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Synthesis and Experimentation of Voltage Compressor and

Decompressor with Active Circuit
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Abstract—This paper introduces an innovative circuit theory of analog voltage compressor (AVC)
and decompressor (AVD). This electronic function can also be assumed as an analog voltage converter.
Analytically, it acts as power function synthesizer topology designed with an analog nonlinear circuit.
The AVC/AVD topologies are based on an operational amplifier associated with resistor and non-linear
diode components. Given the positive parameter a > 0, the main x-y characteristic of the AVC/AVD is
formulated by y = xa for the input and output x and y, respectively. The synthesis formulas allowing
to determine the AVC/AVD parameters as a function of a are established. To validate the original
AVC/AVD concept, static and dynamic simulations and experimentations with a proof-of-concept circuit

using operational amplifier UA741 are carried out. As expected, well correlated x1/2-AVC and x2-AVD
characteristics are realized with the static testing for the voltage range varied from 0 to 9-V and 0
to 3-V for AVC and AVD circuits, respectively. The simulation and experimentation of dynamic test
results are in good agreement for the sine wave voltages with frequency varied from DC to 1-kHz. The
simulated and experimental results confirm the relevance of the developed compressor/decompressor
analog circuit. The AVC/AVD functions for instrumentation system applications can be potentially
applied to the amplitude matching especially for digital systems.

1. INTRODUCTION

Nowadays, behind the technological progress, the instrumentations of modern embedded equipment as in
aircraft [1, 2] and automobile [3, 4] systems become more and more complex. Various types of mechanical,
hydraulic, magnetic, and electrical instrumentations can be found in systems [5–8]. The diagnosis and
fault analyses of those systems require advanced electronic functions [9, 10]. The constituted electronic
systems are usually designed with cohabitation of mixed low- and high-power electronic circuits [11].
To meet the expected standards, different specifications including unexpected transient phenomena
must be fulfilled [12]. The electrostatic discharge (ESD) and electromagnetic interference (EMI) [13–
15] constitute high voltage effects that tend to appear in the low power and digital circuitries. The
identification and measurement of these transient effects remain a challenging task for the design and
manufacturing engineers [16].

To ensure the functionality notably with the online control and cyber systems [8, 17, 18], adequate
interfaces enabling matching the signal level dynamics are necessary. Among proposal solutions against
this technological challenge, we would suggest innovative compression and decompression functions
applied to analog signal voltages.
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1.1. State of the Art About the Voltage Compressor and Equivalent Electronic Function

Further attention in terms of reliability, robustness, and integrity must be paid to this technological
progress [19, 20]. The technological constraints can be linked to the fabrication material as conductors,
system complexity, or signal distortion. These critical points play on the performances of analog
and digital electronic sensors and receiver-transmitter system [21, 22]. Different design solutions as
mixed mode combination [21], implementation of switched-current analog RAM [22], and low-power
high number of bits ADC/DAC [23] were proposed. Innovative architecture of configurable 802.11
standard transmitter has been recently introduced [24]. In addition to these digital and mixed functions,
improvement was also made on the analog electronic function as amplifier and attenuator [25] for the
dynamic signal amplitude matching. Variable and regulated attenuators were introduced to ensure the
signal level matching [26–28]. Different technologies of attenuator with parameters control in frequency-
and time-domain were invented last two decades [28–34]. Those inventions require further research work
facing the issues of signal and power integrity [35–37]. However, so far, most of technological solutions
for digital or mixed circuit interface signal level mismatching focused on the familiar concepts, such as
the classical function (amplifier, attenuator, phase shifter, delay line . . . ) [21–37].

1.2. Need for Innovative Voltage Compressor

Traditionally, with the spectacular development of digital circuit technology, the electronic functions
transmute more and more into numerical functions. However, numerical functions are dedicated to
operate with a steady state level of voltage corresponding to “1” logic state by assuming that “0”
corresponds to GND level. However, the electronic signals usually vary continuously and instantaneously
in different ranges of values. This limitation requires an improvement which can be performed with
analog voltage compression (AVC) and decompression (AVD) circuits by using for example compressor
or decompressor.

The main purpose of the present paper is to develop an original electronic function named analog
voltage compression (AVC). This innovative electronic function allows matching high- and low-voltages.
As illustrated in Fig. 1, it can be a solution to match the operating analog signal x(t) having dynamic
range |xmax-xmin| with a digital processing circuit with saturation and noise resolution respectively
denoted as xsat and xnoise. As shown in Fig. 1(a), the processed signal xp(t) can be distorted because
of digital processing circuit voltage limitation. To avoid this technological issue, the AVC function can
be interfaced between the input signal and digital circuit as seen in Fig. 1(b).

(a)

(b)

Figure 1. Illustration of AVC function utility: (a) distorted and (b) compressed dynamic signals.
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1.3. Outline of the Paper

The paper is mainly organized in five main sections. First, Section 1 introduces the state of the art
and the main objective of the paper. Section 2 describes why the AVC and AVD functions can be
useful for interfacing digital electronic circuit and outrange voltage signals. Section 3 is focused on the
theoretical description of the AVC and AVD analog electronic function. The circuit synthesis method
and implementation of the AVC and AVD are developed. To validate the AVC and AVD functions,
proof-of-concept (POC) PCBs are designed and fabricated. The validation results with static and
dynamic testings are discussed in Section 4. Last, Section 5 is the conclusion.

2. GENERAL DESCRIPTION OF THE PROPOSED ANALOG VOLTAGE
COMPRESSOR (AVC) AND DECOMPRESSOR (AVD) FUNCTIONS

The present section describes the basic utility of the innovative AVC and AVD functions. It is introduced
that these electronic functions can be used for the correction of signal amplitude mismatching.

2.1. Principle of AVC Function

The AVC function principle is to shift the amplitude of analog voltage in order to reduce the maximal
value. The diagram of Fig. 2 represents this amplitude variation principle by supposing the input and
output signals x (with xmin > 0) and y. It enables reducing the input signal dynamic from |xmax−xmin|
into the compressed signal dynamic |ymax − ymin|.

Figure 2. Illustrations of the AVC function principle.

2.2. Diagrams of Signal Amplitude Levels through AVC and AVD Functions

The AVC and AVD operations can be explained with the budgets of signal levels. x(t) and y(t) represent
the input and output test signals. Fig. 3(a) and Fig. 3(b) represent the budgets of the associated
time dependent signal budget respectively. The AVC operation is characterized by the inequality
|xmax − xmin| > |ymax − ymin|. In contrary to the AVC, the AVD function increases the signal dynamic
|xmax − xmin| < |ymax − ymin|.

2.3. Forecasted Applications of AVC and AVD Functions

As aforementioned in the previous section, the AVC and AVD functions are intended to interface
analog voltages with digital circuits. Fig. 4 depicts the signal level budget with the configuration of this
technological solution. It consists in cascading an AVC-digital-AVD circuit. The AVC transforms
the input transient signal x(t) into xc(t) in order to operate in the digital circuit dynamic range
|xcmax − xcmin|. Then, the signal reconstruction is ensured by the AVD with the reciprocal function.
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(a) (b)

Figure 3. Diagrams of signal level budget: (a) AVC and (b) AVD.

Figure 4. Diagram of signal level budget through an AVC-digital circuit-AVD chain.

3. THEORY ON THE PROPOSED AVC AND AVD

This section introduces the established circuit theory on the innovative AVC and AVD functions. The
topological cell enabling the realization of the introduced signal compression is analyzed. The voltage
convertor x-y characteristics of the circuit are elaborated. Then, the AVC and AVD design and synthesis
methods are proposed.

3.1. Analytical Definition of the Proposed AVC and AVD Functions

Let us denote the time-dependent signals x(t) > 0 and y(t) as real time-dependent variables, and α is
real positive constant. The basic principle of the proposed synthesizer is based on the power function.
In analytical point of view, the AVC and AVD functions or x-y characteristics are defined by the
mathematical function:

y(t) = [x(t)]a . (1)

with α being a real positive function. Knowing the exponential and logarithmic properties, this equation
can be rewritten as:

y(t) = exp [lnx(t)a] , (2)

or
y(t) = exp [a lnx(t)] . (3)

Based on the system theory, Equation (3) can be implemented by cascading three elementary block
functions as depicted in Fig. 5.

Each of the constituting blocks of the system of this system will be introduced in the following
paragraph.
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Figure 5. Equivalent diagram of Equation (1).

3.2. Elementary Cells for Logarithm and Exponential Voltage Based Functions

The exponential function described in Eq. (3) can be synthesized and implemented as an analog circuit
constituted by two basic analog circuit cells. On one hand, it can be realized by exploiting the bipolar
junction semiconductor diode D presenting a general I-V (current-voltage) characteristic and analytically
defined as:

i(t) ≈ I0 exp

[

v(t)

nVT

]

, (4)

with:

• n is the ideality factor, also known as the quality factor or sometimes emission coefficient,
• VT = 26mV at the room temperature usually 25◦C is the thermal voltage de pending on the diode

material properties,
• And I0 is the reverse bias saturation current (or scale current).

On the other hand, it can also be generated from a current-to-voltage convertor with an arbitrary
resistor R (chosen in function of the input current sensitivity) and an operational amplifier-based cell
generating the function:

y(t) = R · i(t). (5)

Therefore, with an ideal operational amplifier, the exponential function can be implemented with the
basic circuit presented in Fig. 6(a). By denoting x(t) = v(t),

V0 = nV T , (6)

we have the expression:

y(t) = R · I0 · exp

[

x(t)

V0

]

. (7)

(a) (b) (c)

Figure 6. Topology of elementary cells: (a) exponential, (b) logarithm, (c) inverter amplifier.

The inverse of this equation corresponds to the reciprocal exponential function which is a
logarithmic function and can be generated by permuting the resistor and diode as presented in Fig. 6(b).
The characteristic equation is expressed as:

y(t) = −V0 ln

[

x(t)

R · I0

]

. (8)

The amplifier function can be realized with an operational amplifier-based inverter or a non-inverter
cell. Fig. 6(c) shows the circuit schematic. According to the circuit theory, this classical linear function:

y(t) = a · x(t) = −
Ry

Rx
x(t), (9)

can be realized with an attenuator (|a| < 1) or an amplifier (—a| >1).
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3.3. Topological Analysis of the AVC and AVD Circuits

As aforementioned, the AVC and AVD functions are analytically power functions. The basic principle
of the developed typically voltage convertor topologies is inspired from the mathematical concept:

• The AVC can be ideally realized with the system sketched in Fig. 5 when a < 1;
• And on the other hand, this system behaves as an AVD when a > 1).

As pointed out in Equation (1) and shown in Fig. 5, the function y(t) = [x(t)]2 can be implemented by
cascading logarithmic and exponential cells. Fig. 7 represents the yielded configuration of the power
function topology. The considered topology of power function is composed of logarithm cell, first
amplifier cell, and cell exponential in cascade. By assuming the operational amplifier as ideal, we have
the analytical characteristic:
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y1(t) = −V0 ln

[

x(t)

RI0

]

y2(t) = −
R2

R1
y1(t)

y3(t) = −RI0 exp

[

y2(t)

V0

]

y4(t) = −
R4

R3
y3(t)

. (10)

It implies the following characteristic relation:

y4(t) = RI0
R4

R3

[

x(t)

R · I0

]

R2

R1

. (11)

Figure 7. Implementation of the power function.

In order to get the targeted characteristic introduced in Eq. 1), the pre- and post-conditioning
correction factors:

⎧

⎪

⎨

⎪

⎩

Cx = val(R · I0) =
R2

R1

Cy = val(R · I0) =
R4

R3

, (12)

are added at the input and output of the circuit shown in Fig. 7. It acts as a no-unit factor, expressing
the value of the voltage, here written by the function val(·), to equalize the diode intrinsic parameters
V0 and I0. The resistances R1, R2, R3, and R4 can be synthesized with the following relations:

{

R2 = val(RI0) ·R1

R4 = val(RI0) ·R3
. (13)

Then, the resistance Ry can be calculated from Rx with the following relation:

Ry = a ·Rx. (14)

It is noteworthy that under the decompression operation, to avoid the last stage operational amplifier
saturation (x(t) < Vcc), the input signal must be lower than:

x(t) ≤ Vmax = RI0 exp

(

Vcc

V0

)

. (15)
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To check the effectiveness of the developed theory, the next section presents illustrative application
examples. Design, simulation, and experimentations of proof-of-concept will be described. The
feasibility of the proposed synthesizer will be verified with static and dynamic signal testing.

4. SIMULATIONS AND EXPERIMENTAL VALIDATIONS OF THE AVC AND AVD
FUNCTIONS

The present section is focused on the design, fabrication, simulation, and experimental validations.
The POC circuit is designed with lumped components, resistance R and diode D, and the operational
amplifier UA741 from Texas Instruments R©. The simulated results run in the SPICE ADS R©environment
of the AVC and AVD circuits are compared with time-domain measurements.

(a)

(b)

(c)

(d)

Figure 8. Schematics and Photos of the tested POC PCBs: (a) Schematic of AVC, (b) AVC, (c)
Schematic of AVD and (d) AVD.



146 Ji et al.

4.1. Description of the POC Circuits

To perform the experimental testings, classical lumped resistors, diodes, and operational amplifiers are
implemented on a FR4 dielectric substrate. The specifications of the components constituting the AVC
and AVD circuit POCs are shown in Table 1. Fig. 8 present the schematic and photo of the tested
AVC and AVD POC circuits, respectively. The AVC and AVD PCB circuits act as low frequency
PCBs with classical wire interconnections. The POC-modeled computed results are compared with
simulations run in the ADS R©environment of the electronic circuit designer and simulator. The proposed
x-y characteristics and time domain simulations are performed. Comparisons of the x-y characteristics
results for the ideal theory, ADS simulation, and measurement are presented. The obtained time domain
simulation results will be explored in the next paragraphs.

Table 1. Specifications of the AVC and AVD components.

Description References Parameters Manufacturer

Amplifier operational UA471 R© - Texas Instruments R©

R - 1 kΩ Murata R©

R1 - 1 kΩ Murata R©

R2 - 2 kΩ Murata R©

R3 - 1 kΩ Murata R©

R4 - 1 kΩ Murata R©

D N4002 - Texas Instruments R©

The lumped elements are implemented on an FR4-epoxy substrate. The signal interconnect accesses
are realized with BNC connectors.

4.2. Discussions on the Validation Results

To validate the AVC and AVD topologies, comparisons among the ideal calculations, SPICE simulations,
and experimental measures are described in this subsection.

4.2.1. Experimental Test Protocols

Fig. 9(a) represents the block diagram of the experimental test protocol. Fig. 9(b) illustrates the
connections between the measurement equipment and the circuit under test (CUT).

The input test voltages are provided with the arbitrary wave generator (AWG) Agilent R©33220A.
The CUT is fed by +/−Vcc = +/−15V and 30mA with the DC power supply Keysight R©E3631A. The
test signals are plotted and recorded with the digital oscilloscope Agilent R©DSO9404A having 4GHz
bandwidth and 20 GSamplings/s sampling rate. All the test results explored in this paper are obtained
with transient signals representing the input and output signals.

4.2.2. x-y Characterization Results

The AVC and AVD x-y characterizations are carried out by considering saw tooth wave input signals.
The AVC x1/2 characteristic is generated with the transient signal x which presents period T1 = 10ms
and amplitude xmax = 9V. Fig. 10 displays the comparisons between the ideal, simulated (“simu.”),

and measured (“meas.”) results. As expected with the target function x1/2 and the introductive AVC
principle of Fig. 5, the output voltage varies from xc = 0 to 3V when the input x is varied from 0 to
9. As pointed out in Fig. 10(a), the x-y characteristics from the three comparison approaches are in
very good correlation. The measured results are affected by the voltage noise having amplitude about
200mV.
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(a) (b)

Figure 9. Experimental setup: (a) Illustrative diagram and (b) Photo.
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Figure 10. Comparison of calculated (“ideal”),
simulated (“simu.”) and measured (“meas.”) x-
y characteristics of POC circuits: (a) AVC, (b)
AVD.
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Figure 11. Comparison between simulation and
measurement of POC dynamic test results with
arbitrary signals: (a) AVC and (b) AVD.

The AVD characteristic is generated with the transient signal x which presents period T1 = 100ms
and amplitude xmax = 3V. Fig. 10(b) monitors the AVD comparative results. As pointed out in Fig. 10,
the x2-characteristics from the three comparison approaches are in very good correlation. Similar to the
previous case, it can be seen that the input signal is affected by a typically white noise with amplitude
about 200mV.
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Therefore, the simulations and experimentations confirm the developed AVC and AVD circuit
theory. For both AVC and AVD circuits, the notable slight deviations among the three curves are mainly
due to imperfections of the components especially the operation amplifier UA741, AWG parasitic, and
scope numerical inaccuracies.

4.2.3. Dynamic Test Results with Sine Waveform Signals

The dynamic test validations are realized with sine wave form signals with frequencies from DC to
1 kHz. Fig. 11(a) explains the feasibility of the voltage compression effect by considering the voltage
sine signal with period T1 = 10ms, peak-to-peak amplitude equal to about xpp = 9V, and average value
4.5V. Furthermore, Fig. 11(b) confirms the voltage decompression effect. In this case, input voltage
with same period but lower peak-to-peak amplitude about 3V is considered to avoid the saturation
effects. It can be pointed out that the compressed and decompressed voltages xc are a periodical non-
sine signal because of the nonlinear aspect of the AVG. They present the same dynamic of variation as
forecasted in the previous paragraph. The average difference about ∆V= 0.2V between the simulation
and measurement is mainly due to the offset of the operation amplifier UA741. For both cases of CUT,
the simulations and measurements are in very good agreement.

4.2.4. Dynamic Test Results with Arbitrary Waveform Signals

For the further general insight about the developed AVC and AVD functions, two different arbitrary
waveform signals are tested.

Figure 12 displays the dynamic test results with sinc waveform signals. Two different pulse
durations about 2ms (in top) and 1.2ms (in bottom) are shown in these figures. For both results, the
sinc signal amplitudes are reduced from about xpp = 7.7V to xc pp = 2V through the AVC function.
Then, the compressed signals are reconstructed keenly thanks to the AVD operation. Fig. 13 presents
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Figure 12. AVC and AVD measurement results
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width sinc waveform signals.
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with 1.5ms (in top) and 0.6ms (in bottom) pulse
width cardiac waveform signals.
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the results of cardiac waveform signal testings. In top (resp. bottom) of this figure, the test signal
presents a pulse duration about 1.5ms (resp. 0.7ms). Once more, it can be emphasized that the signal
level dynamic is reduced from about xpp = 6V to xc pp = 2V. The arbitrary test results confirm
the possibility of AVC and AVD function complementarity. The slight deviations between the initial
and reconstructed signals are mainly due to the apparatus numerical noises and imperfections of the
components used to fabricate the AVC and AVD circuits.

5. CONCLUSION

An original circuit theory on the AVC and AVD electronic functions is developed. The circuit topologies
are typically analog nonlinear circuits presenting x-y characteristic as mathematical power function. The
operation and design principle are described. The proposed AVC and AVD function synthesizer is based
on the cascade of logarithm, and exponential cells are developed. The basic cells generating the power
function are analyzed.

Two POC circuit prototypes are designed and fabricated to validate the AVC and AVG concepts.
The x-y characteristics and dynamic responses of the CUT are investigated. The x2 and x1/2 functions
are tested with 8-Vcc amplitude sine signals. As expected, very good correlations among the expected
model, SPICE simulations, and experimental results are obtained. In addition, the functions are
validated with arbitrary signals presenting sinc and cardiac waveforms milliseconds pulse duration.

In the continuation of this study, the proposed AVC and AVG functions will be applied to the
interfacing numerical circuits as microcontroller unit board. This technological solution can be a good
candidate for the future technology as the amplitude matching low voltage digital circuits [39, 40].
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