 \mathrm{CONH}$); 157.1 (s, OCONH); 136.7 ($s, 1$ arom. C); 128.5, 127.9, 127.2 ($3 d, 5$ arom. CH); 66.7, 63.5 ($2 t$, $\mathrm{PhCH}_{2} \mathrm{O}, \mathrm{C}(1)$ of Valol); 59.7, $56.8(2 s, \mathrm{C}(2)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(2)$ of 2 Aib$) ; 57.5,55.8(2 d$, $\mathrm{C}(2)$ of $\mathrm{Gln}, \mathrm{C}(2)$ of Valol, $\mathrm{C}(2)$ of Leu); 48.3, 39.8, 32.6, 27.6 (4t, C(3) of Leu, $\mathrm{C}(3)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(4)$ and $\mathrm{C}(3)$ of Gln$)$; 28.9, 24.6, 23.4 (3d, C(3) of Valol, C(4) of Leu(2Me), $\mathrm{C}(4)$ of Leu); 26.3, 24.3, 24.2, 23.0, 22.7, 21.6, 20.9, 19.5, 19.2 ($9 q, 2 \mathrm{Me}$ of Aib, Me(3) of Leu(2Me), 2 Me of Valol, $2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (MeOH): 714 (15, $\left.[M+\mathrm{Na}]^{+}\right), 691\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ (708.90): C 59.30, H 8.53, N 11.85; found: C 59.31, H 8.56, N 11.49 .
11.3. $\mathrm{N}-((\mathrm{S})-1-\{[(2-\{[(\mathrm{S})-1-(\{[4-A m i n o-(\mathrm{S})-1-(\{[(\mathrm{S})-1-(h y d r o x y m e t h y l)-2-m e t h y l p r o-$ pyl]amino\} carbonyl)-4-oxobutyl]amino\}carbonyl)-1,3-dimethylbutyl]aminos-1,1-dimethyl-2-oxoethyl)amino]carbonyl\}-3-methylbutyl) 4-Bromobenzamide ($\mathrm{pBrBz-Leu}$-Aib-(S)-Leu(2Me)-Gln-Valol; (S)-13f). As described for 13a, with (S)-2f (80 mg, 0.116 mmol), $\mathrm{Pd} / \mathrm{C}(10 \%$ on activated charcoal, 8 mg$), \mathrm{MeOH}(5 \mathrm{ml})$, and $\mathrm{H}_{2}, 75 \mathrm{~min}$ at r.t., filtration over Celite, abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{mg}, 0.248 \mathrm{mmol}), 4$-bromobenzoylchloride (31 $\mathrm{mg}, 0.139 \mathrm{mmol}), 3 \mathrm{~h}$ at r.t., filtration and washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 60 \mathrm{mg}(70 \%)$ of (S)-13f. Colorless solid. M.p. $246-247^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.18$. IR: $3336 m, 2959 m$, $2477 m, 1648 \mathrm{vs}, 1542 s, 1364 m, 1278 w, 1176 w, 1072 w, 1011 w, 850 w, 761 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.83,7.62\left(A A^{\prime} B B^{\prime}, J=8.5,4\right.$ arom. H$) ; 4.55-4.5,4.1-4.05(2 m, \mathrm{CH}(2)$ of Gln and $\mathrm{CH}(2)$ of Leu$) ; 3.65-3.6\left(m, \mathrm{CH}_{2}(1)\right.$ and $\mathrm{CH}(2)$ of Valol); 2.4-2.05, $1.85-1.65$ ($2 m, \mathrm{CH}_{2}(4)$ of Gln and $\mathrm{CH}_{2}(3)$ of Gln, $\mathrm{CH}(3)$ of Valol, $\mathrm{CH}(4)$ and $\mathrm{CH}_{2}(3)$ of $\mathrm{Leu}, \mathrm{CH}(4)$ and $\mathrm{CH}_{2}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$); 1.45, 1.44, 1.41 ($3 \mathrm{~s}, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$); 1.01, $0.99(2 d, J=5.6,5.7,2 \mathrm{Me}) ; 0.95-0.9(m, 3 \mathrm{Me}) ; 0.81(d, J=6.8,1 \mathrm{Me}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$
($\mathrm{CD}_{3} \mathrm{OD}$): 177.7, 177.0, 176.7, 175.8, 174.4 ($5 s, 5 \mathrm{CONH}$); 169.6 ($s, 1 \mathrm{CO}$ (amide, $p \mathrm{BrBz})$); 134.0 ($s, 1$ arom. C); 132.8, 130.7 ($2 d, 4$ arom. CH); 127.4 ($s, 1$ arom. CBr); 63.6 ($t, \mathrm{C}(1)$ of Valol); 61.2, 58.1 ($2 s, \mathrm{C}(2)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(2)$ of Aib$) ; 58.6,56.5,54.5$ (3d, $\mathrm{C}(2)$ of $\mathrm{Gln}, \mathrm{C}(2)$ of Valol, $\mathrm{C}(2)$ of Leu); 48.5, 41.6, 33.8, 28.5 (4t, $\mathrm{C}(3)$ of Leu, $\mathrm{C}(3)$ of Leu(2Me), C(4) of Gln, C(3) of Gln); 30.1, 26.1, 24.9 (3d, C(3) of Valol, C(4) of Leu, C(4) of $\operatorname{Leu}(2 \mathrm{Me})$); 25.5, 25.0, 23.4, 22.7, 22.2, 20.1, 19.4 (7q, 2 Me of Aib, $\mathrm{Me}(3)$ of Leu(2Me), 2 Me of Valol, 2 Me of Leu, $2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me})$). ESI-MS (NaI): 763 (24, [M $\left.+\mathrm{Na}]^{+},{ }^{81} \mathrm{Br}\right), 741\left(100,[M+1]^{+},{ }^{81} \mathrm{Br}\right), 638\left(6,[M-\text { Valol }]^{+},{ }^{81} \mathrm{Br}\right), 510(10,[M-\mathrm{Gln}-$ Valol] $\left.{ }^{+},{ }^{81} \mathrm{Br}\right)$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{Br}_{6} \mathrm{O}_{7}$ (739.75): C 55.20, H 7.49, N 11.36; found: C 55.10, H 7.53, N 11.11 .

Crystals suitable for an X-ray crystal-structure determination were obtained from $\mathrm{CD}_{3} \mathrm{OD}$ by slow evaporation of the solvent.
12. Peptides with $X a a=(\mathrm{R})-\operatorname{Leu}(2 \mathrm{Me}) .12 .1 .(\mathrm{R})-2-(\{2-[((\mathrm{S})-2-\{[($ Benzyloxy $)$ carbo-nyl]amino\}-4-methyl-1-oxopentyl)aminol-2-methyl-1-oxopropyl\}amino)-2,4-dimethylpentanoic Acid (Z-Leu-Aib-(R)-Leu(2Me)-OH; (R)-6f). As described for (S)-6c, with (R)-3f [19] ($200 \mathrm{mg}, 0.31 \mathrm{mmol}$), $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 1: 1,2 \mathrm{ml}\right.$), 3 h at 60°; prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ gave $78 \mathrm{mg}(53 \%)$ of $(R)-\mathbf{6 f}$ and $\left.35 \%{ }^{3}\right)$ of benzyl [(S)-1-($\{[1,1-$ dimethyl-2-(\{(R)-1,3-dimethyl-1-[(methylamino)carbonyl]butyl\}amino)-2-oxoethyl]-amino\}carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-(R)-Leu(2Me)-NHMe; (R)-7f).

Data of (R)-6f: Colorless solid. M.p. $152-153^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.17$. IR: 3301s, 2956s, 1727s, 1661s, 1542s, 1456m, 1366m, 1235m, 1162m, 1046m, 754w, 697m.

[^2]${ }^{1} \mathrm{H}$-NMR: $7.35-7.3$ ($m, 5$ arom. H); $7.2-7.05$ ($m, 2 \mathrm{NH}$); 5.75 ($d, J=6.4, \mathrm{NH}$); 5.11 (br., $\left.\mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.15-4.1(m, \mathrm{CH}(2)$ of Leu); $2.15-2.1$ ($m, \mathrm{CH}(4)$ of $\mathrm{Leu}(2 \mathrm{Me})) ; 1.8-1.45$ (m, CH_{2} (3) and $\mathrm{CH}(4)$ of $\mathrm{Leu}, \mathrm{CH}_{2}(3)$ and $\mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Aib); $0.95-0.85$ ($m, 2 \mathrm{Me}$ of Leu, $2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me})$). ${ }^{13} \mathrm{C}$-NMR: $177.0(s, \mathrm{COOH})$; 173.4, 172.6 ($2 s, 2$ CONH); 156.6 (s, OCONH); 136.0 ($s, 1$ arom. C); 128.5, 128.1, 127.8 ($3 d, 5$ arom. CH); $67.1\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 59.7, $57.2(2 s, \mathrm{C}(2)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(2)$ of Aib$) ; 54.1$ ($d, \mathrm{C}(2)$ of Leu); 44.7, 40.9 (2t, C(3) of Leu, C(3) of $\mathrm{Leu}(2 \mathrm{Me})$); 24.6, 24.3 (2d, C(4) of $\mathrm{Leu}(2 \mathrm{Me})$, C(4) of Leu); 25.3, 24.9, 24.5, 23.8, 23.2, 22.8, 21.8 ($7 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ and $2 \mathrm{Me}(5)$ of Leu(2 Me), 2 Me of Leu). ESI-MS (MeOH): 495 (14), 479 (30), $478\left(100,[M+1]^{+}\right), 460$ $\left(15,[M-\mathrm{OH}]^{+}\right), 333\left(12,[M-\mathrm{Leu}(2 \mathrm{Me})]^{+}\right)$. Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}(486.61)$: C 61.71, H 8.29, N 8.64; found: C 61.77, H 8.08, N 8.30.

Data of (R)-7f: Colorless solid. M.p. $110-111^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.45$. IR: 3293s, 2958m, 2873w, 1706s, 1654vs, 1518vs, 1464m, 1411w, 1386w, 1369w, 1270s, $1242 m, 1175 w, 1119 w, 1049 m, 1029 w, 970 w, 789 w, 745 w, 698 w, 658 w .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.35-7.25$ ($m, 5$ arom. H); 5.09 (br. $s, \mathrm{PhCH}_{2} \mathrm{O}$); 4.06 ($d d, J=8.9,6.1, \mathrm{CH}(2)$ of Leu); $2.69(s, \mathrm{MeN}) ; 1.8-1.65,1.65-1.45\left(2 m, \mathrm{CH}_{2}(3)\right.$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{CH}_{2}(3)$ of Leu, $\mathrm{CH}(4)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{CH}(4)$ of Leu$) ; 1.47$ ($s, \mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$); 1.41, 1.39 ($2 s, 2 \mathrm{Me}$ of Aib); 0.97, $0.95,0.91,0.89(4 d, J=7.6,6.9,6.9,6.5,2 \mathrm{Me}$ of $\mathrm{Leu}, 2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me}))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): c a .177 .5, c a .176, c a .175(3 s, 3 \mathrm{CONH}) ; c a .158(s, \mathrm{OCONH}) ; c a$. 138 ($s, 1$ arom. C); 129.4, 128.9, 128.5 ($3 d, 5$ arom. CH); $67.5\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 61.2,58.0(2 s$, $\mathrm{C}(2)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(2)$ of Aib$)$; 55.2 (d, $\mathrm{C}(2)$ of Leu$) ; 47.3,41.4$ (2t, $\mathrm{C}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$, $\mathrm{C}(3)$ of Leu$) ; 25.7,25.0$ (2d, C(4) of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(4)$ of Leu$) ; 26.5,26.0,24.3,24.1,23.2$, 22.5, 22.0 ($7 q$, MeN, 2 Me of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$, $2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of

Leu). CI-MS $\left(\mathrm{NH}_{3}\right): 491\left(4,[M+1]^{+}\right), 384(21), 383\left(32,[M-\mathrm{OBn}]^{+}\right), 231$ (7). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5}$ (490.64): C 63.65, H 8.83, N 11.42; found: C 63.67, H 8.62, N 11.26.
12.2. Benzyl $\{(\mathrm{S})-1-[(\{2-[((\mathrm{R})-1-\{[(4-$ Amino-(S)-1-\{[((S)-1-\{hydroxymethyl $\}-2-$ methylpropyl)amino]carbonyl\}-4-oxobutyl)amino]carbonyl\}-1,3-dimethylbutyl)amino]-1,1-dimethyl-2-oxoethyl\}amino)carbonyl]-3-methylbutyl\}carbamate (Z-Leu-Aib-(R)-Leu(2Me)-Gln-Valol; (R)-2f). As described for 2a, with (R)-6f ($240 \mathrm{mg}, 0.503 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(153 \mathrm{mg}, 1.515 \mathrm{mmol})$, abs. DMF (5 ml), HATU ($191 \mathrm{mg}, 0.502 \mathrm{mmol}$), 4 min at r.t., $\operatorname{HOBt}(76 \mathrm{mg}, 0.502 \mathrm{mmol}), 5 \mathrm{~min}$ at r.t., $11(117 \mathrm{mg}, 0.506 \mathrm{mmol}), 94 \mathrm{~h}$ at r.t.; prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 177 \mathrm{mg}(53 \%)$ of $(R)-\mathbf{2 f}$. Colorless foam. M.p. $105-107^{\circ} \cdot R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ 0.14. IR: $3302 s, 2958 m, 2871 m, 1659 s, 1533 s, 1455 m, 1386 m$, $1356 m, 1264 m, 1171 m, 1122 w, 1055 w, 852 w, 786 w, 740 m, 697 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.93$ (br., $\mathrm{NH}) ; 7.84(d, J=5.1, \mathrm{NH}) ; 7.4-7.25(m, 5$ arom. H); $7.2-7.15$ (m, NH); 7.11 (br. s, NH); 7.02 (br., NH); 6.70 (br., NH); 5.70 (br., NH); $5.25-5.05$ ($m, \mathrm{PhCH}_{2} \mathrm{O}$); $4.1-3.55$ ($m, \mathrm{CH}(2)$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of $\mathrm{Leu}, \mathrm{CH}(2)$ and $\mathrm{CH}_{2}(1)$ of Valol); $2.45-2.0\left(m, \mathrm{CH}_{2}(4)\right.$ and $\mathrm{CH}_{2}(3)$ of $\mathrm{Gln}, \mathrm{CH}(3)$ of Valol); $1.8-1.65\left(m, \mathrm{CH}_{2}(3)\right.$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{CH}_{2}(3)$ of Leu$) ; 1.55$ -1.25 ($m, 2 \mathrm{Me}$ of Aib, Me(3) of Leu(2Me)); $0.95-0.8$ ($m, 2 \mathrm{Me}$ of Valol, $\mathrm{CH}(4)$ of Leu, $\mathrm{CH}(4)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ${ }^{13} \mathrm{C}$-NMR: 176.9, 175.1, 175.1, 174.6, 173.0 ($5 s, 5 \mathrm{CONH}$); 157.4 (s, OCONH); 136.6 ($s, 1$ arom. C); 128.5, 128.0, 126.9 (3d, 5 arom. CH); 66.6, $63.5\left(2 t, \mathrm{PhCH}_{2} \mathrm{O}, \mathrm{C}(1)\right.$ of Valol); 59.8, $56.9(2 s, \mathrm{C}(2)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(2)$ of 2 Aib$) ; 57.5,56.1,55.5$ (3d, C(2) of Gln, C(2) of Valol, C(2) of Leu); 40.6, 39.7, 32.6, 27.6 ($4 t, \mathrm{C}(3)$ of $\mathrm{Leu}, \mathrm{C}(3)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(4)$ and $\mathrm{C}(3)$ of Gln$) ; 28.9$ (d, $\mathrm{C}(3)$ of Valol); 24.6, 23.4 (2d, C(4) of Leu(2Me), C(4) of Leu); 26.4, 25.0, 24.5, 24.2, 23.0, 22.7, 21.6, 19.5, 19.2 ($9 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Valol, $2 \mathrm{Me}(5)$ of Leu(2Me), 2 Me of Leu). ESI-MS (MeOH): $729\left(10,[M+\mathrm{K}]^{+}\right), 714\left(22,[M+\mathrm{Na}]^{+}\right)$,
$691\left(100,[M+1]^{+}\right), 674\left(7,[M-\mathrm{OH}]^{+}\right), 588\left(17,[M-\text { Valol }]^{+}\right), 460(18,[M-\operatorname{Gln}-$ Valol ${ }^{+}$). Anal. calc. for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ (708.90): C 59.30, H 8.53, N 11.86; found: C 59.08, H 8.30, N 11.42.
12.3. $\mathrm{N}-((\mathrm{S})-1-\{[(2-\{[(\mathrm{R})-1-(\{[4-$ Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-methylpropyl]amino\} carbonyl)-4-oxobutyl]amino\}carbonyl)-1,3-dimethylbutyl]amino\}-1,1-dimethyl-2-oxoethyl)amino]carbonyl\}-3-methylbutyl) 4-Bromobenzamide (pBrBz-Leu-Aib-(R)-Leu(2Me)-Gln-Valol; (R)-13f). As described for 13a, with (R)-2f ($50 \mathrm{mg}, 0.072 \mathrm{mmol}$), $\mathrm{Pd} / \mathrm{C}(10 \%$ on activated charcoal, 7 mg$), \mathrm{MeOH}(4 \mathrm{ml})$, and $\mathrm{H}_{2}, 70 \mathrm{~min}$ at r.t., filtration over Celite, abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(16 \mathrm{mg}, 0.158 \mathrm{mmol})$, 4-bromobenzoylchloride (18.5 $\mathrm{mg}, 0.084 \mathrm{mmol}), 2 \mathrm{~h}$ at r.t., evaporation and prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 16 \mathrm{mg}$ (30\%) of (R)-13f. M.p. $124-125^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.14$. IR: $3317 s, 3064 w$, $2959 m, 1651 \mathrm{vs}, 1592 m, 1483 m, 1448 m, 1428 m, 1382 m, 1335 m, 1276 m, 1234 m, 1160 w$, $1140 m, 1073 w, 1012 w, 974 w, 961 w, 846 w, 806 w, 784 w, 722 w, 696 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $7.95-7.9(m, \mathrm{NH}) ; 7.84,7.62\left(A A^{\prime} B B^{\prime}, J=8.5,8.6,4\right.$ arom. H); 7.45 (br. s, NH); $7.4-$ $7.35(m, \mathrm{NH}) ; 4.6-4.5,4.2-4.1(2 m, \mathrm{CH}(2)$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of Leu$) ; 3.65-3.6\left(m, \mathrm{CH}_{2}(1)\right.$ and $\mathrm{CH}(2)$ of Valol); 2.4-1.6, $1.3-1.25\left(2 m, \mathrm{CH}_{2}(4)\right.$ and $\mathrm{CH}_{2}(3)$ of $\mathrm{Gln}, \mathrm{CH}(3)$ of Valol, $\mathrm{CH}(4)$ and $\mathrm{CH}_{2}(3)$ of $\mathrm{Leu}, \mathrm{CH}(4)$ and $\mathrm{CH}_{2}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$); 1.45 ($s, 2 \mathrm{Me}$ of Aib); 1.43 (s, $\mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me})$); 1.01, 0.99 ($2 d, J=5.8,5.7,2 \mathrm{Me}$ of Valol); $0.88,0.86,0.83,0.81$ $\left(4 d, J=6.9,6.6,5.7,6.0,2 \mathrm{Me}(5)\right.$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): c a$. 178, 177.5, 176.3, 175.5, 174.2, ca. 171 ($6 s, 6 \mathrm{CONH}$); ca. 134 ($s, 1$ arom. C); 132.7, 130.6 (2d, 4 arom. CH); ca. 127 ($s, 1$ arom. CBr); $63.4(t, \mathrm{C}(1)$ of Valol); 61.3, $58.0(2 s, \mathrm{C}(2)$ of Leu(2Me), C(2) of Aib); 58.4, 55.7, 54.3 (3d, C(2) of Gln, C(2) of Valol, C(2) of Leu); $45.0,41.2,33.4,28.8(4 t, C(3)$ of $\mathrm{Leu}, \mathrm{C}(3)$ of $\mathrm{Leu}(2 \mathrm{Me}), \mathrm{C}(4)$ of $\mathrm{Gln}, \mathrm{C}(3)$ of Gln$) ; 29.9$, 26.0, 24.7 (3d, C(3) of Valol, C(4) of Leu, C(4) of Leu(2Me)); 25.2, 25.2, 25.1, 24.9, 23.8,
23.3, 22.1, 19.9, 19.2 ($9 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Leu}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Valol, 2 Me of Leu, 2 $\mathrm{Me}(5)$ of $\mathrm{Leu}(2 \mathrm{Me})$). ESI-MS (NaI): 765 (12), 764 (45), 763 (100, $\left.[M+\mathrm{Na}]^{+},{ }^{81} \mathrm{Br}\right), 762$ (41), $741\left(74,[M+\mathrm{Na}]^{+},{ }^{79} \mathrm{Br}\right)$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{BrN}_{6} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (748.76): C 54.54, H 7.54, N 11.22; found: C 54.29, H 7.55, N 10.21 .
13. Peptides with Xaa $=(\mathrm{S})-$ Phe(2Me). 13.1. Benzyl [(S)-1-(\{[2-(\{(S)-1-Benzyl-2-[(S)-2-(1-methoxy-1-methylethyl)pyrrolidin-1-yl]-1-methyl-2-oxoethyl?amino)-1,1-di-methyl-2-oxoethyl]amino\}carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-(S)-Phe(2Me)$N C p\{2-[(1-\mathrm{Me})(1-\mathrm{MeO}) E t]\} ;(S)-\mathbf{3 h})$. As described for 3a, with 5 [19] (109 mg, 0.311 $\mathrm{mmol}), 1-((\mathrm{S})-2-$ benzyl-2-methyl-2H-azirin-3-yl)-2-((S)-1-methoxy-1-methylethyl)pyrrolidine $((S)-\mathbf{1 h}[17], 95 \mathrm{mg}, 0.332 \mathrm{mmol})$, abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml}), 17 \mathrm{~h}$ at r.t., $2 \mathrm{~N} \mathrm{HCl}, 1 \mathrm{~N} \mathrm{NaOH}$, sat. NaCl-soln.; $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 4\right)$: $140 \mathrm{mg}(70 \%)$ of (S)-3h. M.p. $79-80^{\circ} . R_{\mathrm{f}}$ ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) ~ 0.30$. IR: 3330 s , 2957 s , $1666 \mathrm{vs}, 1623 \mathrm{vs}$, $1498 \mathrm{~s}, 1454 \mathrm{~s}$, 1413 m , $1384 m, 1317 m, 1243 m, 1086 m, 1061 m, 922 w, 739 w, 701 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.3-7.1$ ($m, 10$ arom. H); 5.12, $5.04\left(A B, J=12.7, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.46(d d, J=8.5,3.3, \mathrm{CHN}$ of Cp$)$; $4.04(t, J=7.5, \mathrm{CH}(2)$ of Leu); $3.89(t d, J=8.4,2.5, \mathrm{CHN}$ of Cp$) ; 3.65-3.3(m, \mathrm{CHN}$ of $\mathrm{Cp}) ; 3.19,3.07\left(A B, J=13.9, \mathrm{CH}_{2}(3)\right.$ of $\left.\mathrm{Phe}(2 \mathrm{Me})\right) ; 3.15(\mathrm{~s}, \mathrm{MeO}) ; 2.0-1.9(m, \mathrm{CH}(4)$ of Leu); $1.8-1.6(m, 4 \mathrm{CH}$ of Cp$) ; 1.55-1.5\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu); $1.49(s, \mathrm{Me}(3)$ of Phe(2Me)); 1.44, 1.43 ($2 s, 2 \mathrm{Me}$ of Aib); 1.16, 1.08 ($2 s, \mathrm{Me}_{2}(\mathrm{MeO}) \mathrm{C}$); $0.97,0.94$ ($2 d, J=$ 7.3, 7.1, 2 Me of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 175.3,172.6$ ($2 s, 3 \mathrm{CONH}$); ca. 158 (s, OCONH); 138.2, 137.4 ($2 s, 2$ arom. C); 131.7, 129.4, 129.1, 128.9, 128.3, 127.9 ($6 d, 10$ arom. CH$) ; 80.0\left(s, \mathrm{Me}_{2}(\mathrm{OMe}) C\right) ; 67.3\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 65.8,55.3$ ($2 d, \mathrm{C}(2)$ of Leu, CHN of $\mathrm{Cp}) ; 62.2$ ($s, \mathrm{C}(2)$ of Phe(2Me)); 58.4 ($s, \mathrm{C}(2)$ of Aib$) ; 49.5$ (q, MeO); 48.9, 44.1, 41.5, 26.0, 24.5 (5t, $3 \mathrm{CH}_{2}$ of $\mathrm{Cp}, \mathrm{C}(3)$ of $\mathrm{Leu}, \mathrm{C}(3)$ of Phe(2Me)); 26.9, 24.6, 24.0, 23.5, 23.2, 22.2 ($6 q, M e_{2} \mathrm{C}, 2 \mathrm{Me}$ of Aib, Me(3) of Phe(2Me), 2 Me of Leu); 25.8 (d, C(4) of Leu).

ESI-MS (MeOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, NaI): $659\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 0.25$ $\mathrm{H}_{2} \mathrm{O}$ (641.34): C 67.42, H 8.25, N 8.74; found: C 67.41, H 8.08, N 8.38 .
13.2. (S)-2-Benzyl-2-(\{2-[((S)-2-\{[(benzyloxy)carbonyl]amino\}-4-methyl-1-oxo-pentyl)amino]-2-methyl-1-oxopropyl\}amino)propanoic Acid (Z-Leu-Aib-(S)-Phe(2Me)OH; (S)-6g). 13.2.1. Hydrolysis of (S)-3h. As described for (S)-6c, with (S)-3h (140 mg, $0.219 \mathrm{mmol}), 3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right.$ 1:1, 8 ml$), 23 \mathrm{~h}$ at $40^{\circ} ; \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 9\right): 90$ $\mathrm{mg}(80 \%)$ of (S)-6g.
13.2.2. Hydrolysis of (S)-3g. As described for (S)-6c, with (S)-3g [19] (200 mg, 0.295 $\mathrm{mmol}), 3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ 1:1, 6 ml$), 3 \mathrm{~h}$ at $60^{\circ} ; \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 2\right)$ and prep. TLC ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 37 \mathrm{mg}(25 \%)$ of (S)-6g. Colorless solid. M.p. $130.2-130.6^{\circ}$. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) 0.30$. IR: 3330s, $3060 m$, $3030 m$, $2960 m$, $2870 w, 1660 \mathrm{v} s, 1605 s$, $1515 s, 1500 s, 1455 s, 1405 m, 1365 m, 1265 m, 1245 m, 1210 m, 1170 w, 1120 w, 1045 w$, $1030 w, 1000 w, 960 w, 910 w, 780 w, 740 w, 700 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.45$ (br. $\left.s, \mathrm{NH}\right) ; 7.3$ $-7.25,7.2-7.1\left(2 m, 10\right.$ arom. H); $5.1-5.05\left(m, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.15(t, J=7.4, \mathrm{CH}(2)$ of Leu); 3.37, $3.31\left(A B, J=13.3, \mathrm{CH}_{2}(3)\right.$ of Phe(2 Me$)$); 1.7 - $1.6(m, \mathrm{CH}(4)$ of Leu); $1.6-$ $1.55\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu); 1.51 ($s, \mathrm{Me}(3)$ of Phe(2Me)); 1.38, 1.33 ($2 s, 2 \mathrm{Me}$ of Aib); 0.93, $0.91\left(2 d, J=6.8,2\right.$ Me of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 180.5(\mathrm{~s}, \mathrm{COOH}) ; 175.2,174.8(2 s, 2$ CONH); 158.5 (s, OCONH); 139.2, 138.0 ($2 s, 2$ arom. C); 131.4, 129.5, 129.0, 128.8, 127.3 (5d, 10 arom. CH); $67.9\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; $62.8(s, \mathrm{C}(2)$ of Phe(2 Me$)$); $58.2(s, \mathrm{C}(2)$ of $\mathrm{Aib}) ; 55.1$ ($d, \mathrm{C}(2)$ of Leu$) ; 42.3,41.8$ (2t, C(3) of Phe(2Me), C(3) of Leu); 25.9 (d, C(4) of Leu); 25.8, 25.1, 24.2, 23.5, 22.0 ($5 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Phe}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (NaI): 556 (12), $550\left(33,[M+\mathrm{K}]^{+}\right), 534\left(100,[M+\mathrm{Na}]^{+}\right), 473$ (8), $466(6,[M-$ $\mathrm{COOH}]^{+}$). Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ (516.12): C 65.16, H 7.32, N 8.14 ; found: C 65.28, H 7.35, N 7.81.
13.3. Benzyl \{(S)-1-[(\{2-[((S)-2-\{[4-Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-methyl-propyl]amino\}carbonyl)-4-oxobutyl]amino\}-1-benzyl-1-methyl-2-oxoethyl)amino]-1,1-dimethyl-2-oxoethyl\}amino) carbonyl]-3-methylbutyl\}carbamate (Z-Leu-Aib-(S)-Phe(2Me)-Gln-Valol; (S)-2g). As described for 2b, with (S)-6g (83 mg, 0.162 mmol$), \mathrm{Et}_{3} \mathrm{~N}(33 \mathrm{mg}$, $0.327 \mathrm{mmol})$, abs. DMF (1 ml), 5 min at 0°, $\operatorname{HATU}(64 \mathrm{mg}, 0.168 \mathrm{mmol}), 6 \mathrm{~min}$ at $0^{\circ}, 11$ ($38 \mathrm{mg}, 0.164 \mathrm{mmol}$), 30 min at 0°, 44 h at r.t.; $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 57 \mathrm{mg}(49 \%)$ of $(S)-2 g$. Colorless solid. M.p. $102-103^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.27$. IR: $3300 s, 3060 w$, $3030 w, 2960 m, 2870 w, 1660 \mathrm{vs}, 1530 s, 1455 m, 1405 w, 1385 w, 1370 w, 1340 w, 1315 w$, $1260 m, 1170 w, 1120 w, 1045 w, 1030 w, 960 w, 920 w, 845 w, 740 w, 700 m \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.42(d, J=8.8, \mathrm{NH}) ; 7.35-7.2,7.15-7.1(2 m, 10$ arom. H); 5.08, $5.05(A B, J$ $\left.=12.7, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.15-4.05(m, \mathrm{CH}(2)$ of $\mathrm{Gln}, \mathrm{CH}(2)$ of Leu$) ; 3.7-3.65\left(m, \mathrm{CH}_{2}(1)\right.$ of Valol); $3.65-3.6\left(m, \mathrm{CH}(2)\right.$ of Valol); 3.22, $3.06\left(A B, J=13.6, \mathrm{CH}_{2}(3)\right.$ of $\left.\operatorname{Phe}(2 \mathrm{Me})\right) ; 2.3$ - $2.25\left(m, \mathrm{CH}_{2}(4)\right.$ of Gln$) ; 2.25-2.2\left(m, \mathrm{CH}_{2}(3)\right.$ of Gln$) ; 2.2-2.05(m, \mathrm{CH}(3)$ of Valol); $1.9-1.6\left(m, \mathrm{CH}(4)\right.$ of Leu); $1.6-1.5\left(m, \mathrm{CH}_{2}(3)\right.$ of Leu); $1.43(s, \mathrm{Me}(3)$ of $\operatorname{Phe}(2 \mathrm{Me}))$; 1.37 ($s, 2 \mathrm{Me}$ of Aib); $0.95-0.9$ ($m, 2 \mathrm{Me}$ of Leu, 2 Me of Valol). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: 178.0, 176.6, 176.3, 175.9, 174.3 ($5 s, 5 \mathrm{CONH}$); the signal for OCONH could not be detected; 138.2, 137.3 ($2 s, 2$ arom. C); 131.7, 129.5, 129.4, 129.1, 128.7, 128.2 ($6 d, 10$ arom. CH); $67.8\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 63.4(t, \mathrm{C}(1)$ of Valol); $60.7(s, \mathrm{C}(2)$ of Phe(2Me)); $58.4(d$, $\mathrm{C}(2)$ of Gln); 58.0 ($s, \mathrm{C}(2)$ of Aib); 55.9, 55.3 (2d, $\mathrm{C}(2)$ of Leu, $\mathrm{C}(2)$ of Valol); 43.4, 41.5 (2t, C(3) of Phe(2Me), C(3) of Leu); 33.5 ($t, \mathrm{C}(4)$ of Gln); 30.0 ($d, \mathrm{C}(3)$ of Valol); 28.4 (t, $\mathrm{C}(3)$ of Gln); 25.9 (d, C(4) of Leu); 25.6, 25.1, 23.5, 23.4, 22.2 ($5 q, 2 \mathrm{Me}$ of Aib, Me(3) of Phe(2Me), 2 Me of Leu); 20.1, 19.2 ($2 q, 2 \mathrm{Me}$ of Valol). ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}): 7.68$ ($d, J=$ 4.9, NH of Gln); 7.48 (s, NH of Aib); 7.35-7.3, $7.25-7.2,7.1-7.05$ ($3 m, 10$ arom. H, 1 $\mathrm{NH}) ; 6.92(s, \mathrm{NH}) ; 6.60\left(s, 1 \mathrm{H}, \mathrm{NH}_{2}\right.$ of Gln); $6.51(d, J=4.0, \mathrm{NH}$ of Leu); $5.53(s, 1 \mathrm{H}$,
NH_{2} of Gln); 5.11, $5.08\left(A B, J=12.6, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.1-4.05(m, \mathrm{CH}(2)$ of Gln $) ; 4.0-3.95$ ($m, \mathrm{CH}(2)$ of Leu); 3.75-3.7($m, \mathrm{CH}(2)$ of Valol); $3.65-3.6\left(m, \mathrm{CH}_{2}(1)\right.$ of Valol); 2.97, $2.94\left(A B, J=13.6, \mathrm{CH}_{2}(3)\right.$ of Phe(2Me)); $2.3-2.25\left(m, \mathrm{CH}_{2}(4)\right.$ of Gln); $2.2-2.05(m$, $\mathrm{CH}_{2}(3)$ of Gln); $1.8-1.75(m, \mathrm{CH}(3)$ of Valol); $1.7-1.65(m, \mathrm{CH}(4)$ of Leu); $1.65-1.6$ ($m, 1 \mathrm{H}$ of $\mathrm{CH}_{2}(3)$ of Leu$)$; $1.5-1.45\left(m, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2}(3)$ of Leu); $1.4-1.35(m, 2 \mathrm{Me}$ of Aib, $\mathrm{Me}(3)$ of Phe(2Me) $) ; 0.93,0.92(2 d, J=6.8,8.3,2 \mathrm{Me}$ of Leu); $0.87,0.86(2 d, J=$ 6.9, 2 Me of Valol). ${ }^{13} \mathrm{C}-\mathrm{NMR}(150.9 \mathrm{MHz}): 175.1,174.7,174.4,172.6$ ($4 s, 5 \mathrm{CONH}$); 157.1 (s, OCONH); 136.4 ($s, 1$ arom. C of $\mathrm{PhCH}_{2} \mathrm{O}$); 135.1 ($s, 1$ arom. C of Phe(2 Me)); 130.2, 128.6, 128.3, 128.2, 127.6, 127.3 ($6 d, 10$ arom. CH); $67.1\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 63.4(t, \mathrm{C}(1)$ of Valol); 60.5 ($s, \mathrm{C}(2)$ of Phe(2Me)); 57.1 ($s, \mathrm{C}(2)$ of Aib$) ; 57.6$ ($d, \mathrm{C}(2)$ of Valol); 55.2, 55.1 (2d, C(2) of Leu, C(2) of Gln); 44.6 ($t, \mathrm{C}(3)$ of Phe(2Me)); 39.8 ($t, \mathrm{C}(3)$ of Leu); 32.5 ($t, \mathrm{C}(4)$ of Gln); $29.0(d, \mathrm{C}(3)$ of Valol); $27.3(t, \mathrm{C}(3)$ of Gln); 26.0, 23.7 ($2 q, 2 \mathrm{Me}$ of Aib); 24.7 (d, C(4) of Leu); 22.9, 21.7 ($2 q, 2 \mathrm{Me}$ of Leu); 21.5 (q, $\mathrm{Me}(3)$ of $\mathrm{Phe}(2 \mathrm{Me})$); 19.6, 19.2 (2q, 2 Me of Valol). ESI-MS (TFA): $748\left(22,[M+\mathrm{Na}]^{+}\right), 726\left(100,[M+1]^{+}\right), 706$ (15, $\left.[M-\mathrm{OH}]^{+}\right), 624\left(68,[M-\text { Valol }]^{+}\right), 494\left(30,[M-\text { Gln-Valol }]^{+}\right)$. Anal. calc. for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ (751.92): C 60.69, H 7.91, N 11.18; found: C 60.93, H 8.12, N 9.85.
13.4. $\mathrm{N}-\{(\mathrm{S})-1-[(\{2-[((\mathrm{S})-2-\{[4-$ Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-methylpro-pyl]amino\}carbonyl)-4-oxobutyl]amino\}-1-benzyl-1-methyl-2-oxoethyl)amino]-1,1-dimethyl-2-oxoethyl\}amino)carbonyl]-3-methylbutyl\} 4-Bromobenzamide (pBrBz -Leu-Aib-(S)-Phe(2Me)-Gln-Valol; (S)-13g). As described for 13a, with (S)-2g (32 mg, 0.044 $\mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(10 \%$ on activated charcoal, 7 mg$), \mathrm{MeOH}(2 \mathrm{ml})$, and $\mathrm{H}_{2}, 30 \mathrm{~min}$ at r.t., filtration over Celite, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{mg}, 0.099 \mathrm{mmol})$, 4-bromobenzoylchloride $(10 \mathrm{mg}, 0.046 \mathrm{mmol}), 20 \mathrm{~h}$ at r.t., the precipitate was filtered and dried: $25 \mathrm{mg}(73 \%)$ of (S)-13g. Colorless solid. M.p. $236.7-237.6^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.31$. IR: $3417 s$,
$2959 m, 1682 \mathrm{v} s, 1654 \mathrm{v}, 1608 \mathrm{~m}, 1540 \mathrm{~m}, 1399 w, 1364 w, 1230 m, 1184 w, 1068 w, 1021 w$, $810 w .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.77,7.60\left(A A^{\prime} B B^{\prime}, J=8.6,4\right.$ arom. H$) ; 7.3-7.25,7.15-7.1$ ($2 m, 5$ arom. H); 4.5-4.45, 4.15-4.1 (2m, $\mathrm{CH}(2)$ of Gln and $\mathrm{CH}(2)$ of Leu); $3.65-3.55$ ($m, \mathrm{CH}_{2}(1)$ and $\mathrm{CH}(2)$ of Valol); 3.35, $3.05\left(\mathrm{AB}, J=13.6, \mathrm{CH}_{2}(3)\right.$ of Phe(2 Me)); 2.3 1.95, $1.85-1.65\left(2 m, \mathrm{CH}_{2}(4)\right.$ of Gln and $\mathrm{CH}_{2}(3)$ of $\mathrm{Gln}, \mathrm{CH}(3)$ of Valol, $\mathrm{CH}_{2}(3)$ of Leu); $1.6-1.5(m, \mathrm{CH}(4)$ of Leu); 1.46, 1.40, 1.30 (3s, 2 Me of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Phe}(2 \mathrm{Me})$); 1.01, $0.98\left(2 d, J=6.2,6.3,2 \mathrm{Me}\right.$ of Valol); $0.85,0.78(2 d, J=6.8,2 \mathrm{Me}$ of Leu $) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right): 177.9,176.5,175.5,174.0$ ($4 s, 5 \mathrm{CONH}$); 169.5 ($s, 1 \mathrm{CO}$ (amide, $p \mathrm{BrBz}$)); 137.3, 133.9 ($2 s, 2$ arom. C); 132.7, 131.7, 130.6, 129.2, 128.0 ($5 d, 9$ arom. CH); 127.3 (s, 1 arom. CBr$) ; 63.2$ ($t, \mathrm{C}(1)$ of Valol); 61.5, 58.0 ($2 s, \mathrm{C}(2)$ of Phe(2Me), $\mathrm{C}(2)$ of Aib); 58.0, 55.4, 54.2 (3d, C(2) of Gln, C(2) of Valol, C(2) of Leu); ca. 48, 41.1, 33.3, 28.1 (4t, C(3) of Leu, $\mathrm{C}(3)$ of Phe(2 Me), C(4) of Gln, $\mathrm{C}(3)$ of Gln); 29.9, 26.0 (2d, C(3) of Valol, $\mathrm{C}(4)$ of Leu); 24.7, 23.9, 23.3, 22.1, 19.9, 19.0 ($6 q, 2 \mathrm{Me}$ of Aib, Me(3) of Phe(2Me), 2 Me of Valol, 2 Me of Leu). ESI-MS (TFA): $813\left(8,[M+\mathrm{K}]^{+},{ }^{81} \mathrm{Br}\right), 798\left(100,[M+\mathrm{Na}]^{+},{ }^{81} \mathrm{Br}\right)$, $775\left(86,[M+1]^{+},{ }^{81} \mathrm{Br}\right), 757\left(16,[M-\mathrm{OH}]^{+},{ }^{81} \mathrm{Br}\right), 672\left(25,[M-\text { Valol }]^{+},{ }^{81} \mathrm{Br}\right), 656$ (12), 544 (53, [M - Gln-Valol] ${ }^{+},{ }^{81} \mathrm{Br}$). Anal. calc. for $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{Br}_{6} \mathrm{O}_{7} \cdot 2 \mathrm{MeOH}$ (837.85): C 55.91, H 7.33, N 10.03; found: C 56.23, H 7.01, N 10.57 .

Recrystallization from $\mathrm{AcOEt} / \mathrm{MeOH} /$ petroleum ether gave crystals suitable for an X-ray crystal structure determination.
14. Peptides with (R)-Phe(2Me). 14.1. Benzyl [(S)-1-(\{[2-(\{(R)-1-Benzyl-2-[(S)-2-(1-methoxy-1-methylethyl)pyrrolidin-1-yl]-1-methyl-2-oxoethyl\}amino)-1,1-dimethyl-2-oxoethyl]amino\}carbonyl)-3-methylbutyl]carbamate (Z-Leu-Aib-(R)-Phe(2Me)-NCp\{2-$[(1-\mathrm{Me})(1-\mathrm{MeO}) E t]\} ;(R) \mathbf{- 3 h})$. As described for 3a, with $\mathbf{5}$ [19] ($159 \mathrm{mg}, 0.45 \mathrm{mmol}$), abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$, and $(R)-1 \mathbf{h}[17](130 \mathrm{mg}, 0.45 \mathrm{mmol})$, abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), 18 \mathrm{~h}$ at r.t.; CC
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1,25: 1,50: 1\right)$; prep. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right): 229 \mathrm{mg}(79 \%)$ of (R)3h. Colorless foam. M.p. $79-80^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ 0.57. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)$ 0.36 . IR: $3323 s, 3032 m, 2958 s, 1665 \mathrm{vs}, 1624 \mathrm{vs}, 1527 \mathrm{vs}, 1455 s, 1411 s, 1384 s, 1316 m$, $1243 s, 1120 m, 1086 s, 1061 m, 921 w, 737 m, 700 s .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.48$ (br. s, NH); 7.4-7.3, 7.2 - 7.0 ($2 m, 10$ arom. H); 6.63 (br. s, NH); 5.14 (d, NH of Leu); 5.15 - 5.1 (m, NH); 5.05, $4.99\left(A B, J=12.3, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.55-4.5(m, \mathrm{CHN}$ of Cp$) ; 4.1-3.95(m, \mathrm{CH}(2)$ of Leu, CHN of Cp); 3.6-3.4 (m, CHN of $\mathrm{Cp}, \mathrm{CH}_{2}$ (3) of Phe(2 Me)); 3.16 (s, MeO); 2.05-1.95 ($m, \mathrm{CH}_{2}(3)$ of Leu$)$; $1.8-1.4\left(m, 2 \mathrm{CH}_{2}\right.$ of $\mathrm{Cp}, 2 \mathrm{Me}$ of Aib, $\mathrm{Me}(3)$ of $\mathrm{Phe}(2 \mathrm{Me}), \mathrm{CH}(4)$ of Leu); 1.17, 1.13 ($2 s, M e_{2} \mathrm{C}$); 0.92 ($d, J=6.3,2$ Me of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 172.2,171.5(2 s, 3$ CONH); the signal for OCONH could not be detected; 136.7, 136.0 ($2 s$, 2 arom. C); 130.9, 128.4, 128.1, 127.9, 127.9, 126.6 ($6 d, 10$ arom. CH); $67.1\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; $64.8(d, \mathrm{C}(2)$ of Leu); 60.8, 57.7 ($2 s, \mathrm{C}(2)$ of Phe(2Me), C(2) of Aib); 54.2 (d, CHN of Cp); 49.1 (q, MeO); $48.1\left(t, \mathrm{CH}_{2} \mathrm{~N}\right.$ of Cp$) ; 41.2,40.3,23.6$ (3t, $\mathrm{C}(3)$ of $\mathrm{Leu}, \mathrm{C}(3)$ of $\mathrm{Phe}(2 \mathrm{Me}), 2 \mathrm{CH}_{2}$ of Cp$)$; 25.3 ($q, \mathrm{Me}_{2} \mathrm{C}$); 24.6 ($d, \mathrm{C}(4)$ of Leu); 22.9, 22.9, 22.2, 21.7 ($4 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of Phe(2Me), 2 Me of Leu). ESI-MS (MeOH, AcOH): 659 (7, $\left.[M+\mathrm{Na}]^{+}\right), 639$ (10), 638 (39), 637 (100, $[M+1]^{+}$). Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6}$ (636.84): C 67.90, H 8.23, N 8.80; found: C 67.73, H 8.20, N 8.61 .
14.2. (S)-2-Benzyl-2-(\{2-[((S)-2-\{[(benzyloxy)carbonyl]amino $\}-4-m e t h y l-1-o x o p e n-~$ tyl)aminol-2-methyl-1-oxopropyl?amino)propanoic Acid (Z-Leu-Aib-(R)-Phe(2Me)-OH; (R)-6g). 14.2.1. Hydrolysis of $(R) \mathbf{- 3 h}$. As described for (S)-6c, with (R)-3h ($120 \mathrm{mg}, 0.188$ $\mathrm{mmol}), 3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right.$ 1:1, 8 ml$), 26 \mathrm{~h}$ at $40^{\circ} ; \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 57 \mathrm{mg}$ (59\%) of $(R)-\mathbf{6 g}$.
14.2.2. Hydrolysis of $(R) \mathbf{- 3 g}$. As described for $(S)-\mathbf{6 c}$, with $(R) \mathbf{- 3 g}$ [19] (204 mg, $0.300 \mathrm{mmol}), 3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} \mathrm{1:1} 6 \mathrm{ml},\right), 3 \mathrm{~h}$ at $60^{\circ} ; \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 2\right)$; prep.

TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 55 \mathrm{mg}(36 \%)$ of $(R)-\mathbf{6 g}$. Colorless solid. M.p. $126.8-127.3^{\circ}$. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) 0.28$. IR: $3330 \mathrm{~m}, 3060 w, 3030 w, 2960 m, 2860 w, 1660 \mathrm{vs}, 1530-$ $1510 s, 1450 \mathrm{~s}, 1410 \mathrm{~m}, 1390 \mathrm{~m}, 1365 \mathrm{~m}, 1255 \mathrm{~m}, 1215 \mathrm{~m}, 1170 w, 1120 w, 1045 w, 1030 w$, $1000 w, 960 w, 910 w, 780 w, 740 w, 700 m .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.3-7.25,7.15-7.1(2 m$, 10 arom. H); 5.02, $4.97\left(A B, J=12.5, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.13(t, J=6.4, \mathrm{CH}(2)$ of Leu); 3.37, 3.31 $\left(A B, J=13.3, \mathrm{CH}_{2}(3)\right.$ of $\left.\operatorname{Phe}(2 \mathrm{Me})\right) ; 1.7-1.55(m, \mathrm{CH}(4)$ of Leu$) ; 1.55-1.45(m, \mathrm{Me}(3)$ of Phe $(2 \mathrm{Me}), \mathrm{CH}_{2}(3)$ of Leu$) ; 1.41,1.38(2 s, 2 \mathrm{Me}$ of Aib$) ; 0.92,0.90(2 d, J=6.8,2 \mathrm{Me}$ of Leu). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 180.5$ (s, COOH); 175.3, 174.9 ($2 s, 2 \mathrm{CONH}$); 158.6 (s, OCONH); 139.2, 138.0 ($2 s, 2$ arom. C); 131.5, 129.5, 129.1, 128.9, 127.3 (5d, 10 arom. $\mathrm{CH}) ; 66.4\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 62.8$ ($s, \mathrm{C}(2)$ of Phe(2Me)); 58.3 ($s, \mathrm{C}(2)$ of Aib); 55.3 ($d, \mathrm{C}(2)$ of Leu); 42.3, 41.8 (2t, C(3) of Phe(2Me), C(3) of Leu); 25.9 (d, C(4) of Leu); 26.1, 24.9, 24.2, 23.5, 22.0 ($5 q, 2 \mathrm{Me}$ of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Phe}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu). ESI-MS (NaI): 624 (18), $550\left(20,[M+\mathrm{K}]^{+}\right), 534\left(100,[M+\mathrm{Na}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ (516.12): C 65.16, H 7.32, N 8.14; found: C 65.01, H 7.51, N 7.84 .
14.3. Benzyl \{(S)-1-[(\{2-[((R)-2-\{[4-Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-methylpropyl]amino\} carbonyl)-4-oxobutyl]amino\}-1-benzyl-1-methyl-2-oxoethyl)amino]-1,1-dimethyl-2-oxoethyl\}amino)carbonyl]-3-methylbutyl\}carbamate (Z-Leu-Aib-(R)-Phe(2Me)-Gln-Valol; (R)-2g). As described for 2b, with $(R)-\mathbf{6 g}(53 \mathrm{mg}, 0.104 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ $(22 \mathrm{mg}, 0.218 \mathrm{mmol})$, abs. DMF (1 ml), 5 min at 0°, HATU ($\left.40 \mathrm{mg}, 0.105 \mathrm{mmol}\right), 6 \mathrm{~min}$ at $0^{\circ}, \mathbf{1 1}(24 \mathrm{mg}, 0.104 \mathrm{mmol}), 40 \mathrm{~min}$ at 0° and 25 h at r.t. Reaction control with TLC showed still a considerable amount of $(R)-\mathbf{6 g}$. At 0°, additional HATU ($8 \mathrm{mg}, 0.021 \mathrm{mmol}$) was added, stirred for 4 min , and $\mathbf{1 1}(6 \mathrm{mg}, 0.026 \mathrm{mmol})$ was added. After a further 7 min of stirring, the mixture was warmed to r.t. and stirred for 68 h . The solvent was evaporated, the residue was dissolved in AcOEt and a small amount of MeOH , washed twice with 2 N

HCl , once with 1 N NaOH -soln. and sat. NaCl -soln., dried (MgSO_{4}), and evaporated. A residue, which was not soluble in 50 ml of MeOH (HATU), was filtered off. CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right): 42 \mathrm{mg}(56 \%)$ of (R)-2g. M.p. $94.3-95.0^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$ $0.35 .^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 8.10(d, J=6.8, \mathrm{NH}) ; 7.40(d, J=8.2, \mathrm{NH}) ; 7.3-7.1(m, 10$ arom. H); 5.03, $4.96\left(A B, J=12.5, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.2-4.15(m, \mathrm{CH}(2)$ of Gln$) ; 4.01(t, J=$ 7.5, $\mathrm{CH}(2)$ of Leu); $3.7-3.65\left(m, \mathrm{CH}_{2}(1)\right.$ and $\mathrm{CH}(2)$ of Valol); 3.53, $3.09(2 d, J=13.7$, $\mathrm{CH}_{2}(3)$ of Phe(2Me)); $2.4-2.35\left(m, \mathrm{CH}_{2}(4)\right.$ of Gln$) ; 2.25-2.1\left(m, \mathrm{CH}_{2}(3)\right.$ of Gln$) ; 2.0-$ $1.9\left(m, \mathrm{CH}(3)\right.$ of Valol); $1.7-1.65(m, \mathrm{CH}(4)$ of Leu$) ; 1.52\left(t, J=7.2, \mathrm{CH}_{2}(3)\right.$ of Leu); 1.42 ($s, \operatorname{Me}(3)$ of Phe(2Me)); 1.34, 1.32 ($2 s, 2 \mathrm{Me}$ of Aib); $1.0-0.9$ ($m, 2 \mathrm{Me}$ of Leu, 2 Me of Valol). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: 177.6, 176.9, 176.2, 174.7 ($4 \mathrm{~s}, 5 \mathrm{CONH}$); the signal for OCONH could not be detected; 138.2, 137.8 ($2 s, 2$ arom. C); 132.3, 129.5, 129.1, 128.6, 127.9 (5d, 10 arom. CH); $67.7\left(t, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 63.7 ($t, \mathrm{C}(1)$ of Valol); 61.3 ($s, \mathrm{C}(2)$ of Phe(2Me)); 58.8 ($d, \mathrm{C}(2)$ of Gln$) ; 58.0$ ($s, \mathrm{C}(2)$ of Aib$) ; 56.5,56.1$ (2d, C(2) of Leu, $\mathrm{C}(2)$ of Valol); 41.3, 40.4 (2t, C(3) of Phe(2Me), C(3) of Leu); 33.6 ($t, \mathrm{C}(4)$ of Gln); 30.1 (d, $\mathrm{C}(3)$ of Valol); 28.6 ($t, \mathrm{C}(3)$ of Gln); 25.8 ($d, \mathrm{C}(4)$ of Leu); 26.8, 24.7, 24.3, 23.2, 22.2 (5q, 2 Me of $\mathrm{Aib}, \mathrm{Me}(3)$ of $\mathrm{Phe}(2 \mathrm{Me}), 2 \mathrm{Me}$ of Leu); 20.1, 19.5 (2q, 2 Me of Valol). ESI-MS (TFA): $748\left(18,[M+\mathrm{Na}]^{+}\right), 726\left(77,[M+1]^{+}\right), 708\left(12,[M-\mathrm{OH}]^{+}\right), 624(100,[M-$ Valol $]^{+}$), 494 (22, [$M-$ Gln-Valol $]^{+}$).
14.4. $\mathrm{N}-\{(\mathrm{S})-1-[(\{2-[((\mathrm{R})-2-\{[4-$ Amino-(S)-1-(\{[(S)-1-(hydroxymethyl)-2-methylpro-pyl]amino\}carbonyl)-4-oxobutyl]amino\}-1-benzyl-1-methyl-2-oxoethyl)amino]-1,1-dimethyl-2-oxoethyl\}amino)carbonyl]-3-methylbutyl\} 4-Bromobenzamide (pBrBz-Leu-Aib-(R)-Phe(2Me)-Gln-Valol; (R)-13g). As described for 13a, with (R)-2g ($25 \mathrm{mg}, 0.035$ $\mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(10 \%$ on activated charcoal, 5 mg$), \mathrm{MeOH}(1.5 \mathrm{ml})$, and $\mathrm{H}_{2}, 16 \mathrm{~h}$ at r.t., filtration over Celite, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{mg}, 0.099 \mathrm{mmol})$, 4-bromobenzoylchloride
$(10 \mathrm{mg}, 0.046 \mathrm{mmol}), 3 \mathrm{~h}$ at r.t., filtration and washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 20 \mathrm{mg}(75 \%)$ of $(R)-$ 13g. Colorless solid. M.p. $127.4-128.5^{\circ} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.37$. IR: $3422 \mathrm{v} s$, $2929 m, 1648 s, 1534 m, 1458 w, 1388 w, 1284 w, 1070 w, 1011 w, 760 w, 711 w$. ESI-MS (NaI): 806 (12), 798 ($87,[M+\mathrm{Na}]^{+},{ }^{81} \mathrm{Br}$), $757\left(8,[M-\mathrm{OH}]^{+},{ }^{81} \mathrm{Br}\right), 729$ (16), 655 (9), 613 (13), 589 (32), 573 (8), 514 (15), 485 (17), 441 (12).

After recrystallization from MeOH and acetone, crystals were obtained. The attempted X-ray crystal-structure determination failed, as the reflexes were not strong enough to solve the structure properly.
15. X-Ray Crystal-Structure Determination of 13a, 13b, (S)-2d, (S)-2e, (S)-13f, (S)13g, $(R)-\mathbf{6 c},(R)-\mathbf{7 c}$, and $(R)-\mathbf{- 7 d}$ (see Tables 6 and 7, and Figs. 1 and 2$)^{4}$). All measurements were conducted at low temp. using graphite-monochromated $\mathrm{Mo} K_{\alpha}$ radiation ($\lambda 0.71073$ \AA). The data collection and refinement parameters are given in Tables 6 and 7, respectively, and views of the molecules are shown in Figs. 1 and 2. The intensities were corrected for Lorentz and polarization effects, and for 13a, 13b, and (S)-13g, an empirical absorption correction, based on azimuthal scans of several reflections, was also applied [40]. For (S)-13f, a numerical absorption correction [41] was applied. Equivalent reflections, including Friedel pairs for $(S)-\mathbf{2 e},(R) \mathbf{- 6 c}$, and $(R) \mathbf{- 7 d}$, were merged. Structures 13a, 13b, and (S)-13g were solved by Patterson methods using DIRDIF92 [42], which revealed the positions of the Br -atom. All remaining non-H atoms were located in Fourier expansions of the Patterson solution. Structures $(S)-\mathbf{2 d},(S) \mathbf{- 2 e},(S)-\mathbf{1 3 f},(R) \mathbf{- 6 c}$, and $(R)-\mathbf{7 c}$ were solved by direct methods, which revealed the positions of all non-H atoms.

[^3]In 13a, the asymmetric unit contains one peptide molecule plus a site partially occupied by a $\mathrm{H}_{2} \mathrm{O}$ molecule. The O -atom of the $\mathrm{H}_{2} \mathrm{O}$ molecule has a site occupation factor of approximately 0.33 . H -atom positions were not defined for the water molecule. The isobutyl group is disordered. Two sets of positions were defined for each of the atoms of this group and the site occupation factor of the major conformation of this group refined to $0.519(4)$. Similarity restraints were applied to the chemically equivalent bond lengths and angles involving all disordered C -atoms, while neighboring atoms within and between each conformation of the disordered group were restrained to have similar atomic displacement parameters. In 13b, the isobutyl group is also disordered and was modelled analogously to 13a; the site occupation factor of the major conformation refined to $0.629(6)$. In (S)-2e, the five-membered ring is disordered over two conformations. Two positions were defined for atom $\mathrm{C}(33)$ of this ring and the site occupation factor of the major conformation refined to $0.55(1)$. Similarity restraints were applied to the $\mathrm{C}-\mathrm{C}$ bond lengths involving the disordered atom. In (S)-13f, there are two symmetry-independent molecules in the asymmetric unit. The atomic coordinates of the two molecules were tested carefully for a relationship from a higher symmetry space group using the program PLATON [43], but none could be found. Disorder is present in the isobutyl substituents at $\mathrm{C}(2)$ of molecule A , and $C(42)$ and $C(48)$ of molecule B. Two positions were defined for the two terminal Me groups and the methine C -atom of each disordered group, but in some cases, particularly at $\mathrm{C}(2)$ and $\mathrm{C}(48)$, the behavior of the refinement suggested that the atoms of these groups adopt several orientations which results in the electron density in these regions being smeared out. Restraints were applied to the bond lengths and the anisotropic displacement parameters of the disordered atoms. The site occupation factors of the major conformations refined to values ranging from $0.505(9)$ [group at $\mathrm{C}(2)$] to $0.66(1)$ [group at $\mathrm{C}(42)$]. In (S) -
$\mathbf{1 3 g}$, the asymmetric unit contains one molecule of the peptide and two molecules of MeOH .

The non- H atoms were refined anisotropically, except for atom $\mathrm{C}(6)$ in $(S) \mathbf{- 1 3 g}$, which was refined isotropcially. The hydroxy H -atoms, where present, and the amide H atoms, except for those in 13a and $(S) \mathbf{- 1 3 f}$, were placed in the positions indicated by difference electron density maps and their positions were allowed to refine together with individual isotropic displacement parameters. All remaining H -atoms in the structures were placed in geometrically calculated positions and refined using a riding model where each H -atom was assigned a fixed isotropic displacement parameter with a value equal to $1.2 \mathrm{U}_{\mathrm{eq}}$ of its parent C -atom ($1.5 \mathrm{U}_{\text {eq }}$ for the Me groups). The refinement of each structure was carried out on F^{2} using full-matrix least-squares procedures, which minimized the function $\Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-F^{2}\right)^{2}$. Corrections for secondary extinction were applied, except for 13a and (S)$\mathbf{1 3 g}$. The crystals of each compound were enantiomerically pure and the absolute configuration was determined experimentally for 13a, 13b, (S)-13f, and $(S) \mathbf{- 1 3 g}$ (absolute structure paramters [44] of $-0.005(8),-0.012(10), 0.004(5)$, and $-0.003(11)$, resp.). The absolute configurations of the other compounds could not be determined, as no atoms exhibiting significant anomalous scattering are present. In these latter cases, the enantiomer used in each refinement was based on the known configuration derived from the synthetic precursors of the molecule.

Neutral atom scattering factors for non-H atoms were taken from [45], and the scattering factors for H -atoms were taken from [46]. Anomalous dispersion effects were included in $F_{\text {calc }}$ [47]; the values for f^{\prime} and $f^{\prime \prime}$ were those of [48]. The values of the mass attenuation coefficients are those of [49]. All calculations were performed using the SHELXL97 program [50].

Table 6

Table 7

REFERENCES

[1] J.-P. Obrecht, P. Schönholzer, C. Jenny, R. Prewo, H. Heimgartner, Helv. Chim. Acta 1988, 71, 1319.
[2] a) R. S. Rathore, Biopolymers 2005, 80, 651; b) M. Hanyu, T. Murashima, T. Miyazawa, T. Yamada, Tetrahedron Lett. 2004, 45, 8871; c) J.-P. Mazaleyrat, K. Wright, A. Gaucher, N. Toulemonde, M. Wakselman, S. Oancea, C. Peggion, F. Formaggio, V. Setnicka, T. A. Keiderling, C. Toniolo, J. Am. Chem. Soc. 2004, 126, 12874.
[3] C. Toniolo, H. Brückner, 'Topical Issue Peptaibiotics', in Chem. Biodiv. 2007, 4, 1021-1412; ‘The Peptaibol Database', http://www.cryst.bbk.ac.uk/peptaibol.
[4] C. Toniolo, E. Benedetti, ICI Atlas of Science: Biochemistry 1988, 1, 225; C. Toniolo, E. Benedetti, Trends Biochem. Sci. 1991, 16, 350.
[5] a) J. M. Humphrey, A. R. Chamberlin, Chem. Rev. 1997, 97, 2243; b) T. Butters, P. Huetter, G. Jung, N. Pauls, H. Schmitt, G. M. Sheldrick, W. Winter, Angew. Chem. Int. Ed. Engl. 1981, 20, 889; c) E. Katz, G. Jung, M. Aydin, N. Lucht, W. A. König, T. Ooka, Liebigs Ann. Chem. 1985, 1041; d) I. L. Karle, M. A. Perozzo, V. K. Mishra, P. Balaram, Proc. Natl. Acad. Sci. USA 1998, 95, 5501; e) R. Gessmann, P. Benos, H. Brückner, M. Kokkinidis, J. Pept. Sci. 1999, 5, 83; f) R. T. N. Luykx, A.

Linden, H. Heimgartner, Helv. Chim. Acta 2003, 86, 4093; g) N. Pradeille, O. Zerbe, K. Moehle, A. Linden, H. Heimgartner, Chem. Biodiv. 2005, 2, 1127.
[6] E. Mossel, F. Formaggio, M. Crisma, C. Toniolo, Q. B. Broxterman, W. H. J. Boesten, J. Kamphuis, P. J. L. M. Quaedflieg, P. Temussi, Tetrahedron: Asymmetry 1997, 8, 1305; M. Horikawa, Y. Shigeri, N. Yumoto, S. Yoshikawa, T. Nakajima, Y. Ohfume, Bioorg. Med. Chem. Lett. 1998, 8, 2027; B. A. Wallace, Bioessays 2000, 22, 227; P. A. Grigoriev, A. Berg, B. Schlegel, S. Heinz, U. Gräfe, J. Antibiot. 2002, 55, 826.
[7] W. Hauke, C. Methfessel, H. U. Wilmsen, E. Katz, G. Jung, G. Boheim, Biochem. Biophys. Acta 1983, 727, 108; M. K. Das, S. Raghothama, P. Balaram, Biochemistry 1986, 25, 7110; K. Dornberger, W. Ihn, M. Ritzau, U. Gräfe, B. Schlegel, W. F. Fleck, J. W. Metzger, J. Antibiot. 1995, 48, 977.
[8] Y. Fu, L. G. J. Hammarström, T. J. Miller, F. R. Fronczek, M. L. McLaughlin, R. P. Hammer, J. Org. Chem. 2001, 66, 7118; J.-F. Lohier, K. Wright, C. Peggion, F. Formaggio, C. Toniolo, M. Wakselman, J.-P. Mazaleyrat, Tetrahedron 2006, 62, 6203; D. Obrecht, C. Spiegler, P. Schönholzer, K. Müller, H. Heimgartner, F. Stierli, Helv. Chim. Acta 1992, 75, 1666; D. Obrecht, C. Albrecht, M. Altorfer, U. Bohdal, A. Grieder, M. Kleber, D. Pfyffer, K. Müller, Helv. Chim. Acta 1996, 79, 1315.
[9] H. Brückner, A. Koza, Amino Acids 2003, 24, 311; J. R. Spencer, V. V. Antonenko, N. G. J. Delaet, M. Goodman, Int. J. Pept. Protein Res. 1992, 40, 282; C. AuvinGuette, E. Frérot, J. Coste, S. Rebuffat, P. Jouin, B. Bodo, Tetrahedron Lett. 1993, 34, 2481; A. Ogrel, W. Bloemhoff, J. Lugtenburg, J. Raap, Liebigs Ann. Recl. 1997, 41; C. Piazza, F. Formaggio, M. Crisma, C. Toniolo, J. Kamphuis, B. Kaptein, Q. B. Broxterman, J. Pept. Sci. 1999, 5, 96.
[10] U. Slomczynska, D. D. Bensen, M. T. Leplawy, G. R. Marshall, J. Am. Chem. Soc. 1992, 114, 4095; U. Slomczynska, J. Zabrocki, K. Kaczmarek, M. T. Leplawy, D. D. Bensen, G. R. Marshall, Biopolymers 1992, 32, 1461.
[11] H. Wenschuh, M. Beyermann, E. Krause, M. Brudel, R. Winter, M. Schürmannn, L. A. Carpino, M. Bienert, J. Org. Chem. 1994, 59, 3275; H. Wenschuh, M. Beyermann, H. Haber, J. K. Seydel, E. Krause, M. Bienert, J. Org. Chem. 1995, 60, 405; L. A. Carpino, M. Beyermann, H. Wenschuh, M. Bienert, Acc. Chem. Res. 1996, 29, 268.
[12] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1986, 69, 1153; H. Heimgartner, Angew. Chem. 1991, 103, 271.
[13] a) P. Wipf, H. Heimgartner, Helv. Chim. Acta 1990, 73, 13; b) W. Altherr, H. Heimgartner, in 'Peptides 1990', Eds. E. Giralt, D. Andreu, ESCOM, Leiden, 1991, p. 107; c) W. Altherr, H. Heimgartner, in 'Peptides 1992', Eds. C. H. Schneider, A. N. Eberle, ESCOM, Leiden, 1993, p. 387; d) N. Pradeille, H. Heimgartner, J. Pept. Sci. 2003, 9, 827; e) W. Altherr, A. Linden, H. Heimgartner, Chem. Biodiv. 2007, 4, 1144.
[14] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1988, 71, 258; M. Sahebi, P. Wipf, H. Heimgartner, Tetrahedron 1989, 45, 2999.
[15] a) J. M. Villalgordo, H. Heimgartner, Tetrahedron 1993, 49, 7215; b) C. Strässler, A. Linden, H. Heimgartner, Helv. Chim. Acta 1997, 80, 1528; c) S. Stamm, A. Linden, H. Heimgartner, Helv. Chim. Acta 2003, 86, 1371.
[16] R. Luykx, C. B. Bucher, A. Linden, H. Heimgartner, Helv. Chim. Acta 1996, 79, 527; G. Suter, S. S. Stoykova, A. Linden, H. Heimgartner, Helv. Chim. Acta 2000, 83, 2961; R. A. Breitenmoser, T. R. Hirt, R. T. N. Luykx, Helv. Chim. Acta 2001, 84,

972; R. A. Breitenmoser, H. Heimgartner, Helv. Chim. Acta 2002, 85, 885; J. L. Räber, K. A. Brun, H. Heimgartner, Heterocycles 2007, 74, in press; M. Löpfe, A. Linden, H. Heimgartner, in preparation.
[17] C. B. Bucher, A. Linden, H. Heimgartner, Helv. Chim. Acta 1995, 78, 935.
[18] C. B. Bucher, H. Heimgartner, Helv. Chim. Acta 1996, 79, 1903.
[19] K. A. Brun, A. Linden, H. Heimgartner, Helv. Chim. Acta 2001, 84, 1756.
[20] C. K. Johnson, 'ORTEP II - Report ORNL-5138', Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
[21] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. 1995, 34, 1555.
[22] K. A. Brun, A. Linden, H. Heimgartner, Helv. Chim. Acta 2002, 85, 3422.
[23] C. Toniolo, E. Benedetti, Trends Biochem. Sci. 1991, 16, 350.
[24] V. Pavone, B. Di Blasio, A. Santini, E. Benedetti, C. Pedone, C. Toniolo, M. Crisma, J. Mol. Biol. 1990, 214, 633.
[25] N. Shamala, R. Nagaraj, P. Balaram, J. Chem. Soc., Chem. Commun. 1978, 996.
[26] B. Di Blasio, A. Santini, V. Pavone, C. Pedone, E. Benedetti, V. Moretto, M. Crisma, C. Toniolo, Struct. Chem. 1991, 2, 523.
[27] M. Vlassi, H. Brueckner, M. Kokkinidis, Acta Crystallogr., Sect. B 1993, 49, 560.
[28] C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, Macromolecules 1986, 19, 472.
[29] C. Toniolo, G. M. Bonora, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone, C. Pedone, Macromolecules 1985, 18, 895.
[30] R. Bardi, A. M. Piazzesi, C. Toniolo, P. Balaram, Biopolymers 1986, 25, 1635.
[31] A. Santini, B. Di Blasio, S. Galdiero, R. Iacovino, C. Pedone, E. Benedetti, M. Crisma, C. Toniolo, Z. Kristallogr. 1996, 211, 616.
[32] C. Toniolo, M. Crisma, G. M. Bonora, B. Klajc, F. Lelj, P. Grimaldi, A. Rosa, S. Polinelli, W. H. J. Boesten, E. M. Meijer, H. E. Schoemaker, J. Kamphuis, Int. J. Pept. Protein Res. 1991, 38, 242.
[33] A. Aubry, B. Bayeul, G. Précigoux, M. Pantano, F. Formaggio, M. Crisma, C. Toniolo, W. H. J. Boesten, H. E. Schoemaker, J. Kamphuis, J. Chem. Soc., Perkin Trans. 2 1994, 525.
[34] C. Toniolo, M. Crisma, F. Formaggio, G. Valle, G. Cavicchioni, G. Precigoux, A. Aubry, J. Kamphuis, Biopolymers 1993, 33, 1061.
[35] C. Toniolo, F. Formaggio, M. Crisma, G. M. Bonora, S. Pegoraro, S. Polinelli, W. H. J. Boesten, H. E. Schoemaker, Q. B. Broxterman, J. Kamphuis, Pept. Res. 1991, 5, 56.
[36] M. Pantano, F. Formaggio, M. Crisma, G. M. Bonora, S. Mammi, E. Peggion, C. Toniolo, W. H. J. Boesten, Q. B. Broxterman, H. E. Schoemaker, J. Kamphuis, Macromolecules 1993, 26, 1980.
[37] F. Formaggio, M. Crisma, G. M. Bonora, M. Pantano, G. Valle, C. Toniolo, A. Aubry, D. Bayeul, J. Kamphuis, Pept. Res. 1995, 8, 6.
[38] P. Wipf, Dissertation, Universität Zürich, 1987.
[39] M. Sahebi, Diplomarbeit, Universität Zürich, 1987.
[40] A. C. T. North, D. C. Phillips, F. S. Mathews, Acta Crystallogr., Sect. A 1968, 24, 351.
[41] P. Coppens, L. Leiserowitz, D. Rabinovich, Acta Crystallogr. 1965, 18, 1035.
[42] P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granada, J. M. M. Smits, C. Smykalla, 'DIRDIF-92. The DIRDIF program system. Technical Report of the Crystallography Laboratory', University of Nijmegen, The Netherlands, 1992.
[43] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
[44] H. D. Flack, Acta Crystallogr., Sect. A 1983, 39, 876; G. Bernardinelli, H. D. Flack, Acta Crystallogr., Sect. A 1985, 41, 500.
[45] E. N. Maslen, A. G. Fox, M. A. O'Keefe, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kuwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1, p. 477.
[46] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
[47] J. A. Ibers, W. C. Hamilton, Acta Crystallogr. 1964, 17, 781.
[48] D. C. Creagh, W. J. McAuley, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.6.8, p. 219.
[49] D. C. Creagh, J. H. Hubbell, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 4.2.4.3, p. 200.
[50] G. M. Sheldrick, 'SHELXL97, Program for the Refinement of Crystal Structures', University of Göttingen, Germany, 1997.
[51] G. M. Sheldrick, 'SHELXS97, Program for the Solution of Crystal Structures', University of Göttingen, Germany, 1997.
[52] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, SIR92, J. Appl. Crystallogr. 1994, 27, 435.

Legends

Fig. 1. ORTEP Plots [20] of the molecular structures of a) (R)-6c (Z-Leu-Aib-(R)-Iva-OH), b) (R)-7c (Z-Leu-Aib-(R)-Iva-NHMe), and c) (R)-7d (Z-Leu-Aib-(R)-Val(2Me)NHMe) (50\% probability ellipsoids; arbitrary numbering of the atoms)

Fig. 2. ORTEP Plots [20] of the molecular structures of a) 13a ($p \mathrm{BrBz}-\mathrm{Leu}-\mathrm{Aib}-\mathrm{Aib}-$ Gln-Valol), b) 13b ($p \mathrm{BrBz}-\mathrm{Leu}-\mathrm{Aib}^{\left.\left.-\mathrm{Ac}_{5} \mathrm{c}-\mathrm{Gln}-V a l o l\right), ~ c\right) ~(S)-2 d ~(Z-L e u-A i b-(S)-V a l(2 M e)-~}$ Gln-Valol), d) (S)-2e (Z-Leu-Aib-(S)-Ala(2cPent)-Gln-Valol), e) one of the two symmetryindependent molecules of (S)-13f (p BrBz-Leu-Aib-(S)-Leu(2Me)-Gln-Valol), and f) (S)13g ($p \mathrm{BrBz}-\mathrm{Leu}-\mathrm{Aib}-(S)$-Phe(2Me)-Gln-Valol) (50\% probability ellipsoids; arbitrary numbering of the atoms; any solvent molecules and minor disorder components have been omitted for clarity)

Fig. 3. Temperature dependence of the signals of the amide H-atoms of (S)-2g

Table 1. Synthesis of the Tripeptide Amides $\mathbf{3}$ from Dipeptide 5

Xaa	Azirine1	$\mathrm{R}^{1}, \mathrm{R}^{2}$	$\mathrm{R}^{3}, \mathrm{R}^{4}$	Tripeptide Amide 3	
					Yield [\%]
Aib	1 a	Me, Me	Ph, Me	3a	95
$\mathrm{Ac}_{5} \mathrm{C}$	1b	$-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$	Ph, Me	3b	97
(S)-Iva	(2S)-1c	Me, Et	NaphthEt, Me	$(S)-\mathbf{3 c}$	77 [19]
	(2S)-1i	Me, Et	PhEt, Me	(S)-3i	93 [18]
(R)-Iva	(2R)-1c	Et, Me	NaphthEt, Me	(R)-3c	83 [19]
	(2R)-1i	Et, Me	PhEt, Me	(R)-3i	91 [18]
$(S)-\operatorname{Val}(2 \mathrm{Me})$	$(2 S)-1 \mathbf{d}$	${ }^{\text {i }} \mathrm{Pr}, \mathrm{Me}$	NaphthEt, Me	(S)-3d	67 [19]
$(R)-\mathrm{Val}(2 \mathrm{Me})$	(2R)-1d	$\mathrm{Me},{ }^{\text {i }} \mathrm{Pr}$	NaphthEt, Me	(R)-3d	69 [19]
$(S)-\mathrm{Ala}(2 \mathrm{cPent})$	$(2 S)$-1e	cPent, Me	NaphthEt, Me	$(S)-3 \mathbf{e}$	39 [19]
(R)-Ala(2cPent)	(2R)-1e	Me, cPent	NaphthEt, Me	(R)-3e	38 [19]
$(S)-\mathrm{Leu}(2 \mathrm{Me})$	(2S)-1f	${ }^{\mathrm{i}} \mathrm{Bu}, \mathrm{Me}$	NaphthEt, Me	(S)-3f	64 [19]
$(R)-\mathrm{Leu}(2 \mathrm{Me})$	(2R)-1f	$\mathrm{Me},{ }^{\text {i }} \mathrm{Bu}$	NaphthEt, Me	(R)-3f	60 [19]
(S)-Phe(2Me)	$(2 S)-1 \mathrm{~h}$	Bn, Me	'Prolinol'	$(S)-3 \mathrm{~h}$	70
	(2S)-1g	Bn, Me	NaphthEt, Me	(S)-3g	59 [19]
(R)-Phe(2 Me)	(2R)-1h	Me, Bn	'Prolinol'	(R)-3h	79
	(2R)-1g	Me, Bn	NaphthEt, Me	$(R)-\mathbf{3 g}$	62 [19]

Table 2. Synthesis of the Model Pentapeptides $\mathbf{2}$ and $\mathbf{1 3}$ from Tripeptide Amides $\mathbf{3}$

Xaa	$\mathrm{R}^{1}, \mathrm{R}^{2}$	$\mathrm{R}^{3}, \mathrm{R}^{4}$	Tripeptide	Side Product 7	Pentapeptide 2	pBrBz-Penta-
		Acid 6	from Hydrolysis	peptide 13		

						Yield [\%]		Yield [\%]		Yield [\%]
Aib	Me,	Ph, Me	6 a	88			2a	77	13a	78
$\mathrm{Ac}_{5} \mathrm{C}$	$-\left(\mathrm{CH}_{2}\right)$	Ph, Me	6b	90			2b	87	13b	85
(S)-Iva	Me , Et	NaphthEt,	(S)-6c	37	(S)-7c	30				
		PhEt, Me	$(S)-\mathbf{6} \mathbf{i}$	85			(S)-2i	82 [18]		
(R)-Iva	Et, Me	NaphthEt,	(R)-6c	39	(R)-7c	29				
		PhEt, Me	$(R)-\mathbf{6} \mathbf{i}$	84			(R)-2i	75 [18]		
(S)-Val(2Me)	${ }^{\text {i }} \mathrm{Pr}$, Me	NaphthEt,	(S)-6d	65	(S)-7d	21	$(S)-\mathbf{2 d}$	37		
(R) $-\operatorname{Val}(2 \mathrm{Me})$	$\mathrm{Me},{ }^{\text {i }} \mathrm{Pr}$	NaphthEt,	(R)-6d	80	(R)-7d	9	(R)-2d	41		
(S)-Ala(2cPent)	cPent,	NaphthEt,	(S)-6e	74	(S)-7e	${ }^{\text {a }}$)	(S)-2e	43		
(R)- $\mathrm{Ala}(2 \mathrm{cPent}$)	Me ,	NaphthEt,	(R)-6e	76	(R)-7e	${ }^{\text {a }}$)	(R)-2e	28		
(S)-Leu(2Me)	${ }^{\text {i }} \mathrm{Bu}$,	NaphthEt,	$(S)-6 \mathbf{f}$	47	(S)-7f	28	(S)-2f	60	(S)-13f	70
(R)-Leu(2Me)	Me,	NaphthEt,	(R)-6f	53	(R)-7f	35	(R)-2f	53	(R)-13f	30
(S)-Phe(2Me)	Bn,	NaphthEt,	$(S)-6 \mathrm{~g}$	25	$(S)-7 \mathrm{~g}$	${ }^{\text {a }}$)	$(S)-2 \mathrm{~g}$	49	(S)-13g	73
		'Prolinol'	(S)-6h	80						
(R)-Phe(2Me)	Me,	NaphthEt,	(R)-6g	36	(R)-79	${ }^{\text {a }}$)	$(R)-2 \mathrm{~g}$	56	(R)-13g	75
		'Prolinol'	(R)-6h	59						

[^4]Table 3. Torsion Angles of the First β-Turn (Amino Acids $i, i+1, i+2$, and $i+3$)

	$\phi_{i+1}\left[^{\circ}\right]$	$\psi_{i+1}\left[^{\circ}\right]$	$\phi_{i+2}\left[^{\circ}\right]$	$\psi_{i+2}\left[^{\circ}\right]$	type of β-turn
13a	$-56.7(6)$	$-42.7(6)$	$-57.0(6)$	$-31.5(5)$	III
13b	$-54.9(7)$	$-40.2(7)$	$-58.2(7)$	$-32.3(6)$	III
(S)-2d	$-49.6(2)$	$-44.6(1)$	$-58.9(1)$	$-24.9(1)$	III
$(S)-\mathbf{2 e}$	$-51.3(2)$	$-43.3(2)$	$-60.1(2)$	$-23.1(2)$	III
$(S)-13 f$ mol. A	$-54.8(4)$	$-43.1(3)$	$-62.7(3)$	$-26.5(3)$	III
$(S)-13 f$ mol. B	$-54.3(4)$	$-42.9(4)$	$-59.7(4)$	$-28.6(4)$	III
$(S)-13 \mathbf{m}$	$-53.2(6)$	$-44.2(6)$	$-54.6(7)$	$-37.1(7)$	III

Table 4. Torsion Angles of the Second β-Turn (Amino Acids $i+1, i+2, i+3$, and $i+4$)

	$\phi_{i+2}\left[{ }^{\circ}\right]$	$\left.\psi_{i+2}{ }^{\circ}\right]$	$\left.\phi_{i+3}{ }^{[}\right]$	$\left.\psi_{i+3}{ }^{\circ}{ }^{\circ}\right]$	type of β-turn
13a	-57.0(6)	-31.5(5)	-78.7(5)	-4.0(5)	I
13b	-58.2(7)	-32.3(6)	-78.3(6)	-5.0(7)	I
(S)-2d	-58.9(1)	-24.9(1)	-77.1(1)	-1.0(2)	I
(S)-2e	-60.1(2)	-23.1(2)	-76.8(2)	-2.0(2)	I
(S)-13f mol. A	$-62.7(3)$	-26.5(3)	-75.6(3)	-9.3(4)	I
(S)-13f mol. B	-59.7(4)	-28.6(4)	-76.8(4)	-8.3(4)	I
(S)-13g	-54.6(7)	-37.1(7)	-71.7(7)	-28.1(8)	III

Table 5. Temperature Coefficients of the Signals of the Amide $\mathrm{H}-\mathrm{Atoms}$ of (S)-2g

Amide Protons	$[\mathrm{Hz} / \mathrm{K}]$	$\left[10^{-3} \mathrm{ppm} / \mathrm{K}\right]$
NH of Leu	$-\mathbf{6 . 7 7}$	$-\mathbf{2 . 2 6}$
NH of Aib	-5.54	-1.85
NH of Phe(2Me)	not observed	not observed
NH of Gln	-0.96	-0.32
NH of Valol	-1.53	-0.51
NH(1) of Gln Side Chain	-3.25	-1.08
NH(2) of Gln Side Chain	-1.27	-0.42

[^0]: ${ }^{1}$) Part of the PhD thesis and the Diploma thesis of K.B., Universität Zürich

[^1]: ${ }^{2}$) The side product (S)-7f was not isolated in the described reaction. In another experiment, it was isolated in 28% yield: starting material (S)-3f: 249 mg (0.386 mmol); side product (S)-7f: $105 \mathrm{mg}(0.214 \mathrm{mmol})$.

[^2]: ${ }^{3}$) The side product $(R)-7 \mathbf{f}$ was not isolated in the described reaction. In another experiment, it was isolated in 35% yield: starting material (R)-3f: 909 mg (1.410 mmol); side product (R)-7f: $242 \mathrm{mg}(0.493 \mathrm{mmol})$.

[^3]: ${ }^{4}$) CCDC-670070 - 670078 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

[^4]: ${ }^{a}$) Not isolated.

