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Abstract

Germanium is considered as a potential anode material for sodium-ion batteries due to its fascinating theoretical
specific capacity. However, its poor cyclability resulted from the sluggish kinetics and large volume change during
repeated charge/discharge poses major threats for its further development. One solution is using its ternary
compound as an alternative to improve the cycling stability. Here, high-purity CuGeO5; nanowires were prepared via
a facile hydrothermal method, and their sodium storage performances were firstly explored. The as-obtained
CuGeOs5 delivered an initial charge capacity of 306.7 mAh g~' along with favorable cycling performance, displaying
great promise as a potential anode material for sodium ion batteries.
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Background

In the past two decades, lithium-ion batteries (LIBs) have
successfully dominated the market in the field of energy
storage and conversion [1, 2]. LIBs are now serving as the
power source for a variety of devices, ranging from smart-
phones to electric vehicles (EVs) [3-7]. However, future
development of LIBs is greatly hindered by the shortage of
lithium resources which inevitably limits their large-scale
application [8]. Hence, seeking other alternatives to replace
lithium is of vital significance. Based on the earth-abundant
and similar physical and chemical characteristics with lith-
ium, sodium proves one of the most promising candidates
in rechargeable batteries [9]. Over the past years, a signifi-
cant progress of sodium-ion batteries (SIBs) for cathode
materials has been obtained by drawing the experience
from LIB systems [9-11]. While potential materials for the
anode side still remain underdeveloped. It is generally
known that the size of sodium ion is significantly larger
than that of lithium ion, which leads to sluggish electro-
chemical reaction kinetics and large volume change accom-
panied by unstable solid electrolyte interphase (SEI) layer,
resulting in inferior cycling stability and rate capability of
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SIBs [12]. Thus, seeking potential candidates for the anode
is particularly important but challenging.

Germanium (Ge) as an anode material has been exten-
sively investigated for SIBs owing to their high theoret-
ical specific capacities (369 mAh g™' based on NaGe)
[13]. Nevertheless, it is interesting that elemental Ge dis-
plays fascinating capacities only in the thin film and
amorphous structure electrodes [14]. In order to im-
prove electrochemical properties for coarser structures,
one feasible strategy is to introduce carbonaceous mate-
rials. For example, Yin and co-workers designed and
synthesized hollow carbon boxes/Ge hybrid material as
the anode in SIBs and obtained high reversible capacity
even after 500 cycles, which approximated its theoretical
value [15]. Another successful method is to use binary
or ternary Ge-based compounds with nanostructure.
Binary or ternary compounds incorporated with carbon-
aceous materials have been reported to deliver a greatly
improved cycling and rate performances as compared to
single Ge [16—-18]. Based on the experimental results in
LIBs, it is worth noting that ternary compounds exhibit
excellent electrochemical properties due to the forma-
tion of the intermediate products during the discharge
process, which serve as an inert matrix to mitigate the
volume changes and prevent the agglomeration of active
material particles [19]. Importantly, the intermediate
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products of ternary Ge-based compounds include
amorphous Ge, which is reported to improve sodiation
kinetics [14, 20]. CuGeO3; (CGO) is a typical I-V-VI
ternary Ge-based oxide and exhibits superior lithium
storage performance [21]. Based on the assumption of
seven Na' reaction calculated, the theoretical specific
capacity of CGO is 1018 mAh g*. However, the sodium
storage property of CGO is rarely explored to date.

In this work, CGO nanowire was successfully synthe-
sized by a facile and reliable hydrothermal reaction and
was firstly explored as an anode material for its sodium
storage performance. It exhibits excellent electrochemical
performances in terms of reversible capacity, coulombic
efficiency (CE), cycling stability, and rate property, which
are greatly improved in comparison to that of elemental
Ge. The results indicate that using ternary compounds is
one of the most effective approaches to promote the study
of Ge-based anode material for SIBs.

Methods

Material Preparation

CGO nanowires were prepared via a facile hydrothermal
method. First of all, 0.1 g cetyltrimethylammonium
bromide (CTAB) was added into a 15-mL distilled water
to form homogeneous solution under magnetic stirring
for 1 h at room temperature. Next, 5 mM Cu(CHj.
COO),H50 and 5 mM GeO, were added to the above
solution, respectively, and the mixed solution was stirred
continuously for 1 h. After that, the reaction mixture
was loaded and sealed into a Teflon-lined stainless-steel
autoclave with 20 mL inner volume and heated at 180 °C for
24 h before cooling down to room temperature. Last, the
CGO nanowires were collected by washing with distilled
water and ethanol for three times and dried at 60 °C for 24 h
in an oven. The Ge materials were prepared by high-energy
ball milling of crystalline Ge powders (Alfa Aesar).

Material Characterization

X-ray diffraction (XRD) details of the samples were
collected on a Bruker-AXS Micro-diffractometer (D8
ADVANCE) under CuKa radiation (1 =1.5406 A) at a
voltage of 30 kV. The microstructure images of the sam-
ples were acquired on a HITACHI S-4800 field emission
scanning electron microscopy (SEM) and a HITACHI
H-7650 transmission electron microscopy (TEM). The
selected area electronic diffraction (SAED) patterns were
obtained using a JEM 2100HR TEM.

Electrochemical Measurements

For the working electrode preparation, 80 wt% of CGO
nanowires, 10 wt% of Super P carbon, and 10 wt% poly(-
acrylic) acid binder were mixed with appropriate amount
of distilled water to form a slurry and then uniformly
casted onto a copper foil. Afterwards, the electrodes
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were dried in vacuum oven at 60 °C for 24 h for mois-
ture removing. The Ge electrode was prepared via simi-
lar processes. The electrolyte consisted of 1 M NaClO,
salt dissolved in ethylene carbonate/dimethyl carbonate
(EC/DMC, 1:1 v/v) with 5 vol% fluoroethylene carbonate
(FEC) as additive. The working electrodes were assem-
bled into coin-type (CR2032) cells in an argon-filled
glove box with glass microfiber filter and Na metal as
separator and counter electrode, respectively, and appro-
priate amount of above electrolyte. The electrochemical
measurements were evaluated by cyclic voltammetry
(CV, CHI 660B electrochemical workstation) and galva-
nostatic charge/discharge tests (LAND 2001A Battery
Tester) in the voltage range of 0.05-2.0 V vs. Na/Na".
The weight loading of CGO active material in working
electrode was ca. 1.0 mg cm™2, and the specific capacity
was calculated based on the active material.

Results and Discussion

A schematic illustration of the preparation process of the
CGO nanowires is displayed in Fig. 1a. The homogeneous
solution was formed by mixing the CTAB, GeO,, and
Cu(CH3COO0),-H,O with appropriate amount of distilled
water. Among them, CTAB was used as a surfactant. After
24 h, the CGO nanowires were produced under the
hydrothermal environment. At the hydrothermal process,
the starting material GeO, can be dissolved in water to
give H,GeO3 [22]. Subsequently, H,GeO3 reacted with
Cu(CH3CO0)yH;0 to form orthorhombic CGO ([23].
Based on the above discussion with nucleation mechanism
[24], a possible synthesis mechanism for the CGO nano-
wires is proposed to be expressed such as:

G602 + H20—>H2G603
Cu(CH;3C0O0), + HyGeO3—CuGeOs + 2CH; COOH

XRD pattern was used to confirm the crystal struc-
tures and chemical composition of the as-prepared sam-
ples. As depicted in Fig. 1b, all the peaks of XRD
spectrum are well-matched with the standard JCPDS
card (No. 32-0333) without peaks of impurities, which
can be concluded that the as-synthesized CGO nanowire
is pure phase. The 26 peaks at 21.238°, 28.09°, 35.787°,
37.408°, etc. are attributed to (110), (120), (101), (200),
etc. lattice planes of orthorhombic phase, respectively. In
addition, the strong diffraction peaks indicate good crys-
tallinity of the products.

The SEM and TEM images were employed to observe the
morphology of these hydrothermal products. As displayed
in SEM image (Fig. 2a), the as-obtained CGO are uniform
nanowires with a length more than 1 pm, which agrees well
with the reported result [25]. The high-magnification SEM
image (Fig. 2b) reveals that the average diameter of CGO



Fu et al. Nanoscale Research Letters (2018) 13:193

Page 3 of 6

180 °C for 24 h
Wash and dry

CTAB

GeO,
Cu(Ac),
CGO nanowires
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nanowires is about 20 nm. The TEM images are displayed
in Fig. 2¢, d; it can be clearly seen that the microstructure of
CGO nanowires is consistent with the above SEM results.
The nanostructured anode materials have been demon-
strated to improve electrochemical performances owing to
their large surface area and reduced diffusion pathway [26].
The high uniformity nanowire is beneficial to accommodate
volume changes and enhance sodium-ion diffusion in active
materials during charge/discharge processes [27].

To explore the sodium storage characteristics of the
CGO nanowires, a series of electrochemical measure-
ments were performed. CV is an effective route to evalu-
ate the reaction mechanism during the sodiation/
desodiation process. Figure 3a illustrates typical CV curves
of the CGO anode material with a scan rate of 0.2 mV s~
in the voltage window of 0.05-2.0 V (vs. Na/Na*). The
first cathodic scan shows a broad and strong peak located
at 0.8 V, obviously different from the later cycles, which
can be attributed to the multi-step conversion of CGO to
produce Cu, Ge, Na,O,, Na;Ge,O,,, and irreversible

decomposition of electrolyte to form SEI layer [17, 28].
This peak separated into two peaks and transferred to at
about 0.6 and 0.75 V in the subsequent cycles, which
could be assigned to the decrease of irreversible reaction
and the stabilization of as-formed SEI layer. Similar phe-
nomena were reported for the ternary anode materials
[29]. The reduction peak at the voltage of around 0.01 V
is ascribed to the alloying of Na,Ge, and the oxidation
peak at about 0.2 V corresponds to the reversible
de-alloying of Na,Ge [30]. The anodic peak loaded at
1.5 V represented the further oxidation of discharge prod-
ucts. Phase changes of CGO electrode were investigated
to further explore sodium storage mechanism, and the ex
situ XRD measurement was performed on the first dis-
charged and charged products. Figure 4a shows the XRD
patterns of CGO electrode discharged at 0.05 V, all the
peaks of CGO disappeared completely, and some new
peaks of Cu, Ge,Na, Na,O,, NaO3, and Na,Ge,O,, (such
as Nay,GeO,4, Na,Ge,Os, NagGe,O,) appeared, indicating
that CGO reacted with Na during the discharge process.

;'(\h o\ - - 4%

Fig. 2 a, b SEM and ¢, d TEM images of the CGO nanowires
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Fig. 3 a The initial three CV curves of CGO nanowires at a scanning rate of 0.2 mV s~ '. b The initial three charge/discharge curves and ¢ cycling
performance of the CGO nanowires at a current density of 50 mA g~ . Inset in ¢ is the cycling performance of the elemental Ge at a current
density of 50 mA g'. d Rate capability of CGO nanowires at different current densities (from 50 to 500 mA g™ ")
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Fig. 4 Ex situ XRD patterns of the CGO electrode when a discharged to 0.05 V and b charged to 2.0 V. ¢ SAED pattern of the CGO samples. SAED
patterns of the CGO electrode when d discharged to 0.05 V and e charged to 2.0 V
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CGO, indicating that the recovered CGO is of poor crys-
tallinity or amorphous. This result was confirmed by the
SAED patterns of pristine CGO and discharged and
charged products (Fig. 4c, d). Interestingly, these poor
crystallinity or amorphous products are beneficial for sub-
sequent solid state diffusion of Na* [12]. Based on the
above results and discussion, we propose that the sodium
storage process of CGO is attributed to the combination
of conversion and alloy reaction such as:

CuGeO3 + Na"—Cu + Ge + Na, O, + NayGe;O,,
Ge + Na™—Na,Ge

The integrated areas of the second and third CV curves
are almost the same, indicative of good reversibility after
initial cycle.

The electrochemical performances were further inves-
tigated via galvanostatic charge/discharge cycling mea-
surements under the same voltage range. The cycling
performance of elemental Ge anode materials at a
current density of 50 mA g™ is inset in Fig. 3c, the ini-
tial charge/discharge capacity was 27.1/60.1 mAh g™
(CE of 45.09%), which is significantly lower than that of
the theoretical value. Moreover, the retained capacity
was only 15 mAh g™* after 30 cycles. It is reported that
the sluggish sodiation kinetics of Ge is the direct reason
why using amorphous structure materials is successful
in obtaining high specific capacity [14]. Importantly,
CGO were found to form amorphous Ge, which can be
homogeneously distributed in the Cu and Li;O matrix
before the alloy reaction during each discharge process
[20, 31, 32]. Figure 3b shows the initial three charge/dis-
charge curves of CGO nanowires at a current density of
50 mA g'. All the voltage plateaus corresponded well to
the above CV results.

Cycling performance and rate capability are the two
main issues to evaluate the sodium storage characteris-
tics of CGO as an anode material. As depicted in Fig. 3c,
the CGO nanowires delivered an initial charge capacity
of up to 306.7 mAh g™! and an initial CE of 61.74% at a
constant current density of 50 mA g'. The high cap-
acity loss in the initial cycle could be attributed to the
formation of SEI layer on the active material surface and
other irreversible reaction, which is a common feature of
nanostructured anodes [33, 34]. Furthermore, the charge
capacity rapidly decayed to 205 mAh g at 10th cycle
and slowly decreased to 171 mAh g at 60th (only
0.68 mAh g™ capacity loss for per cycle from the 10th
to 60th cycle). This result indicates that using ternary
compounds with nanostructure is a potential effective al-
ternative to improve electrochemical properties of elem-
ental Ge for SIBs. Another important parameter of the
CGO is their rate capability. As shown in Fig. 4b, the
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CGO nanowires manifested the reversible charge capaci-
ties of 261, 212, 164, and 130 mAh g™* at current densities
of 50, 100, 200, and 500 mA g™', respectively. In addition,
as the current density returned to 100 mA g, CGO can
still deliver a high charge capacity of 175 mAh g, It is
worth noting that the capacity decreases very slightly
when the current densities increase from 50 to 500 mA g .
This could be confirmed that ternary Ge-based com-
pounds are a promising anode material for SIBs.

Conclusions

In conclusion, the highly uniform CGO nanowires were pre-
pared through a one-pot hydrothermal method, and their
sodium storage electrochemical properties as anode were
first explored. The as-synthesized CGO nanowires displayed
an outstanding reversible capacity (306.7 mAh g™' for the
first cycle), a high CE (initial CE of 61.74%), a favorable cyc-
lic performance, and a good rate capability. Ternary nano-
structured compounds as anode materials not only fully
utilize the intermediate products to enhance sodiation kinet-
ics, thus providing high capacity, but also as an inert matrix
to improve the cycling stability.
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