Angewandte Eine Zeitschrift der Ceselfschoft Deufscher Chemiker Chemie

Supporting Information

© Wiley-VCH 2007
69451 Weinheim, Germany

Synthesis and Enantioselectivity of P-Chiral Phosphine Ligands Possessing Alkynyl Groups

Tsuneo Imamoto,* Youichi Saitoh, Aya koide, Tomokazu Ogura, and Kazuhiro Yoshida
Department of Chemistry, Graduate School of Science, Chiba University
Yayoi-cho, Inage-ku Chiba 263-8522, Japan

General.

All solvents used in reactions were dried and purified according to standard procedure. NMR spectra were measured with JEOL JMN-GXS-500 (500 MHz) or JEOR JMN-LA-400 (400 MHz) spectrometer in CDCl_{3}. Chemical shifts were reported in δ ppm. Optical rotations were measured with JASCO DIP-370 polarimeter. Enantiomeric excesses were determined by HPLC analysis using Chiralcel AD, OJ-H, OD-H, OB, IA columns and varying concentrations of 2-propanol/hexane as the mobile phase. X-ray crystal structure data were collected using a Bruker SMART APEX II diffractmeter with Mo-K α radiation. Silica gel (Kanto Chemical, Silica Gel 60N for flash chromatography) was used for column chromatography.

(S)-tert-Butylmethyl(phenylethynyl)phosphine-borane (3a)

To a solution of (S)-tert-butylmethylphosphine-borane (1) ($>99 \%$ ee,
 $1.8 \mathrm{~g}, 15.4 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added $n \mathrm{BuLi}(11.6 \mathrm{~mL}$ of a 1.60 M solution in hexane, 18.5 mmol) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred for 15 min . 1,2-Dibromoethane ($2.0 \mathrm{~mL}, 23.1$ mmol) was added dropwise, and the reaction mixture was stirred at $78{ }^{\circ} \mathrm{C}$. After 2 h , lithium phenylacetylide ($30.8 \mathrm{mmol}, 30 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$ solution) was added to the reaction mixture, and the mixture was stirred at room temperature. After 1.5 h , the reaction was quenched with 1 M HCl . The mixture was extracted with EtOAc three times. The combined organic layers were washed with saturated NaHCO_{3} and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel (hexane/EtOAc $=5 / 1$) to give (S)-tert-butylmethyl(phenylethynyl)phosphine-borane (3a) (97% ee, $2.8 \mathrm{~g}, 12.8 \mathrm{mmol}, 83 \%$) as white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.42-0.98(\mathrm{~m}$, $4 \mathrm{H}), 1.29\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{P})=15.6 \mathrm{~Hz}, 9 \mathrm{H}\right), 1.51\left(\mathrm{~d},{ }^{2} J(\mathrm{H}, \mathrm{P})=10.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.33-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.41\left(\mathrm{tt},{ }^{3} J(\mathrm{H}, \mathrm{H})=15.3,{ }^{4} J(\mathrm{H}, \mathrm{H})=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50-7.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, J(\mathrm{CP})=40 \mathrm{~Hz}), 24.96(\mathrm{~d}, J(\mathrm{CP})=4 \mathrm{~Hz}), 29.03(\mathrm{~d}, J(\mathrm{CP})=37 \mathrm{~Hz}), 79.42(\mathrm{~d}$,
$J(\mathrm{CP})=90 \mathrm{~Hz}), 106.00(\mathrm{~d}, J(\mathrm{CP})=12 \mathrm{~Hz}), 120.77,128.42,130.01,132.20 .{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 18.0. HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BP}\left(\mathrm{M}^{+}-\mathrm{H}\right)$ 217.1320, found 217.1313. $[\alpha]^{22}{ }_{\mathrm{D}}=0.97 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=0.0100 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$, HPLC: Daicel Chiralcel OD-H, Hexane $/ \mathrm{PrOH}=199 / 1$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, t_{\mathrm{R}}=11.9 \mathrm{~min}(R), t_{\mathrm{R}}=13.1$ $\min (S)$.

(S)-tert-Butyl(3,3-dimethyl-1-butynyl)methylphosphine-borane (3b)

In a similar manner (S)-tert-butyl(3,3-dimethyl-1-butynyl)methyl-
 phosphine-borane was prepared in 82% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.23-0.89(\mathrm{~m}, 3 \mathrm{H}), 1.21\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=15.1 \mathrm{~Hz}, 9 \mathrm{H}\right), 1.27(\mathrm{~s}$, $9 \mathrm{H}), 1.38\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=10.0 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.54(\mathrm{~d}, J(\mathrm{CP})=40 \mathrm{~Hz}), 24.77(\mathrm{~d}, J(\mathrm{CP})=3 \mathrm{~Hz}), 28.62(\mathrm{~d}, J(\mathrm{CP})=35$ $\mathrm{Hz}), 30.20(\mathrm{~d}, J(\mathrm{CP})=2 \mathrm{~Hz}), 68.70(\mathrm{~d}, J(\mathrm{CP})=95 \mathrm{~Hz}), 116.79(\mathrm{~d}, J(\mathrm{CP})$ $=10 \mathrm{~Hz}){ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 15.7. HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{BP}\left(\mathrm{M}^{+}+\mathrm{K}\right)$ 237.1348, found 237.1351. $[\alpha]_{\mathrm{D}}^{22}=9.4 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}$ ($c=0.0013 \mathrm{~g} \mathrm{~cm}^{-3}$ in CHCl_{3}). Its enantiomeric excess was determined to be 98% ee by HPLC analysis. HPLC: Daicel Chiralpak IA, Hexane $/ i \mathrm{PrOH}=1000 / 1$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=$ $230 \mathrm{~nm}, t_{\mathrm{R}}=13.7 \mathrm{~min}(R), t_{\mathrm{R}}=15.3 \mathrm{~min}(S)$.

(S)-tert-Butylmethyl(triisopropylsilylethynyl)phosphine-borane (3c)

In a similar manner (S)-tert-butylmethyl(triisopropylsilylethynyl)-
 phosphine-borane was prepared in 86% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.27-0.73(\mathrm{~m}, 3 \mathrm{H}), 1.09-1.10(\mathrm{~m}, 21 \mathrm{H}), 1.24\left(\mathrm{~d},{ }^{3} J(\mathrm{HP})=\right.$ $15.4 \mathrm{~Hz}, 9 \mathrm{H}), 1.43\left(\mathrm{~d},{ }^{2} J(\mathrm{HP})=10.2 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J(\mathrm{CP})=40 \mathrm{~Hz}), 10.90,18.43,24.82(\mathrm{~d}, J(\mathrm{CP})=3$ $\mathrm{Hz}), 28.62(\mathrm{~d}, J(\mathrm{CP})=38 \mathrm{~Hz}), 98.26(\mathrm{~d}, J(\mathrm{CP})=77 \mathrm{~Hz}), 113.26(\mathrm{~d}$, $J(\mathrm{CP})=3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.5$. HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{BPSi}\left(\mathrm{M}^{+}-\mathrm{H}\right)$ 297.2342, found 297.2332. $[\alpha]_{\mathrm{D}}^{22}=-8.9$ $\mathrm{cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=0.0101 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. Its enantiomeric excess was determined to be 98% ee by HPLC analysis. Daicel Chiralpak IA, Hexane $/ \mathrm{iPrOH}=1000 / 1$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, $\mathrm{UV}=230 \mathrm{~nm}, t_{\mathrm{R}}=11.0 \mathrm{~min}(R), t_{\mathrm{R}}=13.6 \mathrm{~min}(S)$.

(S)-tert-Butylmethyl(trimethylsilylethynyl)phosphine-borane (3d)

In a similar manner (S)-tert-butylmethyl(trimethylsilylethynyl)phosphine-borane was prepared in 81% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.22(\mathrm{~s}, 9 \mathrm{H}), 1.23\left(\mathrm{~d},{ }^{3} J(\mathrm{HP})=15.4 \mathrm{~Hz}\right.$, $9 \mathrm{H}), 1.42\left(\mathrm{~d},{ }^{2} J(\mathrm{HP})=10.2 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~d}, J(\mathrm{CP})=40 \mathrm{~Hz})$, $25.45(\mathrm{~d}, J(\mathrm{CP})=4 \mathrm{~Hz}), 29.28(\mathrm{~d}, J(\mathrm{CP})=38 \mathrm{~Hz}), 96.79(\mathrm{~d}, J(\mathrm{CP})=77 \mathrm{~Hz}), 116.66(\mathrm{~d}, J(\mathrm{CP})$
$=3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.1 .[\alpha]^{22}{ }_{\mathrm{D}}=-1.59 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=0.0100 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ in CHCl_{3}). Its enantiomeric excess was determined to be 99% ee by HPLC analysis. Daicel Chiralcel OJ-H, Hexane $/ \mathrm{iPrOH}=99 / 1$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=230 \mathrm{~nm}, t_{\mathrm{R}}=8.8 \mathrm{~min}$ $(R), t_{\mathrm{R}}=9.7 \mathrm{~min}(S)$.
(S)-tert-Butylmethylphenylphosphine-borane (3e), ${ }^{[1-4]}$ (S)-tert-Butyl(o-methoxyphenyl)-methylphosphine-borane ($3 f$), ${ }^{[2,5]}$ and (S)-Benzyl(tert-butyl)methylphosphine-borane (4b) ${ }^{[6,7]}$

The absolute configurations and enantiomeric excesses of the products ($\mathbf{3} \mathbf{e}, \mathbf{3 f}$, and $\mathbf{4 b}$) were determined by HPLC analysis in comparison with the reported data. ${ }^{[1-7]}$ 3e: Daicel Chiralcel $\mathrm{OJ}-\mathrm{H}$, Hexane $/ \mathrm{PrOH}=9 / 1$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=230 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=25.5 \mathrm{~min}(R), \mathrm{t}_{\mathrm{R}}=$ $27.7 \mathrm{~min}(S)$; 3f: Daicel Chiralcel OD-H, Hexane $/ \mathrm{iPrOH}=99 / 1$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, UV $=230 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.0 \mathrm{~min}(R), \mathrm{t}_{\mathrm{R}}=11.6 \mathrm{~min}(S)$; 4b: Daicel Chiralcel OD-H, Hexane $/ i \mathrm{PrOH}=$ $9 / 1$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=230 \mathrm{~nm}, t_{\mathrm{R}}=16.9 \mathrm{~min}(R), t_{\mathrm{R}}=18.9 \mathrm{~min}(S)$.

(S)-n-Butyl(tert-butyl)methylphosphine-borane (4a)

The absolute configuration and the optical purity of compound $\mathbf{4 a}\left([\alpha]_{\mathrm{D}}=-4.1 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\right.$ ($c=0.010 \mathrm{~g} \mathrm{~cm}^{-1}$ in $\left.\mathrm{CHCl}_{3}\right)$) were determined by comparison of the sign of rotation and specific rotation of the authentic sample $\left([\alpha]_{\mathrm{D}}=-4.5 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=0.010 \mathrm{~g} \mathrm{~cm}^{-3}\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right)$) prepared by the reaction of compound $\mathbf{1}$ with $n \mathrm{BuLi}$ and bromobutane.
(S,S)-1,2-Bis(boranato(tert-butyl)(phenylethynyl)phosphino)ethane (6a)
To a solution of (S)-tert-butylmethyl(phenylethynyl)-
 phosphine-borane (3a) ($97 \% \mathrm{ee}, 0.95 \mathrm{~g}, 4.4 \mathrm{mmol}$) and TMEDA ($0.8 \mathrm{~mL}, 5.2 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{~mL})$ was added $s-\operatorname{BuLi}(5.2 \mathrm{~mL}$ of a 1.0 M solution in hexane, 5.2 mmol) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred for 1 h and $-50^{\circ} \mathrm{C}$ for 10 min . Copper(II) chloride $(1.5 \mathrm{~g}, 11 \mathrm{mmol})$ was added with vigorous stirring and the resulting mixture was gradually warmed to room temperature. After 2 h , the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel (hexane/EtOAc $=4 / 1$) to give (S, S)-1,2-bis(boranato(tert-butyl)(phenylethynyl)phosphino)ethane ($\mathbf{6 a}$) ($0.69 \mathrm{~g}, 1.6$ mmol, 73%) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.57-0.80(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.35(\mathrm{~m}$, $18 \mathrm{H}), 2.13-2.28(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.41\left(\mathrm{tt},{ }^{3} J(\mathrm{H}, \mathrm{H})=15.0 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}\right.$, 2H), 7.46-7.47 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.01(\mathrm{~d}, J(\mathrm{CP})=34 \mathrm{~Hz}), 25.30(\mathrm{t}$,
$J(\mathrm{CP})=3 \mathrm{~Hz}), 30.11(\mathrm{~d}, J(\mathrm{CP})=36 \mathrm{~Hz}), 77.88(\mathrm{~d}, J(\mathrm{CP})=88 \mathrm{~Hz}), 107.38,120.39,128.48$, $130.22,132.24 .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.6 .[\alpha]^{22}{ }_{\mathrm{D}}=111 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}(c=0.0100 \mathrm{~g}$ cm^{-3} in CHCl_{3}).

Recrystallization of compound 6a from a mixed solvent of EtOAc and n-hexane gave analysis. Empirical prisms. Absolute configuration of this compound was determined by single crystal X-ray Formula $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{P}_{2}$; Formula weight 444.20; Temperature 173 K ; Wavelength 0.71073 Å; Crystal system Orthorhombic; Space group P2(1)2(1)2; Unit cell dimensions a $=22.202(5) \AA, \quad \alpha=90^{\circ}, \quad b=$ 10.932(3) $\AA, \beta=90^{\circ}, c=11.379$ (3) $\AA, \gamma=90^{\circ}$; Volume 2761.8(11) \AA^{3}; $Z=5$; Density (calculated) 1.335 $\mathrm{Mg} / \mathrm{m}^{3}$; Crystal size $0.45 \times 0.35 \times$ $0.15 \mathrm{~mm}^{3}$; GOF $=1.034$; Final R indice $[I>2 \sigma(I)] R 1=0.0446, w R 2$ $=0.1045$; R indices (all data) $R 1=$ $0.0524, w R 2=0.1095$; Absolute structure parameter 0.06(10). CCDC-641148.

(S,S)-1,2-Bis(boranato(tert-butyl)(3,3-dimethyl-1-butynyl)phosphino)ethane (6b)

This compound was prepared in 73% yield by the
 oxidative coupling of $\mathbf{4 b} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.22-0.88(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.26\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{P})=15.1 \mathrm{~Hz}\right.$, $18 \mathrm{H}), 1.28(\mathrm{~s}, 18 \mathrm{H}), 1.94-2.02(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.05(\mathrm{~d}, J(\mathrm{CP})=34 \mathrm{~Hz}), 25.12,28.58$, $29.58(\mathrm{~d}, J(\mathrm{CP})=37 \mathrm{~Hz}), 30.26,67.35(\mathrm{~d}, J(\mathrm{CP})=93$ $\mathrm{Hz}), 118.42(\mathrm{~d}, J(\mathrm{CP})=10 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 27.8. HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{~B}_{2} \mathrm{P}_{2}\left(\mathrm{M}^{+}+\mathrm{K}\right)$ 433.2906, found 433.2881. $[\alpha]^{22}{ }_{\mathrm{D}}$ $=19.4 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=0.0096 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
(S,S)-1,2-Bis(boranato(tert-butyl)triisopropylsilylethynylphosphino)ethane (5c)
This compound was prepared in 78% yield by the
 oxidative coupling of $\mathbf{4 c} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.27-0.73(\mathrm{~m}, 6 \mathrm{H}), 1.06-1.14(\mathrm{~m}, 42 \mathrm{H})$, $1.25-1.29(\mathrm{~m}, 18 \mathrm{H}), 1.98-2.13(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.92,16.73(\mathrm{~d}, J(\mathrm{CP})=32 \mathrm{~Hz}), 18.50(\mathrm{~d}, J(\mathrm{CP})=2 \mathrm{~Hz}), 25.19,29.63$ (d, $J=36 \mathrm{~Hz}$), $96.47(\mathrm{~d}, J=74 \mathrm{~Hz}), 115.49 .{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.3$. HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{70} \mathrm{~B}_{2} \mathrm{P}_{2} \mathrm{Si}_{2}\left(\mathrm{M}^{+}+\mathrm{K}\right)$ 633.4327, found 633.4327. $[\alpha]_{\mathrm{D}}^{22}=25.1 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}$ ($c=0.0100 \mathrm{~g} \mathrm{~cm}^{-3}$ in CHCl_{3}).

(S,S)-1,2-Bis(boranato(tert-butyl)ethynylphosphino)ethane (6d)

Tetrabutylammonium fluoride (0.4 mL of a 1.0 M
 solution in THF, 0.4 mmol) was added to (S, S)-1,2-bis(boranato(tertbutyl)(triisopropylsilylethynyl)phosphino)ethane (6c) (60 $\mathrm{mg}, 0.1 \mathrm{mmol}$) under nitrogen, and the mixture was stirred at room temperature. After 6 h , the reaction was quenched by the addition of water. The mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel (hexane/EtOAc $=3 / 1$) to give (S, S) -1,2-bis(boranato(tert-butyl)ethynylphosphino)ethane ($\mathbf{6 d}$) ($15 \mathrm{mg}, 0.052 \mathrm{mmol}, 52 \%$) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24-0.92(\mathrm{~m}, 6 \mathrm{H}), 1.27-1.31(\mathrm{~m}, 18 \mathrm{H}), 2.01-2.15(\mathrm{~m}$, $4 \mathrm{H}), 3.08-3.10(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.31(\mathrm{~d}, J(\mathrm{CP})=33 \mathrm{~Hz}$), 25.08, $29.66(\mathrm{~d}, J(\mathrm{CP})=35 \mathrm{~Hz}), 74.06(\mathrm{~d}, J(\mathrm{CP})=81 \mathrm{~Hz}), 96.28 .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 30.9. HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{P}_{2} \mathrm{Si}_{2}\left(\mathrm{M}^{+}+\mathrm{K}\right)$ 321.1651, found 321.1662. $[\alpha]_{\mathrm{D}}^{22}=-$ $13.9 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=0.0024 \mathrm{~g} \mathrm{~cm}^{-3}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
(S,S)-1,2-Bis(boranato(tert-butyl)(1-propynyl)phosphino)ethane (6e)
To a solution of (S,S)-1,2-bis(boranato(tert-
 butyl)ethynylphosphino)ethane ($\mathbf{6 d}$) $31 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (0.55 mL) was added $s \mathrm{BuLi}(0.28 \mathrm{~mL}$ of a 1.0 M solution in hexane, 0.28 mmol) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred for 1 h . Iodomethane ($34 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) was added to the solution with stirring and the mixture was warmed to room temperature during 2 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc three times. The combined organic layers were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel (hexane/EtOAc $=4 / 1$) to give (S, S)-1,2-bis(boranato(tert-butyl)(1-propynyl)phosphino)ethane ($\mathbf{6 e}$) ($30 \mathrm{mg}, 88 \%$) as white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.24-0.86(\mathrm{~m}, 6 \mathrm{H}), 1.23-1.27(\mathrm{~m}, 18 \mathrm{H}), 2.00-2.06(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 5.17,16.86(\mathrm{~d}, J(\mathrm{CP})=35 \mathrm{~Hz}), 25.22,29.70(\mathrm{~d}, J(\mathrm{CP})=37 \mathrm{~Hz}), 68.20(\mathrm{~d}, J(\mathrm{CP})=$ 95 Hz), 106.53. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.1. HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{P}_{2}$ $\left(\mathrm{M}^{+}+\mathrm{K}\right) 349.1965$, found 349.1953. $[\alpha]^{22}{ }_{\mathrm{D}}=21.6 \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}\left(c=0.00050 \mathrm{~g} \mathrm{~cm}^{-1}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Preparation of (S,S)-1,2-Bis(tert-butyl)(1-alkynyl)phosphine)ethanes (AlkynylP*). A typical Procedure
Compound 6a($36 \mathrm{mg}, 0.084 \mathrm{mmol}$) and 1,4-diazabicyclo[2.2.2]octane ($56 \mathrm{mg}, 0.51 \mathrm{mmol}$) were dissolved in degassed THF (0.5 mL) under nitrogen. The solution was stirred under nitrogen at $60^{\circ} \mathrm{C}$ for 1 h and the reaction mixture concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel using degassed diethyl ether as the eluent under nitrogen to give diphosphine $\mathbf{5 a}$ ($32 \mathrm{mg}, \mathbf{9 4 \%}$). In a similar manner, ligands $\mathbf{5 b}$, $\mathbf{5 c}, \mathbf{5 d}$, and $\mathbf{5 e}$ were prepared in $94-98 \%$ yield.
(S,S)-1,2-Bis(tert-butyl(phenylethynyl)phosphino)ethane (5a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) § 1.19-1.26 (m,
 $18 \mathrm{H}), 1.67-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.19(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.31 (m, 3H), 7.40-7.43 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.27,27.55,29.99,87.96$, 105.38, 123.25, 128.19, 128.25, 131.58. ${ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3}) $\delta-16.43$.
(S,S)-1,2-Bis(tert-butyl(3,3-dimethyl-1-butynyl)phosphino)ethane (5b)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.11-1.19(\mathrm{~m}, 18 \mathrm{H})$,

$1.25(\mathrm{~s}, 18 \mathrm{H}), 1.48-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.90(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.24,27.28$, 28.56, 29.35, 30.99, 75.61, 115.28. ${ }^{31}$ P NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-15.48.
(S,S)-1,2-Bis(tert-butyl(triisopropylsilylethynyl)phosphino)ethane (5c)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.01-1.07$

$(\mathrm{m}, 42 \mathrm{H}), 1.13-1.18(\mathrm{~m}, 18 \mathrm{H}), 1.53-$ 1.1.64 (m, 2H), 1.96-2.05 (m, 2H). ${ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3})
δ ㄱㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁ
(S,S)-1,2-Bis(t-butyl(ethynyl)phosphino)ethane (5d)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.1-1.18(\mathrm{~m}, 18 \mathrm{H})$,

1.54-1.65 (m, 2H), 1.96-2.03 (m, 2H), 2.86 (s, CCH). ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.14-1.18(\mathrm{~m}, 18 \mathrm{H})$, 1.55-1.65 (m, 2H), 1.96-2.03 (m, 2H) (The signal of CCH was not observed.). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 19.76, 27.31, 29.40, 83.30-83.53 (m), 93.52. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-14.25.
(S,S)-1,2-Bis(tert-butyl(1-propynyl)phosphino)ethane (5e) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10-1.15$ (m,
 18 H), 1.49-1.60 (m, 2H), 1.84-1.94 (m, 2H), 1.98 (s, 6H). (Diethyl ether was strongly bound to this ligand and could not be removed in vacuo). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.14, 20.36 27.39, $29.39(\mathrm{~d}, J(\mathrm{CP})=3 \mathrm{~Hz}), 76.61,102.52 .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-13.00$.

General Procedure for Rhodium-Catalyzed Asymmetric Hydrogenation of Methyl (Z)-α-Acetamidocinnamate

A 50 mL -hydrogenation tube was charged with methyl (Z)- α-acetamidocinnamate (0.5 $\mathrm{mmol})$. The tube was connected to the hydrogen tank via stainless steel tubing. The vessel was evacuated and filled with 1 atm of hydrogen gas (Nippon Sanso, 99.9999\%). A solution of $\left[\mathrm{Rh}(\mathrm{nbd})_{2}\right] \mathrm{BF}_{4}(1.9 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and (S,S)-1,2-bis(1-alkynyl(tert-butyl)phosphino)ethane (AlkynylP*) $(5.5 \mu \mathrm{~mol})$ in degassed $\mathrm{MeOH}(1 \mathrm{~mL})$ was added via a syringe to the tube, and the hydrogen pressure was increased to 1 atm . After 3 h , the reaction mixture was evaporated and the residue was purified by flash chromatography on silica gel using EtOAc as an eluent. The product was characterized by specral data and analyzed by HPLC using a chiral column. The absolute configuration and enantiomeric excess of the product were determined by comparison of the retention times with reported values. ${ }^{8}$ Conditions for the HPLC analysis of N acetylphenylalanine methyl ester: Chiralcel OJ, hexane $/ 2$-propanol $=9: 1,0.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=254 \mathrm{~nm}$, retention times: $22.3 \mathrm{~min}(R), 31.7 \mathrm{~min}(S)$.

General Procedure for Rhodium-Catalyzed Asymmetric 1,4-Addition of Organoboronic Acids to Enones

A solution of $\left[\mathrm{Rh}(\mathrm{nbd})_{2}\right] \mathrm{BF}_{4}(1.9 \mathrm{mg}, 10 \mu \mathrm{~mol})$ and ligand $(S, S)-1,2$-bis $(1$-alkynyl(tertbutyl)phosphino)ethane (AlkynylP*) $(11 \mu \mathrm{~mol})$ in dioxane $(1 \mathrm{~mL})$ was stirred at $40{ }^{\circ} \mathrm{C}$ for 15 min under nitrogen. To the reaction mixture was added $\mathrm{KOH}(0.1 \mathrm{~mL}, 1.5 \mathrm{M}, 0.15 \mathrm{mmol})$ in water and the solution was stirred for 15 min . Arylboronic acid (1.0 mmol) and α, β unsaturated carbonyl compound (0.50 mmol) was added to the solution. After stirring at $40^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched with saturated NaHCO_{3} and extracted with ether five times. The combined organic layers were dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by preparative TLC (silica gel, hexane/ $\mathrm{EtOAc}=3 / 1$). The products were characterized by their spectral data and analyzed by HPLC using chiral columns. The absolute configurations and ee values of the products were determined by comparison of the retention times with reported values. ${ }^{9}$

Conditions for the determination of the ee's by HPLC analysis. 3-Phenylcyclohexanone: Chiralcel OD-H, hexane:2-propanol $=98: 2,0.5 \mathrm{~mL} / \mathrm{min}$, wavelength 254 nm , retention times: $26.4 \mathrm{~min}(S), 28.2 \mathrm{~min}(R)$. 3-(4-Trifluoromethylphenyl)cyclohexanone: Chiralcel OJ, hexane:2-propanol $=98: 2,1.0 \mathrm{~mL} / \mathrm{min}$, wavelength 254 nm , retention times: $18.1 \mathrm{~min}(R)$, $20.5 \mathrm{~min}(S)$. 3-(4-Methoxyphenyl)cyclohexanone: Chiralcel OJ, hexane:2-propanol $=98: 2$, $1.0 \mathrm{~mL} / \mathrm{min}$, wavelength 254 nm , retention times: $34.6 \mathrm{~min}(R)$, $42.9 \mathrm{~min}(S)$. 3Phenylcyclopentanone: Chiralcel OB, hexane:2-propanol $=98: 2,1.0 \mathrm{~mL} / \mathrm{min}$, wavelength 254 nm , retention times: $16.5 \mathrm{~min}(S), 22.4 \mathrm{~min}(R)$. 5-Methyl-4-phenylhexan-2-one: Chiralcel OJ, hexane:2-propanol $=98: 2,0.5 \mathrm{~mL} / \mathrm{min}$, wavelength 254 nm , retention times: $16.3 \mathrm{~min}(R), 20.0 \mathrm{~min}(S)$.

In a similar manner, 2-cyclohexenone (0.50 mmol) was reacted with phenylboronic acid in the presence of $\left[\mathrm{Rh}(\mathrm{nbd})_{2}\right] \mathrm{BF}_{4} / t \mathrm{Bu}$-BisP* $(2 \mathrm{~mol} \%)$ at $40^{\circ} \mathrm{C}$. The reaction was sluggish and after 2 h the reaction mixture was worked up to give 3-phenylcyclohexanone in 37% yield. The ee of this product was determined to be 20% by HPLC analysis.

General Procedure for the Alkylative Ring-Opening of Oxabenzonorbornadiene Derivatives

A solution of $\mathrm{PdCl}_{2}(\operatorname{cod}) \quad(1.1 \mathrm{mg}, 8.0 \quad \mu \mathrm{~mol})$ and (S, S)-1,2-bis $(1$-alkynyl(tertbutyl)phosphino)ethane (AlkynylP*) $(8.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred at $40{ }^{\circ} \mathrm{C}$ under nitrogen for 15 min . To the solution was added a solution of oxabenzonorbornadiene (58 mg , 0.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), followed by dimethylzinc (0.6 mL of 1.0 M hexane solution). The resulting solution was stirred at room temperature until completion of the reaction. The reaction was quenched by the addition of a few drops of water and the mixture was passed through a short plug of Celite and then concentrated. The residue was purified by preparative TLC (hexane/EtOAc).

The products were characterized by their spectral data and analyzed by HPLC using chiral columns. The absolute configurations and ee values of the products were determined by comparison of the retention times with reported values. ${ }^{10}$

Conditions for the determination of the ee's by HPLC analysis. 2-Methyl-1,2-dihydronaphthalen-1-ol: Chiralcel OD-H, hexane:2-propanol = 199:1, $1 \mathrm{~mL} / \mathrm{min}$, wavelength 254 nm , retention times: $28.5 \mathrm{~min}(1 R, 2 R), 30.6 \mathrm{~min}(1 S, 2 S)$; 2-Ethyl-1,2-dihydronaphthalen-1-ol: Chiralcel OD-H, hexane:2-propanol $=199: 1,1 \mathrm{~mL} / \mathrm{min}$, wavelength 254 nm , retention times: $26.0 \mathrm{~min}(1 R, 2 R), 29.6 \mathrm{~min}(1 S, 2 S)$. 2-Methyl-1,2-dihydro-5,8-bis(methoxymethoxy)-naphthalen-1-ol: Chiralcel OD-H, hexane:2-propanol $=9: 1,1.0 \mathrm{~mL} / \mathrm{min}$, wavelength 254 nm , retention times: $9.0 \mathrm{~min}(1 R, 2 R), \quad 11.1 \mathrm{~min}(1 S, 2 S)$. 2-Ethyl-1,2-dihydro-5,8-bis(methoxymethoxy)-naphthalen-1-ol: Chiralcel OD-H, hexane:2-propanol = 9:1, 0.5 $\mathrm{mL} / \mathrm{min}$, wavelength 254 nm , retention times: $15.5 \mathrm{~min}(1 R, 2 R), 17.0 \mathrm{~min}(1 S, 2 S)$.

In a similar manner, oxabenzonorbornadiene (0.4 mmol) was reacted with diethylzinc in the presence of $\mathrm{PdCl}_{2}(\mathrm{cod}) / t \mathrm{Bu}-\mathrm{BisP} *(2 \mathrm{~mol} \%)$ at room temperature for 6 h to give $(1 S, 2 S)$ -2-ethyl-1,2-dihydronaphthalen-1-ol in 93% yield. The ee of this product was determined to be 94\% by HPLC analysis.

References

[1] T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto, K. Sato, J. Am. Chem. Soc. 1990, 112, 5244-5252.
[2] T. Imamoto, M. Matsuo, T. Nonomura, K. Kishikawa, M. Yanagawa, Heteroatom Chem. 1993, 4, 475-486.
[3] E. J. Corey, Z. Chen, G. J. Tanoury, J. Am. Chem. Soc. 1993, 115, 11000-11001.
[4] M. Stankevic, K. M. Pietrusiewicz, J. Org. Chem. 2007, 72, 816-822.
[5] Y. Takahashi, Y. Yamamoto, K. Katagiri, H. Danjo, K. Yamaguchi, T. Imamoto, J. Org. Chem. 2005, 70, 9009-9012.
[6] T. Miura, H. Yamada, S. Kikuchi, T. Imamoto, J. Org. Chem. 2000, 65, 1877-1880.
[7] H. Danjo, W. Sasaki, T. Miyazaki, T. Imamoto, Tetrahedron Lett. 2003, 44, 3467-3469.
[8] Imamoto, T.; Watanabe, J.; Wada, Y.; Masuda, H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi, K. J. Am. Chem. Soc. 1998, 120, 1635-1636.
[9] Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579-5580.
[10] Lautens, M.; Renaud, J.-L.; Hiebert, S. J. Am. Chem. Soc. 2000, 122, 1804-1805.

Cles

$$
\begin{aligned}
& \text { DCn } \\
& \begin{array}{l}
32768 \text { rounts } \\
32768 \text {;ioint }
\end{array} \\
& \begin{array}{l}
32768 \text {, ioln } \\
97087.4 \mathrm{~Hz}
\end{array} \\
& \begin{array}{r}
97087.4-42 \\
48.50 \\
41.72
\end{array} \\
& \begin{array}{r}
1.0000 \mathrm{sec} \\
337.5104 \mathrm{mser}
\end{array} \\
& \begin{array}{l}
337.5104 \mathrm{msec} \\
10.00000 \mathrm{msec}
\end{array} \\
& \begin{array}{r}
10.00000 \mathrm{msec} \\
0.5000 \mathrm{msec}
\end{array} \\
& 3 i^{p} \\
& \begin{array}{l}
161.70 \mathrm{MHz} \\
135320.00 \mathrm{~Hz} \\
23
\end{array} \\
& 1 \mathrm{H}^{3} 399.65 \mathrm{NH} 2 \\
& \begin{array}{r}
134300.00 \mathrm{~Hz} \\
50.0 \mathrm{usec} \\
0
\end{array} \\
& 128 \text { times } \\
& \text { cocla } \\
& 21.3 \mathrm{~Hz}
\end{aligned}
$$

(

Date Tue ar at is: $5: 00$ ant

ricename
Connen:
Conment
Cannen:
SIIteHEstony
ExM00E

PONT	32768 point
Su90	32769 coint
-1723	28931712
-iL -	13450
3EL: $\%$	4.3 u58c
35\%3T	19.E usec
- NT:	37.2 Lssc
TNES	128 times
Sukw	1 times
FO	1.7810 set
$\therefore 20074$	1218.9696 msec
PHEL	13.09000 msec
- VIh	12.0000 mse:
F-SC.	0.88 Hz
FA1	3.CC Use=
C3N:	136
Citas	68. 45.4 .8
CJSE ${ }^{-}$	16.4750 .00 Hz
Rasidy	30
$1 \mathrm{PaNL}^{\text {a }}$	$1 \mathrm{H}^{2} \mathrm{ar}$
17 FFG	395. $75 . \mathrm{MHF}$
IRSET	134498.0C Hz
TRRPK	$40 . \mathrm{C}$ jsee
1 Prins	
SCONS	:2e
SUSN	1.2CL3
SPMN.NE	23. ${ }^{2} 8=$

\qquad

$x i$					
200					

