Synthesis and cyclization of 1'-[(N-propylcarbamoyl) methyl]spiro[1-benzopyran-2,2'-indoles]

Neringa Kleiziené,

Vytas Martynaitis,

Sonata Krikštolaitytè and

Algirdas Šačkus*
Kaunas University of Technology, Institute of Synthetic Chemistry, Radvilènu pl. 19, LT-50270 Kaunas, Lithuania

Abstract

Condensation of 1-propyl- and 1-(3-phenylpropyl)imidazo[1,2-a]indoles with ortho-hydroxy-substituted aromatic aldehydes afforded 1'-[N-propyl- and N -(3-phenylpropyl)carbamoyl]methylspiro[1-benzopyran-2,2'-indoles]. Treatment of the latter with potassium hydroxide gave bridged oxazepino[3,2-a]indole derivatives.

Key words: propyl group, indole, imidazo[1,2-a]indole, spirobenzopyran, oxa-zepino[3,2-a]indole

INTRODUCTION

The formation of heterocyclic rings on cyclization reactions of in situ generated azomethine ylides has emerged as a widely used synthetic method [1]. The attraction of this synthetic construction is the ease of generation of 1,3 -dipoles and a high degree of molecular complexity provided in a single cyclization reaction step. Recent examples of this approach included the synthesis of a wide variety of fused [2], spiro [3] and bridged [4] heterocyclic ring systems.

We have recently developed a new method for the construction of the pyrrolo[2,1-a]isoquinoline ring system based on condensation of 2 -carbamoyl-metyl-1-methyl-3,4-isoquinolinium salts or their cyclic form 10b-methylimidazo[2,1-a]isoquinolines with aromatic and heteroaromatic aldehydes followed by intramolecular addition of the methylene carbon atom to the double bond of the ethenyl moiety [5]. The proposed mechanism of such transformation includes generation of an intermediate azomethine methylide. It was found also that condensation of 1-carbamoylmethyl-2,3,3-trimethyl-3H-indolium salts with benzaldehydes afforded 9a-styrylimidazo[1,2a]indole derivatives, which did not undergo further transformation to pyrrolo[1,2-a]indole ring system [6]. However, similar condensation of 1-(N -substituted carbamoylmethyl)-2,3,3-trimethyl-3H-indolium

[^0]salts with salicyl aldehydes produced 1-(N-substituted carbamoylmethyl)indoline spiropyrans which easily underwent rearrangement to the bridged oxa-zepino[3,2-a]indole derivatives under treatment with strong bases [7]. The latter found application in preparation of imprinted polymer stationary phases. It has been shown that the structure of a substituent at the nitrogen atom of the carbamoylmethyl group has a significant influence on enantiorecognition of chiral molecules [8].

We now report further synthetically useful examples where indoline spiropyrans, bearing a substituted methylene group at the nitrogen atom, are transformed to bridged oxazepino $[3,2-a]$ indole derivatives. In the present work, synthesis and base catalysed cyclization of 1'-[(N-propylcarbamoyl)methyl]-1',3'-dihydrospiro[1-ben-zopyran-2,2'-indole] have been explored.

RESULTS AND DISCUSSION

The starting 9,9,9a-trimethyl-1,2,3,9a-tetrahydro-9H-imidazo[1,2-a]indol-2-one 1 was prepared by the reaction of 2,3,3-trimethyl-3H-indole with α-chloroacetamide [9]. Alkylation of 1 with propyl iodide afforded 1-propylimidazo[1,2-a]indol-2-one 2a [10], while the use 3-bromopropylbenzene gave new derivative 2b.

Reaction of 1-substituted imidazo[1,2-a]indol-2ones 2 a, b with 5 -nitrosalicylaldehyde was carried out in acetic acid. Work-up of the reaction mixture with base gave 6-nitrospirobenzopyrans 3a, b. The

2. Sodium acetate, $\mathrm{H}_{2} \mathrm{O}$

4a-c
5a-c

2a $\mathrm{R}=\mathrm{H}, \mathbf{b} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathbf{3}-\mathbf{5}$ a $\mathrm{R}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{NO}_{2} ; \mathbf{b}$ $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{NO}_{2}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{c} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}+\mathrm{R}^{2}=$ $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}$
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a}, \mathbf{b}$ contained a characteristic doublet of the methine proton in the area of 5.805.89 ppm with vicinal $3_{3,4}=10.3-10.6 \mathrm{~Hz}$, which evidences a cis-allocation of vinylic protons in the spiropyran system [11], while in the ${ }^{13} \mathrm{C}$ NMR spectra the signal of the spirocarbon $\mathrm{C}-2$ was situated at 105.96 and 106.05 ppm , respectively.

When 3a, b were treated with sodium hydroxide in boiling ethanol, formation of a mixture of cis- and trans-5a,13-methano-1,3-benzoxazepino[3,2a]indoles $\mathbf{4 a}, \mathbf{b}$ and $\mathbf{5 a}, \mathbf{b}$ took place, from which the target products were isolated by fractional crystallization and methods of a column chromatography. A ssignment of cis- and trans-configuration to $\mathbf{4 a}, \mathbf{b}$ and $\mathbf{5 a}, \mathbf{b}$ was based on comparisons with the ${ }^{1} \mathrm{H}$ NMR spectra of the relevant structure compounds [7] and results of M M 3* calculations. For example, the experimental value of a vicinal coupling constant between protons $12-\mathrm{H}$ and $13-\mathrm{H}$ ($\left.{ }^{3}\right)_{12}$, ${ }_{13}$) is 4.8 Hz for cis- $\mathbf{4 b}$ and 0 Hz for trans-5b. Monte Carlo conformational searches using the M M 3* force field of the optimized structures followed by energy minimizations gave for the dihedral angle $\mathrm{H}-\mathrm{C}_{(12)}-\mathrm{C}_{(13)}-\mathrm{H}$ of the optimized structures of cis-4c and trans-5c 40.68° and 88.46°. In such case, ${ }^{3}{ }_{12,13}$ calculated by the Karplus equation [12] is 6.99 Hz for cis-4b and 1.98 Hz for trans-5b, and agrees satisfactorily with the experimental values.

Condensation of 2c with 2-hydroxynaphthaldehyde afforded 1-(3-phenylcarbamoyl)methylindoline naphthopyran 3 c , which was cyclized to bridged oxa-zepino[3,2-a]indoles 4c, 5c by an analogous route as compounds 3a, \mathbf{b}. Trans5c was isolated from the mixture by fractional crystallization.

EXPERIMENTAL

M elting points were determined on a Kleinfeld melting point apparatus. IR spectra were recorded on a Perkin Elmer Spectrum BXII spectrophotometer using KBr pellets. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz and ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectra were recorded at 75 MHz on a Varian Gemini 2000 instrument. Tetramethylsilane was used as the internal standard. For thin layer chromatographic (TLC) analyses, M erck precoated TLC plates (silica gel 60 F 254) were used. Separations by flash chromatography were performed on silica gel Merck, 9385, 230-400 mesh.

1,2,3,9a-Tetrahydro-9,9,9a-trimethyl-1-(3-phenyl-propyl)-9H-imidazo[1,2-a] indol-2-one (2b). 1,2,3,9a-Tetrahydro-9,9,9a-trimethyl-9H-imidazo[1,2-a]indol-2one 1 ($1.52 \mathrm{~g}, 7.0 \mathrm{mmol}$) was dissolved in DMF (8 ml), and finely powdered potassium hydroxide (0.98 $\mathrm{g}, 17.5 \mathrm{mmol}$) was added to the solution. 3-Phenylpropyl bromide ($2.78 \mathrm{~g}, 14.0 \mathrm{mmol}$) was added dropwise, and the solution was stirred for 2 h at room temperature. Then the mixture poured into water $(100 \mathrm{ml})$ and extracted with ether ($3 \times 50 \mathrm{ml}$). The organic layer was separated, washed with water (20 ml) and dried with CaCl_{2}. M ost the solvent was distilled off in vacuo and the residue kept at $4{ }^{\circ} \mathrm{C}$ overnight. The precipitated crystals were filtered off and recrystallized from ethanol. Y ield of $\mathbf{2 b} 1.06 \mathrm{~g}(45 \%)$, m.p. $84-85{ }^{\circ} \mathrm{C}$. IR spectrum: $1710 \mathrm{~cm}^{-1}(\mathrm{C}=0) .{ }^{1 \mathrm{H}}$ NMR spectrum (CDCl_{3}): $0.98\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 1.31$ $\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, 9 \mathrm{a}-\mathrm{CH}_{3}\right), 1.81-1.99(1 \mathrm{H}$, $\mathrm{m}, 1 / 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 2.15-2.32 ($1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 2.56-2.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 2.88-3.00 ($1 \mathrm{H}, \mathrm{m}, 1 / 2$ $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.51-3.63 ($1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.86 ($2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, \mathrm{J}=15.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 6.72-7.33 ppm ($9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR spectrum (CDCl_{3}): 22.74 $\left(9-\mathrm{CH}_{3}\right), 23.68\left(9-\mathrm{CH}_{3}\right), 28.78\left(9 a-\mathrm{CH}_{3}\right), 29.91,33.38$ $\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 42.04$ ($1-\mathrm{CH}_{2}$), 49.52 (C-9), 54.78 (C-3), 91.93 (C-9a), 114.02 (CH), $122.00(\mathrm{CH})$, $122.16(\mathrm{CH}), 125.97(\mathrm{CH}), 3 \times 128.24(3 \times \mathrm{CH}), 2$ $\times 128.35(2 \times \mathrm{CH}), 2 \times 140.91(2 \times \mathrm{C}), 148.40(\mathrm{C})$, $171.15 \mathrm{ppm}(\mathrm{C}=0)$. Found: $\mathrm{C}, 79.20 ; \mathrm{H}, 7.91 ; \mathrm{N}$, 8.22. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ requires: $\mathrm{C}, 79.00 ; \mathrm{H}, 7.84 ; \mathrm{N}$, 8.38\%

1',3'-Dihydro-3',3'-dimethyl-6-nitro-1'-[(N-propylcarbamoyl) methyl] spiro[1-benzopyran-2,2'-indole] (3a). A mixture of $\mathbf{2 a}(1.29 \mathrm{~g}, 5.0 \mathrm{mmol})$ and 5 nitrosalicylaldehyde ($0.92 \mathrm{~g}, 5.5 \mathrm{mmol}$) in acetic acid (10 ml) was heated at $100{ }^{\circ} \mathrm{C}$ for 3 h ; then the mixture was poured into 5% sodium acetate (100 ml) and extracted with ether ($2 \times 15 \mathrm{ml}$). The combined organic extract was washed with water (20 ml) and dried with $\mathrm{M} \mathrm{SSO}_{4}$, the solvent was evaporated and the residue crystallized from ethanol to yield $1.02 \mathrm{~g}(50 \%)$ of 3 a with m.p. $127-128{ }^{\circ} \mathrm{C}$. IR spectrum: 3390 ($\mathrm{N}-\mathrm{H}$), $1660(\mathrm{C}=0$), 1515 (amid II), 1480, $1340 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right): 0.87$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{s}, 3^{3}-\mathrm{CH}_{3}\right)$,
$1.36\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.48(2 \mathrm{H}$, sext., $\mathrm{J}=7.2 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.25\left(2 \mathrm{H}, \mathrm{q} ., \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $3.82\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, \mathrm{J}=17.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.89(1 \mathrm{H}, \mathrm{d}$, $J=10.3 \mathrm{~Hz}, \mathbf{C H}=\mathrm{CH}$), 6.54-8.08 ppm (9H, m, ArH, $\mathrm{CH}=\mathbf{C H}, \mathrm{NH}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right): 11.11$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.91\left(3^{\prime}-\mathrm{CH}_{3}\right), 22.66\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.94\left(3^{\prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 40.80\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 48.06\left(\mathrm{C}-3^{\prime}\right), 52.49\left(1^{\prime}-\mathrm{CH}_{2}\right)$, 105.96 (C-2'), 107.63, 115.34, 118.11, 120.31, 121.14, 121.93, 122.78, 125.98, 127.95, 129.13, 135.77, 141.26, 145.71, 158.48 ($\left.14 \mathrm{C}_{(\mathrm{Ar}, \mathrm{CH}=\mathrm{CH})}\right), 168.87 \mathrm{ppm}(\mathrm{C}=0)$. Found: C, 68.10; H, 6.42; N, 10.50. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, 67.80; H, 6.18; N, 10.31\%.

1',3'-Dihydro-3',3'-dimethyl-6-nitro-1'-[N-(3-phenylpropyl)carbamoyl] methylspiro[1-benzopyran-2,2'-indole] (3b) was synthesized from 2b ($1.67 \mathrm{~g}, 5.0$ mmol) and 5 -nitrosalicylaldehyde ($0.92 \mathrm{~g}, 5.5 \mathrm{mmol}$) by a similar method as compound 3a. Y ield 1.01 g (42%), m.p. $140-141{ }^{\circ} \mathrm{C}$ (from ethanol). IR spectrum: 3240 ($\mathrm{N}-\mathrm{H}$), 1660 ($\mathrm{C}=0$), 1515 (amid II), 1490, $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 1.24$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.34\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.79(2 \mathrm{H}, \mathrm{p} .$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 2.55(2 \mathrm{H}, \mathrm{t} ., \mathrm{J}=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.27\left(2 \mathrm{H}, \mathrm{q} \cdot, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right), 3.80$ $\left(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, \mathrm{J}=18 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $10.6 \mathrm{~Hz}, \mathbf{C H}=\mathrm{CH}), 6.48-8.08 \mathrm{ppm}(14 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ $\mathrm{H}, \mathrm{CH}=\mathbf{C H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$: $20.05\left(\mathrm{CH}_{3}\right), 26.13\left(\mathrm{CH}_{3}\right), 31.12\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 32.97$ $\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 38.71\left(\mathrm{NHCH}_{2}\right), 48.16\left(\mathrm{C}-3^{\prime}\right), 52.68$ ($\mathbf{1}^{\prime}-$ $\left.\mathrm{CH}_{2}\right), 106.05$ ($\mathrm{C}-\mathrm{Q}^{\prime}$), 107.75, 115.47, 118.17, 120.35, $121.36,122.11,122.93,126.07,126.17,128.14,128.26$, $4 \times 128.46,129.33,135.88,141.02,141.30,145.71$ ($20 \mathrm{C}_{(\mathrm{Ar}, \mathrm{C}=\mathrm{C})}$), $168.99 \mathrm{ppm}(\mathrm{C}=0$). Found: $\mathrm{C}, 72.16$; $\mathrm{H}, 6.13 ; \mathrm{N}, 8.53 . \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $\mathrm{C}, 72.03 ; \mathrm{H}$, 6.04; N, 8.69\%.

1,3-D ihydro-3,3-dimethyl-1-[N -(3-phenylpropyl)car-bamoyl]methylspiro[indol-2,3'-naphtho[2,1-b] pyran] (3c) was synthesized from $2 \mathrm{~b}(1.67 \mathrm{~g}, 5.0 \mathrm{mmol})$ and 2-hydroxy-1-naphthaldehyde ($0.95 \mathrm{~g}, 5.5 \mathrm{mmol}$) by a similar method as for compound 3a. Y ield 1.34 g (55\%), m.p. 197-198 ${ }^{\circ} \mathrm{C}$ (from ethanol). IR spectrum: $3360(\mathrm{~N}-\mathrm{H}), 1660(\mathrm{C}=0)$) $1525 \mathrm{~cm}^{-1}$ (amid II). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 1.25\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right)$, $1.32\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 1.75(2 \mathrm{H}, \mathrm{p} ., \mathrm{J}=7.4 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.53\left(2 \mathrm{H}, \mathrm{t} ., \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.25$ ($2 \mathrm{H}, \mathrm{q} ., \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{NHCH}_{2}$), 3.73-3.99 (2H, AB$\left.\mathrm{q}, \mathrm{J}=17.5 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 5.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH}), 6.50-8.05 \mathrm{ppm}(17 \mathrm{H}, \mathrm{ArH}, \mathrm{CH}=\mathrm{CH}$, $\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 19.82\left(\mathrm{CH}_{3}\right), 25.49$ $\left(\mathrm{CH}_{3}\right), 30.63\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 32.44\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 38.11$ $\left(\mathrm{NHCH}_{2}\right), 47.69(\mathrm{C}-3), 51.49\left(1-\mathrm{CH}_{2}\right), 103.79(\mathrm{C}-2)$, 106.88, 109.72, 116.00, 116.51, 120.20, 121.83, 123.16, $2 \times 125.56,125.60,126.49,127.34,4 \times 128.00,128.02$, 128.60, 129.14, 130.13, 135.88, 140.67, 145.43, 151.04 ($24 \mathrm{C}_{(\mathrm{Ar}, \mathrm{C}=\mathrm{C})}$), $169.14 \mathrm{ppm}(\mathrm{C}=0)$. Found: $\mathrm{C}, 81.21$; $\mathrm{H}, 6.92 ; \mathrm{N}, 5.64 . \mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires: $\mathrm{C}, 81.12 ; \mathrm{H}$, 6.60; N, 5.73\%.
(5aR*,12S*,13S*)-12,13-Dihydro-5a,13-methano-6,6-dimethyl-2-nitro-6H-1,3-benzoxazepino[3,2-a] indo-
le-12-(N -propylcarboxamide) (cis-4a) and (5aR*, 12R*, 135*)-Isomer (trans5a). To a solution of compound 3 a ($1.01 \mathrm{~g}, 2.5 \mathrm{mmol}$) in ethanol (8 ml) fine powdered potassium hydroxide ($0.42 \mathrm{~g}, 7.5$ mmol) was added, the mixture was refluxed for 3 h and then the bulk of the solvent was distilled off. The concentrated solution was poured into water (20 ml), the precipitated crystalline material was collected by filtration and washed with water (5 ml). The obtained product mixture was two times recrystallized from ethanol to afford cis-4a. The combined ethanol filtrate was concentrated in vacuo and the residue purified by column chromatography (silica gel, eluent: acetone/hexane $=1 / 3$) to give trans $5 a$. The yield of compound cis-4a is $0.42 \mathrm{~g}(42 \%)$, m.p. 215$216{ }^{\circ} \mathrm{C}$. IR spectrum: $3380(\mathrm{NH}), 1673(\mathrm{C}=0), 1515$ (amid II), 1478, $1345 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$. NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 0.57\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.06$ $\left(2 \mathrm{H}\right.$, sext, $\left.\mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.50(3 \mathrm{H}, \mathrm{s}, 6-$ $\left.\mathrm{CH}_{3}\right), 1.52\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}_{3}\right), 2.14-2.24\left(2 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}_{2}\right)$, 2.74-2.85 ($1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{NHCH}_{2}$), 3.06-3.18 ($1 \mathrm{H}, \mathrm{m}, 1 / 2$ $\left.\mathrm{NHCH}_{2}\right), 3.81-3.84(1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 3.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $4.9 \mathrm{~Hz}, 12-\mathrm{H}), 6.51-8.10 \mathrm{ppm}(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$: $11.03\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 23.21$, $22.63\left(6-\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.43\left(6-\mathrm{CH}_{3}\right), 32.82(\mathrm{C}-14)$, $40.49\left(\mathrm{NHCH}_{2}\right), 42.13(\mathrm{C}-13), 45.13$ (C-6), 77.64 (C12), 110.39 (CH), 110.91 (C-5a), 116.17 (CH), 122.43 (CH), 122.57 (CH), 124.58 (CH), 124.99 (CH), 125.72 (C) , 128.46 (CH), 138.31 (C), 141.30 (C), 148.45 (C), 158.14 (C), $169.10 \mathrm{ppm}(\mathrm{C}=0)$. Found: $\mathrm{C}, 67.71$; H, 6.27; $\mathrm{N}, 9.98 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $\mathrm{C}, 67.80 ; \mathrm{H}, 6.18$; $\mathrm{N}, 10.31 \%$. The yield trans-5a 0.18 g (18%), m.p. $164-165{ }^{\circ} \mathrm{C}$ (from acetone). IR spectrum: 3350 (NH), 1673 ($\mathrm{C}=0$) , 1520 (amid II), 1480, $1340 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{DM} \mathrm{SO}-\mathrm{d}_{6}$): $0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.26\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{s}, 6-$ $\left.\mathrm{CH}_{3}\right), 1.42-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.85-2.01(2 \mathrm{H}, \mathrm{m}$, $\left.14-\mathrm{H}_{2}\right), 3.05-3.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}\right), 3.86-4.03(2 \mathrm{H}$, $\mathrm{m}, 13-\mathrm{H}, 12-\mathrm{H}), 5.90-7.71$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 8.17 ppm (1H, br s, NH). ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO-d): $12.24\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 23.37,24.40,27.43,41.27,45.68$, 45.68, $67.70\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}, \mathrm{C}-14, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{C}-13, \mathrm{C}-6\right)$, 71.83 (C-12), 107.37 (CH), 110.63 (C-5a), 120.14, 120.70, 123.41, 126.18, 127.09, 128.46, 128.47, 128.56, 130.30, 140.00, 151.25 ($\left.11 \mathrm{C}_{(\text {ar })}\right), 174.30 \mathrm{ppm}(\mathrm{C}=0)$. Found: C, 67.68; H, 6.22; N, 10.27. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C, 67.80; H, 6.18; N, 10.31\%.
(5aR*,12S*,13S*)-12,13-D ihydro-5a,13-methano-6,6-dimethyl-2-nitro-6H-1,3-benzoxazepino[3,2-a] indo-le-12-[N (3-phenylpropyl)carboxamide] (cis4b) and (5aR*, 12R*, 135*)-Isomer (trans5b). Compounds 4b and $\mathbf{5 b}$ were synthesized from $\mathbf{3 b}(0.91 \mathrm{~g}, 1.9 \mathrm{mmol})$ by a similar method as compounds $4 \mathrm{a}, 5 \mathrm{5a}$. The yield of cis-4b $0.25 \mathrm{~g}(28 \%)$, m.p.: $180-182{ }^{\circ} \mathrm{C}$ (from ethanol). IR spectrum: 3380 (NH), 1650 ($\mathrm{C}=0$), 1510 (amid II), 1475, $1325 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) \cdot{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 1.480-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 1.66$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.34-2.47(4 \mathrm{H}, \mathrm{m}$,

14- $\mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$), 2.98-3.09 ($1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{NHCH}_{2}$), 3.30-3.42 ($1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{NHCH}_{2}$), 3.99-4.01 ($1 \mathrm{H}, \mathrm{m}, 13-$ $\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 12-\mathrm{H}), 6.66-8.17 \mathrm{ppm}$ (13H, m, ArH, NH). ${ }^{13} \mathrm{C}$ NMR spectrum (CDCl_{3}): $23.80\left(\mathrm{CH}_{3}\right), 27.09\left(\mathrm{CH}_{3}\right), 31.49\left(\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 33.29$ $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 33.49(\mathrm{C}-14), 38.90\left(\mathrm{NHCH}_{2}\right), 42.76(\mathrm{C}-$ 13), 45.80 (C-6), 78.26 (C-12), 111.10 (CH), 111.65 (C-5a), $116.89(\mathrm{CH}), 123.20(\mathrm{CH}), 123.32(\mathrm{CH})$, 125.33 (CH), 125.80 (CH), 126.44 (C), 126.65 (CH), $128.76(2 \times \mathrm{CH}), 129.11(2 \times \mathrm{CH}), 129.21(\mathrm{CH})$, 139.02 (C), 141.62 (C), 142.03 (C), 149.18 (C), 158.88 (C), $169.98 \mathrm{ppm}(\mathrm{C}=0)$. Found: $\mathrm{C}, 71.94 ; \mathrm{H}, 6.17$; $\mathrm{N}, 8.41 . \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $\mathrm{C}, 72.03 ; \mathrm{H}, 6.04 ; \mathrm{N}$, 8.69%. The yield of compound trans-5b is 0.32 g (36%), m.p. $153-155{ }^{\circ} \mathrm{C}$ (from acetone). IR spectrum: 3425 (NH), 1650 ($\mathrm{C}=0$) , 1510 (amid II), 1475, $1325 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO-d ${ }_{6}$): $1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.68-1.98(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}, 14-\mathrm{H}_{2}\right), 2.56-2.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$, 3.06-3.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}$), $3.90-4.01$ ($1 \mathrm{H}, \mathrm{m}, 13-$ H), 3.97 ($1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}$), $5.89-8.20 \mathrm{ppm}(13 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$, NH). ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO-d $)$: $27.93\left(\mathrm{CH}_{3}\right)$, $28.15\left(\mathrm{CH}_{3}\right), 31.03,32.50,38.04,39.28,44.61,52.21$, $66.52\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{C}-14, \mathrm{NHCH}_{2}, \mathrm{C}-13\right.$, C-6, C-12), 106.33, 116.95, 118.35, 121.37, 123.77, $125.43,125.88,126.85,128.02,128.12,128.12,128.19$, 128.19, 128.66, 132.72, 140.03, 141.65, 144.57, 161.48 (19 $\left.\mathrm{C}_{(\mathrm{Ar})}\right), 170.89 \mathrm{ppm}(\mathrm{C}=0)$. Found: $\mathrm{C}, 71.90 ; \mathrm{H}$, 6.23; $\mathrm{N}, 8.42 . \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $\mathrm{C}, 72.03 ; \mathrm{H}, 6.04$; N, 8.69\%.
(7aR*,14R*,15S*)-14,15-Dihydro-8,8-dimethyl-8H-7a,15-methanonaphth[$\left.1^{\prime}, 2^{\prime}: 6,7\right][1,3]$ oxazepino[3,2a] indole-14-[\mathbf{N} (3-phenylpropyl) carboxamide] (trans5c). The compound $3 \mathbf{c}(0.98 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in ethanol (8 ml), and finely powdered potassium hydroxide ($0.34 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added to the solution. The mixture was refluxed for 4 h and was poured into water (30 ml) and extracted with ether ($2 \times 15 \mathrm{ml}$). The organic layer was washed with water (5 ml) and dried over CaCl_{2}. The sovent was evaporated under reduced pressure and the residue crystallized from ethanol to afford trans5c. Y ield of $0.37 \mathrm{~g}(38 \%)$, m.p. $129-131{ }^{\circ} \mathrm{C}$. IR spectrum: 3320 (NH,) $1650(\mathrm{C}=0), 1520 \mathrm{~cm}^{-1}$ (amid II). ${ }^{1} \mathrm{H}$ NMR spectrum (CDCl_{3}): $1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.70-1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, $2.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 16-\mathrm{H}), 2.47-2.54(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, 16-\mathrm{H}\right), 3.23-3.32(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 4.43$ ($1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}$), 4.43-4.46 (1H, m, , 15-H), $5.85(1 \mathrm{H}$, br t, NH), $6.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 12-\mathrm{H}), 6.77-$ $8.09 \mathrm{ppm}(14 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 20.03\left(\mathrm{CH}_{3}\right), 27.75\left(\mathrm{CH}_{3}\right), 27.78,30.69$, $32.48\left(\mathrm{C}-16, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}, \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right.$) $), \quad 38.39$ $\left(\mathrm{NHCH}_{2}\right), 41.18(\mathrm{C}-15), 44.03(\mathrm{C}-8), 67.02$ (C-14), 106.41, 106.45 (C-7a, C-12), 118.18, 118.95, 120.76, 122.40, 122.76, 125.55, 126.31, 127.40, 127.78, $2 \times$ $127.95,128.04,3 \times 128.14,128.25,130.04,140.47$, 140.47, 141.35, $150.20\left(21 C_{(\text {Ar })}\right), 169.51 \mathrm{ppm}(\mathrm{C}=0)$.

Found: C, 81.34; $\mathrm{H}, 6.98 ; \mathrm{N}, 5.76 . \mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires: C, 81.12; H, 6.60; N, 5.73\%.

CONCLUSIONS

1. Indoline spiropyrans possessing N -propyl- and N -(3-phenylpropyl)carbamoylmethyl moieties at the indole ring nitrogen atom can be easily prepared by condensation of 1-propyl- and 1-(3-propylphenyl)imi-dazo[1,2-a]indol-2-one derivatives with ortho-hydro$x y$-substituted aromatic aldehydes.
2. 1'-[N-Propyl- and N-(3-phenylpropyl)carbamo-ylmethyl]spiro[1-benzopyran-2,2'-indoles] rearrange to bridged oxazepino[3,2-a]indole derivatives on treatment with postassium hydroxide in ethanol solution.

Received 02 December 2005
 A ccepted 02 J anuary 2006

References

1. O. Tsuge and S. Kanemasa, Advances in Heterocyclic Chemistry; Katritzky A. R. Ed.; Academic Press: New York, 1989; Vol. 45, pp. 232-349; J. S. Clark, Nitrogen, Oxygen and Sulfur Ylide Chemistry; Oxford University Press: Oxford, 2002, pp. 57-76.
2. M. Nyerges, I. Pintér, A. Virćnyi, I. Bitter and L. Tõke, Tetrahedron Lett., 46, 377 (2005); M. Nyerges, A. Virinyi, W. Zhang, P. W. Groundwater, G. Blaskó and L. Tõke, Tetrahedron, 60, 9937 (2004); H. Okada, T. Akaki, Y. Oderaotoshi, S. Minakata and M. Komatsu, Tetrahedron, 59, 197 (2003); R. Grigg, A. Hodgson, J. Morris and V. Sridharan, Tetrahedron Lett., 44, 1023 (2003); I. Pintér, M. Nyerges, A. Virinyi and L. Tõke, Tetrahedron Lett., 44, 2343 (2003); M. Noguchi, M. Shirai, K. Nakashima, I. Arai, A. Nishida, H. Yamamoto and A. Kakehi, Tetrahedron, 59, 4581 (2003); M. Nyerges, A. Virćnyi, I. Pintér and L. Tõke, Tetrahedron Lett., 44, 793 (2003).
3. A. A. Raj, R. Raghunathan, M. R. SrideviKumari and N. Raman, Bioorg. Med. Chem., 11, 407 (2003); A. A. Raj and R. Raghunathan, Tetrahedron, 59, 2907 (2003); G. Subramaniyan, R. Raghunathan and M. Nethaji, Tetrahedron, 58, 9075 (2002); P. R. Sebahar, H. Osada, T. Usui and R. M. Williams, Tetrahedron, 58, 6311 (2002); R. Grigg, E. L. Millington and M. Thornton-Pett, Tetrahedron Lett., 43, 2605 (2002).
4. G. Pandey, J. K. Laha and G. Lakshmaiah, Tetrahedron, 58, 3525 (2002); P. Blaney, R. Grigg, Z. Rankovic, M. Thornton-Pett and J. Xu, Tetrahedron, 58, 1719 (2002).
5. R. Degutytè, A. Šačkus and U. Berg. J. Chem. Res. (S), 540 (2001). N. Kleiziené, R. Degutytè, U. Berg and A. Šačkus. J. Chem. Res. (S), 370 (2004).
6. Šačkus A., Amankavičienè V. Chem. Heterocycl. Compd., 931 (2002).
7. V. Martynaitis, A. Šačkus and U. Berg, J. Heterocycl. Chem., 39, 1123 (2002); N. Kleizienè, V. Amankavičienè, U. Berg, C. Schicktanz, K. Schlothauer and A. Šačkus, Monatsch. Chem. (in press).
8. E. Machtejevas, B. Sellergren, V. Martynaitis, P. K. Owens and A. Maruška, J. Sep. Sci., 27, 547 (2004).
9. Yu. A. Degutis, A. A. Shachkus and A. G. Urbonavichyus, Chem. Heterocycl. Compd. (Engl. Transl.), 774 (1986).
10. A. A. Shachkus and Yu. A. Degutis, Chem. Heterocycl. Compd. (Engl. Transl.), 41 (1988).
11. A. A. Bothner-By, Adv. Magn. Res., 1, 195 (1965).

Neringa Kleizienė, Vytas Martynaitis, Sonata Krikštolaityté, Algirdas Šačkus

1-[(N-PROPILKARBAMOIL)METIL]SPIRO [1-BENZPIRAN-2,2'-INDOLU] SINTEZĖ IR CIKLIZACIJA

Kondensuojant 1-propil- ir 1-(3-fenilpropil)imidazo[1,2-a]indolus su orto-hidroksigrupe pakeistais aromatiniais aldehidais, susidare 1 '-[N-propil- ir N-(3-fenilpropil)karbamoilmetil]spiro[1-benzopiran- $2,2^{\prime}$-indolai]. Pastarieji junginiai, kaitinami su stipria baze etanolyje, ciklizavosi \mathfrak{a} tiltelinius oksazepino[3,2-a]indolo darinius.

[^0]: * Corresponding author. E-mail: algirdas.sackus@ktu.lt

