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1. Introduction 

The plasmon resonances and other optical properties of elemental noble and alkali metal nanoparticles 

have generated enormous scientific interest.
1-11

 There are numerous applications for plasmon-active 

nanoparticles especially in areas such as biological microscopy, medicine, and sensors.
12-18

 The various 

applications exploit some aspect of the plasmon resonance, which include particle-particle plasmon 

interactions,
19

 the unusual coloring or dichroic effects in isolated particles,
20-21

 light-induced plasmonic 

heating,
22

 light scattering,
23

 or two-photon phenomena.
24

 Hybrid or multifunctional nanoparticles 

constructed from more than one component phase have also been attracting increasing interest due to 

their additional functionalities.
25-30

 In this review we consider specifically the optical properties of solid 

nanoparticles comprised of more than one phase or compound. Alloyed nanoparticles (solid solutions or 

intermetallic compounds of the metallic elements) are also included because these intergrade with the 

two-phase hybrids. The primary focus here is the optical properties related to plasmonic phenomena. 

We exclude nanoparticle hybrids between solid cores and organic ligands, or between solid cores and 

proteins and other large organic molecules, from the scope of the review as, in most cases, the only 

effect the organic substance has on the optical properties is to impart a small bathochromic shift (‘red-

shift’) to the plasmon resonance.  

The term ‘hybrid nanoparticle’ is commonly used to describe a discrete multi-component 

nanoparticle. This particular nomenclature has been in use since at least 1999,
31

 but multi-component 

nanoparticles of various kinds had been studied long before then. For example, the phenomenon of 

magnetic exchange bias was first reported in 1956 for Co@CoO nanoparticles of 10 to 100 nm 

diameter.
32

 In this review, we have concentrated on results published from 2005 onwards but some 

important earlier work is also mentioned in order to provide a historical context. 

There are a number of important reasons why more than one phase, compound or other constituent 

might be gainfully fused to make a composite nanoparticle. For example, the surface chemical 
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properties of a core particle can be modified by coating with a second material to provide improved 

colloidal stability or resistance to oxidation, or additional functionality may also be imparted to a 

nanoparticle by attaching an antibody, for example, to enable biological targeting. Here, however, we 

are most interested in the plasmon resonances of hybrid nanoparticles, so those instances in which an 

interaction between the two components of the hybrid results in an active enhancement or modulation of 

the plasmon resonance are especially relevant. Information on the many other interesting chemical and 

physical properties of conjugates with organic molecules may be found elsewhere.
5,12,14-17

 

 

Figure 1. Examples of hybrid nanoparticles, (a) dielectric@metal core-shell, (b) metal@dielectric 

core-shell, (c) metal@metal core-shell, (d) metal@metal@metal core-shell, (e) metallic nano-triangle 

with overcoat of second metal, (f) heterodimer comprised of dielectric and metal parts, (g) heterodimer 

comprised of two different metal parts, (h) semiconductor crystal with attached metal nanosphere, (i) 

cross-section through alloyed metal nanoparticle showing disordered nature of atomic occupancies, (j) 

cross-section through nanoparticle comprised of an intermetallic compound showing ordered atomic 

occupancy, (k) metal nanorods coated in a thick shell of dielectric, (l) dimer with incoherent crystalline 

interface between the parts, (m) dimer with coherent interface between the parts, (n) nanorods with 

overgrowth of another metal at the rod ends, (o) nanorods with a sparse overgrowth of a second metal, 

(p) segmented nanowires or nanowire comprised of two or more elements, (q) ‘nano-tadpole’.  
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There are many different possible types or morphologies of hybrid nanoparticle, some of which are 

depicted schematically in Figure 1. Here we have chosen to group the possibilities into three groups, 

defined not by shape but rather by how the optical properties of the parts interact. In the first type, 

which will be termed ‘metallic’ hybrids, the entire nanoparticle is comprised of electron-conductive 

materials, but the overall composition contains more than one element. The nanoparticle might be single 

phase, or a composite of two or more phases of differing crystal structure or composition. 

The second type of hybrid nanoparticle is comprised of at least one metallic and one dielectric phase, 

but the only effect of the dielectric phase on the particle’s plasmon response is to red-shift it by 

passively increasing the local refractive index adjacent to the metallic part of the particle. These hybrid 

nanoparticles will be termed ‘passive metallo-dielectric’ hybrids. Of course the dielectric may exert 

other useful functions, such as provide corrosion protection or solvent compatibility to the metallic part, 

or be magnetic or fluorescent. Conversely, this category also includes hybrids where the only purpose of 

the metallic part is to provide corrosion protection or electrical conductivity to the dielectric part. The 

dielectric may be a semi-conductor or insulator, inorganic or organic, but has four defining features 1) it 

is not a metal, 2) it is clearly part of the nanoparticle, 3) it is a solid phase, and 4) its functionality does 

not interact with the plasmon resonance of the metallic part except as discussed above. Most existing 

colloidal nanoparticles fall into this class, if only by virtue of the fact that many are coated with a shell 

of adsorbed molecules.  

The third type to be considered consists of nanoparticles comprised of at least one metallic and one 

dielectric phase, but where the composite particle has some active optical functionality lacking in its 

individual parts. These will be termed ‘active metallo-dielectric’ hybrids. 

 

2. Synthesis of hybrid nanoparticles 

The individual components of a hybrid nanoparticle often possess different surface properties, crystal 
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lattices, redox potentials, crystal morphologies, or surface charge, so the successful combination of 

these materials into a discrete composite hybrid nanoparticle presents some synthetic challenges. Costi 

et al.
25

 described how the processes of nucleation and growth may be used to prepare hybrids, while 

Ferrando et al.
11

 provided a comprehensive overview of the methods available for purely metallic 

particles. Reviews of the methods required to make single or hybrid nanoparticles with a magnetic 

component have also appeared.
29,33

  

The nature of the interface between the two or more parts is an important consideration. Examples of 

epitaxial hetero-structured hybrids as well as particles in which the interface has no lattice 

correspondence or orientation relationship have been observed.
25

 Furthermore, the geometry of the 

hybrid can vary from a simple spherical core-shell, to heterodimers (or ‘dumbbells’), through to 

nanorods, cubes or more complex shapes,  Figure 1. Dielectric-dielectric systems in which a controlled 

transition of interface between coherent (continuous lattice correspondence) to incoherent (no lattice 

correspondence) occurs as the lattice mismatch of the system is increased are also known.
34

 In general, 

however, a low surface energy mismatch between the components is helpful in securing a solid-solid 

hybrid.  

In this section we summarize the synthetic techniques that may be used to prepare hybrid 

nanoparticles with two components, designated Part 1 and Part 2. Note that these synthetic principles 

can be extended to produce more complex, multi-component structures, if desired.  

 

2.1. Deposition-precipitation 

In this strategy, the first component of the nanoparticle (Part 1) is first produced separately by some 

appropriate mechanism, such as nucleation and growth by reduction, or by pH change of a solution, or 

pyrolysis of an appropriate precursor. It is generally useful to produce a particle size distribution that is 

as monodisperse as possible at this point and the reader is referred to existing literature for some 
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reviews of the various methods of synthesis.
4,27,35

 Next, the reaction environment is changed so that a 

second component (Part 2) can precipitate onto the first. Part 2 will often nucleate and grow on Part 1 to 

produce composite nanoparticles because, in general, heterogeneous nucleation is more favorable than 

homogenous nucleation. This is because the availability of an existing surface on which to nucleate a 

nanocrystal lowers the free energy barrier considerably.
36

 The precipitation of Au onto CdSe
25

 or Ag 

onto a Fe2O3 core,
37

 are examples of this method. In some cases irradiation with light can accelerate or 

control the process.
25

 

 

2.2 Synthesis by galvanic replacement 

In this synthetic strategy, a nanoparticle of a moderately active metal, such as Ag or Co, of 

appropriate shape and size is produced and then the reaction environment is changed to introduce a 

solution of a more noble metal, such as Au. The more noble metal precipitates onto, and begins to 

consume the more active core material by galvanic displacement. If the process is allowed to proceed to 

completion, the product could be a hollow, single phase, Part 2 nanoparticle, Figure 2, but the process 

can be halted before completion to produce a hybrid core-shell or alloy nanoparticle. Although the noble 

metal might be expected to precipitate on the outside of the core nanoparticle and work its way inwards 

with time, in some cases a surprising inversion occurs. In the case of Au reacting with InAs 

nanoparticles, the Au diffuses rapidly to the interior of the dielectric nanocrystal to form a well-defined 

core, while the displaced InAs forms a shell of amorphous InAs or, if oxidized, In2O3.
38

 Galvanic 

displacement will often occur during the preparation of hybrid metal-metal nanoparticles from aqueous 

solution but is not always recognized by the corresponding authors.  

There are at least two mechanisms by which a hollow particle could be formed. For example, the 

Kirkendall effect (in which porosity is generated when the rate of solid state diffusion of one of the 

elements is faster than that of the others) can be invoked to explain how an Ag@Au particle can be 

hollowed out in a purely solid state process (because Ag diffuses about twice as fast as Au
39

). 
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Alternatively, if the Au shell is not continuous and the hybrid particle is in an aqueous environment, 

then a redox-mediated corrosion process, in which the Ag-rich regions are anodic relative to the Au-rich 

regions, can be envisaged. 

 

 

Figure 2. The process of galvanic displacement, Au for Ag, can be used to convert a template to 

alloyed boxes or cages, or even a hollow frame. (Reprinted with permission from ref .
40

 Copyright 2007 

American Chemical Society.) 

 

A conceptually similar process involves making the Part 1 nanoparticle core, and then partially 

reacting it to form a shell of metal,
41

 sulfide
42

 or oxide.
43

 Alternatively, a Part 1 core (e.g., Au) can be 

coated with a sacrificial material (e.g., Ag), which is subsequently completely converted to a third 

phase, such as Ag2Se.
44

 It is also possible to coat the core with some precursor (PdCl2, for example
45

) 

and allow the Part 2 phase to form from that by thermal decomposition. 

 

2.3 Co-precipitation 

The co-precipitation method produces hybrid particles in one-step by simultaneous nucleation and 

growth. Solution conditions are chosen to allow Part 1 and Part 2 to precipitate simultaneously and, 

ideally, the two parts should heterogeneously nucleate on one another to form a composite particle. In 

practice, however, co-precipitation of true hybrids is not readily achieved. In the case of metallic 

components, this is because the redox potential for each reduction reaction is different, so in general the 

more noble element is reduced first followed by the other elements. One way to overcome this is to use 
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a very strong reductant such as borohydride, so that reduction occurs so rapidly that the usual galvanic 

processes do not occur to a significant extent. Even in this case, however, the nanoparticles might still 

precipitate separately
46

 even if simultaneously. Nevertheless, co-precipitation has been used to prepare 

hybrid nanoparticles of Au and Ag,
47-48

 as well as Ag/AgBr
49

 nanoparticles. 

 

2.4 Templated growth  

Nanoparticles of triangular or semi-shell form can be produced in small quantities by physical vapor 

deposition (PVD) onto a suitable template
50

 followed, if necessary, by release,
51

 Figure 3. A hybrid 

particle can be produced by periodically changing the composition of the deposited material (by 

changing sputter targets, for example). Au-ZnO or Au-Al2O3-Au nanoparticle sandwiches have been 

prepared by this means.
52-53

 In the case of templates made of colloidally crystallized spheres, if the 

nanoparticles are to be released the deposition should proceed at an acute angle, so that the equatorial 

girths of the semi-shells do not fuse.
51

  

The use of porous alumina templates to prepare hybrid nanoparticles has also been explored. A 

succession of metals, such as Au followed by Pt for example, can be deposited in the pores of the 

alumina using electrolysis,
54-55

 followed by dissolution of the template to produce free hybrid 

nanocylinders or nanowires.
56-57

 Deposition on or into a template is a flexible approach but has the 

disadvantage that the diameter of rods produced is generally over 50 nm. Particles of this size tend to 

scatter rather than absorb light, which may not be a desired optical property. In one ingenious 

development of the technique, metallic components were deposited onto templates of polymer pillars 

themselves produced by soft lithography, and after some further processing, layers containing hybrid 

metallic nanorings were produced by microtoming.
58
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Figure 3. Physical vapor deposition and nanosphere lithography may be used to prepare nanoscale 

semishells and nano-triangles or nano-bowties. First (a) a template of polymer nanospheres is laid down 

as a colloidal crystal monolayer; this has a hexagonal pattern of holes (b). One or more layers of metal 

and dielectric is deposited (c) to (e). The semi-shells (f) that are released by dissolution of the template 

have tapered walls, (g).
59

 Alternatively, the process can be used to prepare arrays of nanotriangles or 

nano-bowties, (h). (Images C to E and H reprinted with permission from ref
52

. Copyright 2008 

American Chemical Society. Image G reprinted from ref. 
59

 with permission of the Institute of Physics, 

London) 

 

2.5. Other synthetic methods  

Zepto- to atto-mole quantities of hybrid nanoparticles can be produced by electron beam lithography, 

possibly in combination with physical vapor deposition.
60

 Because of the small quantities produced, this 

technique appears to be best suited for the production of fixed arrays or chains of hybrid nanoparticles 

for very precise plasmonic circuitry or lab-on-chip type applications. Electron beam lithography offers 

excellent top-down control but only relatively small quantities of particles are produced. Other methods 

include laser ablation, electrochemical,
61

 arc discharge,
62

 sonochemistry followed by galvanic 
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displacement,
63

 and radiolytic reduction,
64

 (see also references contained within the various reviews 

cited previously
3-5,11,25,27

).  

 

3. Optical Properties of Material Systems  

3.1 Metallic hybrids 

Hybrid metallic nanoparticles are of considerable commercial interest as heterogeneous catalysts. 

Core-shell particles or other hybrids of Pt, Ru, Au, Pd, Co and Cu are amongst the combinations that 

have been investigated with this application in mind.
65-70

 A comprehensive review of metallic hybrid 

nanoparticles in general is available and details of the many synthesis techniques and metallic systems 

of these so-called “nanoalloys” may be found there.11
 The optical properties of metallic alloys and 

intermetallic compounds in general was also recently reviewed.
10

 Here, we specifically consider the 

intersection of these two themes, in particular, studies into the plasmonic optical properties of hybrid 

nanoparticle systems. However, the diversity of possible metal-metal structures, Figure 1, should be 

considered, as structure has a significant effect on optical properties 

Au and Ag are the most frequently mentioned materials in the context of the optical properties of 

metallic hybrid nanoparticles. This is for two reasons.  

The first is that the optical properties of these elements are well suited for sustaining a plasmon 

resonance in the visible region of the spectrum. If the dielectric function, , of the material is written as  

()=1() + i. 2() 

where  is the frequency of the incident light, then a localized plasmon resonance is achieved in small 

nanospheres in vacuum when 1=-2,
71

 which for Au and Ag is in the green and blue parts of the 

spectrum respectively. However, the corresponding values of 2 are also important. It has been shown 

that the quality factor of the resonance in a nanosphere or nanoshell is proportional to -1/2, while that 

of an ellipsoid is better approximated by (1)
2
/2, so the lowest possible values of 2 are desired at the 
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wavelength of plasmon resonance.
72

 The dielectric functions of some of the candidate elements are 

compared in Figure 4.  

The second reason for the popularity of Au and Ag is that these two elements, and particularly Au,
73

 

can be readily formed into nanostructures by chemical, physical and lithographic methods. They are, 

however, certainly not the only possible material choices. Nanoparticles of Cu and Al, and the alkali 

metals, are also capable of sustaining a strong plasmon resonance,
10,74-78

 but are far less studied due to 

their chemical reactivity and hence difficulties in their preparation and application. Most of the other 

elements, however, have somewhat damped plasmon resonances.
10

 

 

Figure 4. Dielectric functions of a variety of metals that can undergo a strong plasmon resonance. 

Two Drude models (dashed lines, green) are superimposed on the data. Potassium and aluminum are 

superior to Au or Cu for nanospheres and plasmonic lenses (which require 1 <-4), because in that 

region they have smaller 2, however, at lower frequencies of light, gold and silver become the better 

choice. This optimization can be realized in nanoshells and nanorods of Au or Ag because their plasmon 

resonances are displaced to lower frequencies and hence more negative values of 1. Reproduced from 

ref.
72

 by permission of the Optical Society of America. 

 

An interesting aspect, which we consider here, is that of the optical properties of hybrid particles 

made of these constituents. In principle, there are three possible outcomes for such hybrids in an optical 
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context: the optical properties of the parts are each still separately identifiable in the hybrid, the optical 

properties of the constituents merge or are averaged or, thirdly, something new happens. Which of these 

occurs also depends on whether the constituents form a solid solution or remain as separate phases and 

on the morphology of the hybrid. If the plasmon resonances of two metallic components merge in a 

hybrid particle then the formation of a single-phase alloyed particle has probably occurred.
11,79-80

 The 

result is general and holds even if some minor tendency towards surface segregation of, for example, the 

less noble element occurs.
11,81

  

Importantly, the behavior of the bulk materials with regard to miscibility or phase stability is a poor 

guide to nanoscale behavior.
82

 For example, Au and Pt are not mutually soluble in the bulk solid state
83

 

but the two may form a random solid solution in bimetallic nanoparticles with sufficiently small radii, 

with <3 nm
84

 or <6 nm
85

 being reported as the threshold for the transition. A similar result holds for Au 

and Fe.
86

 The ordered intermetallic compound Cu3Au does not form in Cu/25 at% Au nanoparticles of 

<5 nm diameter
87

 whereas in the bulk phase this composition would normally be ordered up to 240°C.
83

 

Instead, these small Cu/Au nanoparticles keep the random face centered cubic structure of the high 

temperature phase. The trend towards greater mutual solubility holds also for nanoparticles of In/Sn and 

Bi/Sn
88

 and appears to be a general tendency in bimetallic systems. This result was predicted in 1995 by 

Monte Carlo modeling:
89

 the alloying effect in a nanoparticle of radius r can be readily explained as 

being the result of the interplay of the enthalpy of a de-mixing phase transformation (proportional to 

volume and hence r
3
) and the energy required to create a new surface on de-mixing (proportional to r

2
). 

As r shrinks there can be a size at which the r
2
 term dominates, i.e. there will be insufficient energy for 

de-mixing to overcome surface effects
89

 so the particle stays as a single-phase alloy. The effect is 

usually greater in sub-nanometer particles.
90

 

Other odd behavior seems possible in the intermediate range of nanoparticle sizes. For example 

Cu3Au was reportedly stabilized in nanoparticles of between 20 and 50 nm diameter to temperatures 

two or three hundred degrees Celsius higher than those observed in bulk experiments.
91

 Careful work is 
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required to resolve these issues due to the difficulty in characterizing the structure of such small 

particles. In addition, it has been claimed that some of the “core-shell” samples reported in the past are 

merely mixtures of elemental nanoparticles,
92

 a much more mundane problem! Clearly, this is a 

complex and not entirely resolved field.  

 

3.1.1 Coinage metal hybrids 

The coinage metals (Group 11: Cu, Ag and Au) with a qd
10

-(q+1)s
1
 electronic configuration, where 

q=3, 4 and 5, respectively, all exhibit a face-centered cubic structure as elements. As a result of 

interband transitions, they tend to absorb light in the higher energy region of the visible spectrum 

through to the long-wave UV, with the effect being especially well-developed in Au and Cu and 

accounting for the yellow to reddish colors in bulk form. In the form of isolated nanospheres, they have 

plasmon resonance peaks in typical transparent media at about 550 - 600, 360 - 400, and 520 nm 

corresponding to Cu, Ag and Au, respectively.
93-96

 As hemispherically-capped nanorods of 2:1 aspect 

ratio the longitudinal plasmon peaks should be observed at 620, 500, and 620 nm, respectively.
76

 The 

longitudinal resonance of nanorods is increasingly red-shifted as the aspect ratio is increased but their 

transverse resonance remains at a very similar wavelength as that for isolated nanospheres. There is, 

however, a wide variation of values cited for the resonance of Cu nanospheres, including a report that 

there is no resonance at all in a true sphere due to the strong damping effect of d-band transitions at 

these wavelengths in Cu.
97

  

 

3.1.1.1 Ag/Au 

Scientific studies into hybrid nanoparticles in the Ag-Au system date back several decades. Morriss 

and Collins, for example, prepared colloidal Au@Ag particles in 1964,
98

 but all are preceded by a 

famous technological application: the manufacture of Late-Roman-era dichroic glass, which is colored 

by the plasmon resonance of cuboidal Ag-Au alloy nanoparticles of 50 to 100 nm size.
99

 The Ag/Au 
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hybrid nanoparticles remain of interest because of the strong plasmon resonances of the constituent 

elements and the relatively straightforward nature of the chemistry required for their preparation 

(aqueous chemistry and atmospheric conditions will suffice
47-48

). Here we consider Ag/Au alloyed 

nanospheres as well as core-shell particles,  nanorods, and other less symmetrical shapes comprised of 

these two elements.  

Modern interest in the synthesis of alloy particles of these two elements dates from the 1970s (see 

Papavassiliou
62

 or references in Hostetler,
81

 for example) and there have similarly been many 

investigations of the optical properties of Au@Ag and Ag@Au core-shell particles since the pioneering 

study of Morriss and Collins in 1964.
98,100

 Interest in composite nanorods of Ag and Au, however, is a 

more recent phenomenon, dating from only 2001.
101

 

In the bulk form, Ag and Au are mutually soluble
83

 and in general they will also tend to form a solid 

solution in nanoparticles. This was shown in 1976 for 10 nm particles,
62

 and has been confirmed several 

times.
11,102-104

 The effect of this is that the plasmon resonance peak of the hybrid nanoparticle can be 

smoothly interpolated between that of Ag (~380 nm) and that of Au (~520 nm) by changing the 

stoichiometry,
47-48,80,95,105-108

 Figure 5. However, the resulting dielectric function is not a simple linear 

combination of the ingredients. The non-linear optical (3)
 properties of such particles have also been 

assessed but were apparently not significantly greater than those of elemental nanoparticles.
95,109

 

Interestingly, alloyed shapes other than spheres, such as pentagonal bipyramids
110

, can also be 

synthesized in this system by appropriate control of the synthesis conditions.  
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Figure 5. Effect of composition on the surface plasmon resonance of Ag/Au alloy nanospheres. 

Redrawn from the data of Papavassiliou
62

, Shi et al. 
102

, Mallin and Murphy 
47

 and Peng et al.
104

 The 

peak extinction wavelength of the data shown here is given by λ (nm)  401 + 128.x, where x is the 

atomic fraction of Au in the Au-Ag alloy (note, however, that a non-linear fit has also been suggested in 

the literature
111

). 

The optical properties of the core-shell particles are more complex. The theoretical basis for studies 

into their optical properties was laid by Aden and Kerker in 1951
112

 and the issue here is how the two 

different plasmon resonance frequencies of Ag and Au might interact in the hybrid particle. Au@Ag or 

Ag@Au core-shell particles have been prepared by a variety of methods including electrolysis,
61

 

radiolysis,
105,113-115

 physical deposition,
116

 or photochemical reduction
80,117

 but sequential chemical 

reduction in aqueous or organic solutions is also very popular
98,100,118-123

 (see also references provided in 

Ferrando et al.
11

). As a general observation, the plasmon resonance of the core nanosphere is rapidly 

masked or attenuated by that of the growing shell and, after passing through a regime in which two 

plasmon resonances are present, the shell resonance dominates. The superior plasmon resonance of 

Ag,
75

 however, leads to some asymmetry in this process, and the Au resonance is, relatively speaking, 

more rapidly attenuated or less rapidly developed depending on whether it is in the Au@Ag or the 

Ag@Au geometry respectively, Figure 6. In the case of Au@Ag, the core resonance is blue-shifted until 

the two resonances merge into a single peak at a rather similar wavelength to that which would have 
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been exhibited by a solid particle of Ag.
80,98,120,124

 For Ag@Au, the core resonance is less rapidly 

attenuated, which produced an extinction spectrum of a somewhat flatter nature. However, one 

important difference between these metal-metal hybrids and the dielectric@Au or dielectric@Ag 

nanoshells
125

 is that the strongly red-shifted shell resonances of the latter are generally absent (an 

interesting exception, Au@Ag@Au multi-shelled particles, will be discussed below). In these systems, 

the shell generally dominates the optical properties to the extent that the identity of the core is relatively 

unimportant, as long as it is also metallic and with a similar imaginary part to its dielectric constant to 

that of the shell.
113,121,126

  The implication of this is that the plasmon resonance of spherical metal-metal 

core-shell particles can be tuned between the characteristic nanosphere wavelengths of the core and shell 

materials but not beyond them.  

 

Figure 6. Optical extinction spectra of Au@Ag and Ag@Au core shell particles. (a) The resonance of 

an Ag shell rapidly overwhelms that of an Au core. (b) The resonance of an Ag core is masked by that 

of an Au shell but the effect is not as pronounced as in (a). (Reprinted with permission from ref.
114

 

Copyright 2000 American Chemical Society.) 
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Given the tendency of Au and Ag to alloy, it follows that a hybrid core-shell particle consisting of an 

elemental core and an alloy shell,
121

 or vice versa,
119

 can also be made. Lee and colleagues, for example, 

made Ag@AuAg core-shell particles.
121

 The optical properties of their nanoparticles showed a main 

plasmon resonance assigned to Ag or (Au,Ag) (depending on morphology) and a second, weak 

resonance at about 650 nm. They attributed the latter to Au protrusions nucleating on the surface of the 

Ag seed and discounted the presence of a hollow core as an explanation (this despite their TEM images 

ostensibly showing such hollow structures). Heat treatment of Au/Ag core-shell particles converts them, 

as expected, to alloyed nanospheres.
114,116

 This could explain results like those of Jian et al.
61

 who had 

prepared Au@Ag by electrolysis and found a plasmon resonance in the 445 to 485 nm range, which is at 

somewhat higher energy than the usual resonance found by others for Au@Ag. It is probable that this 

shift in the wavelength of resonance was due to the formation of an alloy rather than to a well-defined 

Ag shell on a gold core. The photoluminescence properties of the hybrid particle were specifically 

examined in this latter work, but pure Ag nanoparticles exhibited the strongest emission and the effect 

was weaker in the hybrid particle.  

Tokonami et al. have recently reported a puzzling phenomenon, in which a Ag shell appears to 

initially alloy into an existing Au nanoparticle with minimal shift in the plasmon resonance wavelength 

of the hybrid and with no separate resonant peak due to Ag observed.
79

 Importantly, however, the 

intensity of the primary Au resonance was initially significantly enhanced by this process, an effect 

reproduced in other recent work,
80

 Figure 7. Tokonami et al. suggested that the Ag segregates to the 

core of the particle, leaving the surface of the now larger particle rich in Au. This would not, on the 

basis of surface energies, have been the expected outcome; since the surface energy of Ag is less than 

that of Au
127

 and some segregation of Ag on the exterior of the particle would be normally expected if 

there is time and sufficient thermal activation for diffusion to occur. Nevertheless, because the plasmon 

resonance of the outer shell in metal-metal core shell particles dominates, this latter scenario would have 
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strongly and immediately blue-shifted the resonance of the Au@Ag particle.  

 

Figure 7. Initial or minor additions of Ag onto an Au core have the effect of strongly enhancing the 

resonance of the Au as indicated by the superimposed arrows. (a) Effect of time on extinction spectrum 

of Au nanospheres suspended in AgClO4 solution,
79

 (b) Effect of mole fraction of Au (indicated by 

arrows) during photo-reduction of HAuCl4/AgNO3 precursor solutions.
80

 (Reprinted  and modified
79-80

 

with permission. Copyright 2009, 2010 American Chemical Society.) 

 

Naturally, multi-shell structures, for example, Au@Ag@Au@Ag can also be formed, and they have 

quite interesting optical properties. For example, whereas Au@Ag is yellow in color, adding another Au 

shell to produce Au@Ag@Au gives a blue colloid,
100

 Figure 8, due evidently to the development of a 

strong plasmon resonance at about 620 nm. The explanation for this new resonance is unclear although 

the discrepancy was attributed to possible deviation from spherical symmetry in the nanoparticles.  
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Figure 8. Color changes in multi-shell Au/Ag colloids.
100

 (a) Color changes as shells are added. The 

basic gold colloid is red, but after overcoating with Ag the plasmon resonance is blue shifted and the 

colloids becomes yellow. A layer of Au, to make Au@Ag@Au, red-shifts the resonance to make a deep 

blue color, while a further layer of Ag, to make Au@Ag@Au@Ag, red-shifts the resonance again to 

give an orange color. (b) Measured extinction spectra corresponding to the four types of sample. (c) 

Simulations of the extinction spectra for the four types of sample. Reproduced by permission of The 

Royal Society of Chemistry, http://dx.doi.org/10.1039/b500556f. 
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The preparation of Ag/Au core-shell or alloy particles is now a mature field but there are still a few 

surprises. For example, Mirkin et al.
128

 studied the effect of prolonged illumination by ordinary 

fluorescent tube lighting on colloidal suspensions of Ag@Au core-shells and Ag/Au alloy nanoparticles 

and found that, for some stoichiometries, the Ag and Au separated. The Ag formed large, pure nano-

triangles and the Au partitioned to sub-5 nm nanospheres. It was believed that the explanation was 

related to the inferior oxidation resistance of the Ag, relative to Au and some additional photochemical 

effect.  

Hollow core-shell nanoparticles with walls comprised of Au-Ag alloy or Au can be prepared by the 

method of galvanic replacement of an Ag core by Au.
129-131

 The product that forms, either a Ag@Au 

core-shell or a hollow Au shell, depends on the nature of the supernatant solution, with stronger 

reducing conditions favoring the core-shell morphology, while an excess of Au favors complete 

dissolution of the Ag to form a hollow particle. However, if the reaction is halted at some intermediate 

stage, a hollow shape comprised of an Au-Ag alloy is formed. If the template particle was an Ag nano-

cube
132

 then the final product may be described as a “nano-cage” since the general usage of the term 

‘nanoshell’ in this field is to imply a particle with complete rotational symmetry. The optical properties 

of this motif are exceedingly tunable, because the aspect ratio, shape and dielectric properties of the 

nano-cages can be systematically varied, Figure 9. Peak plasmon resonances of between 500 and 1200 

nm may be obtained by control of the reaction parameters.
129
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Figure 9. Tunable plasmon resonance of Au nano-cages. The arrow shows the effect of increasing 

additions of HAuCl4. (Reprinted with permission from ref
129

. Copyright 2008 American Chemical 

Society.) 

The widely-used seeded wet chemical process to produce gold nanorods includes the co-addition of a 

small amount of AgNO3 to control the aspect ratio of the rods,
133

 a discovery that follows on from the 

apparently serendipitous observation by Chang et al. in 1999 that, when a silver electrode was used in 

the (quite different) electrolysis process to make Au nanorods,
134

 improved shape control was obtained. 

It is but a small step from there to use a two-stage synthesis technique to overcoat Au nanorods with 

Ag,
101

 
101,135-145

 something apparently first achieved in 2001
101

 and investigated several times 

since.
101,135-145

 Alternatively, Ag can be induced to grow on the ends of the Au rod cores to make a 

segmented hybrid.  

The optical properties of the resulting hybrid nanorods depend on the aspect ratio, shape, and 

distribution of the Ag, and are very tunable. While the longitudinal extinction peak of the underlying 

nanorod core can be extended deep into the near-infrared by control of its aspect ratio,
7
 it is blue-shifted 

when coated with Ag. This is a combined effect due to both a decrease in aspect ratio due to the 

additional material and the introduction of the Ag with its different dielectric properties. The onset of a 

new peak,  at a similar position to that of a nanosphere of Ag, has also been observed.
101,135-137,142,145

 The 

results have been qualitatively reproduced by modeling,
136,142,145-146

 Figure 10. In contrast, selective 

growth of Ag on the ends of the Au nanorods (to make a dumbbell for example) causes a small red shift 
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in the longitudinal resonance, an effect that can be discerned in some experimental data and 

simulations.
144,146-148

 If the Ag shell is not cylindrical and is instead a parallelepiped,
123

 then there will 

be more than one new peak from the Ag shell due to loss of rotational symmetry.  

The inverse geometry, in which Au is deposited onto an Ag nanorod core has been less studied, 

probably because Ag nanorods cores are more difficult to make. In addition, in this case galvanic 

displacement of the Ag nanorod core by Au is a likely outcome, a factor that has been recently exploited 

to make an elongated hollow capsule.
149

 Trimetallic nanorods, with an Au core, and shells of Ag and 

Hg, have also been prepared.
150

 The Hg coating caused a strong blue shift of the longitudinal plasmon 

resonance of the rod. 

 

Figure 10. A typical example showing the effect of an Ag overcoat on the extinction spectrum of Au 

nanorods. As more Ag is deposited, the longitudinal plasmon resonance of the rod blue-shifted and 

intensified, while new peaks due to the Ag appeared at about 350 and 380 nm. (a) experimental results, 

(b) calculated for these particles morphologies. (Reprinted with permission from ref
145

. Copyright 2008 

American Chemical Society.) 
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In general, the measured resonance peaks of the individual hybrid nanoparticles are broadened 

considerably by the addition of an Ag shell, which has been attributed to damping at the Au/Ag 

interface.
136

 However, when considered at an ensemble level, the average line widths of distributions of 

Ag-coated nanorods might actually decrease, Figure 11, an effect investigated by Sönnichsen et al. and 

described by them as ‘plasmonic focusing’.137
 A given thickness of Ag-coating has a greater blue-

shifting effect on the plasmon resonance of longer nanorods than on shorter ones, leading to their 

resonance peaks to ‘bunch’ up in the ensemble as the Ag shell is formed. Finally, there has been some 

interest in the non-linear optical properties of these the hybrid nanorods and the non-linear refractive 

index of  Ag-coated Au core nanorods is reported to be enhanced by a factor of 8.
151

 

 

Figure 11. The blue-shifting effect of an Ag shell is relatively greater for rods of longer aspect ratios 

and so the line width of the ensemble’s longitudinal plasmon resonance peak can be initially decreased 

by addition of Ag. (a) Samples of colloid showing variation in color, (b) TEM images of corresponding 

Au@Ag core-shell nanorods. The Ag content of the samples in (a) and (b) increases from left to right as 

shown. (c) Variation of line width of the ensembles’ plasmon resonances and resonance wavelength, as 

a function of Ag addition. (Reprinted with permission from ref
137

. Copyright 2008 American Chemical 

Society.) 
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It is also possible to overcoat Ag onto core shapes other than spheres or rods. Nano-triangles, 

nanopods or octohedra can be coated with Ag
152-155

 in the same way. For example, Tsuji et al.
122

 

recently overcoated gold icosahedra with Ag and studied the range of morphologies that resulted. The 

resulting samples had extinction spectra with peaks corresponding to both Ag and Au, but these peaks 

were much broader than the peaks of pure nanospheres of the elements would have been. In contrast, 

narrower extinction peaks were obtained for Ag-coated Au nano-triangles and these could be readily 

tuned between 800 and 1300 nm
153

 by control of the Ag content of the solution; more Ag produced a 

blue shift. The blue shift was ascribed to the thickening of the nano-triangles with increased Ag (and 

hence a geometric effect), rather than being due to the differing dielectric properties of the Ag shell,
153

 

but it seems probable that the strong masking effect that metallic overcoats have on any resonance of the 

underlying core should have also played a role. The shape of the overgrown Ag nanocrystal can be 

controlled by use of surfactants or by controlling the reaction conditions. Thus Au nanotriangle cores 

can also be buried in cubes, triangular prisms or other shapes of Ag.
152

  

In summary, the creation of Ag/Au core-shells and composite nanorods particles allows plasmon 

resonances to be tuned across the visible spectrum, ranging from the 380 nm of an Ag nanosphere to the 

near-infrared of Au nanorods and nanotriangles. Control of the degree of alloying vs. chemical 

segregation, aspect ratio, and the location of shell deposition (flanks vs. ends) provides flexibility. The 

significant enhancement of the Au resonance that results from the deposition of very modest Ag shells is 

worthy of further exploration as it is potentially useful in technological applications. 

 

3.1.1.2 Au/Cu 

Au/Cu nanoparticles have been studied intermittently for some years
87,156

 and there has been 

particular interest in theoretical simulations of their cluster geometry and properties.
11

 As for Au/Ag, the 

plasmon resonances of the alloy particles can be interpolated between those of Au and those of Cu by 
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varying the stoichiometry of the particle.
95-96,106,157

 The plasmon resonance of Cu is relatively weak 

however, so the effect of the inclusion of Cu in nanospheres is mainly to attenuate the resonance peak of 

the Au (see, for example refs.
106,158

). The physical metallurgy of the Au-Cu system at temperatures 

below 410°C is relatively complex, with a series of ordered superlattices corresponding to AuCu3, 

AuCu-I, AuCu-II and Au3Cu forming in bulk samples, given sufficient time,
83

 while at temperatures 

above 410°C the two elements form a solid solution at all stoichiometries. Is the lattice of the reported 

Au/Cu nanoparticles ordered or random? Contradictory or ambiguous results have been 

reported
11,87,91,96,106

 but the result is of more than academic interest since the optical properties of the 

ordered and disordered forms diverge strongly in the Drude regime of intraband transitions. For 

example, for the AuCu stoichiometry the values of 1 for the two phases are comparable,
97

 but 2 for the 

disordered phase become significantly larger than that of the ordered phase as wavelength is increased 

beyond 680 nm,
159

 Figure 12. Therefore, it might be expected that the resonance in an anisotropic 

nanoparticle of ordered phase would be stronger and sharper,
97

 with the difference becoming more 

marked as the plasmon resonance is displaced towards longer wavelengths as, for example, by 

increasing the aspect ratio of the nanoparticle. It is also the case that ordered AuCu has a lower DC 

electrical resistivity than the disordered phase,
160

 a factor which is in principle correlated with a 

reduction in intraband damping in Drude metals
97

. 
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Figure 12. Approximate values of the imaginary part (2) of the dielectric permittivity of CuAu 

intermetallic compound compared to that of the equivalent disordered, equiatomic Cu,Au alloy. 

Redrawn from data in ref.
159

 and rescaled here to units of wavelength (minor peaks and spectral features 

in the original data have been smoothed out in this representation). 

 

Core-shell nanoparticles of Au and Cu have also been prepared. Co-impregnation of silica with 

Cu(NO3)2 and HAuCl4 followed by reduction was investigated for catalysis applications
70

 whereas 

colloidal Au@Cu structures have been made by sequential reduction.
156

 Interestingly, it was reported in 

1984 that the Au in Au/Cu particles segregates to the core in reducing conditions and to the surface 

under oxidizing conditions.
161

 In principle, this should give a plasmon resonance wavelength that is 

modulated by the partial pressure of oxygen but the idea seems not to have been explored further. 

Alloyed nanorods of Au and Cu were found to be random solid solutions as-synthesized, but they 

ordered to the AuCu intermetallic phase when heated to 400°C in a TEM.
97

 The line widths of the 

resonances were determined from scattering off individual particles and varied as the stoichiometry of 

the particle was changed with the minimum line width observed for a Au:Cu ratio of 1:1. It was 

suggested that an ordered phase had formed from the heat of the illuminating light source in the 

experiment. This is feasible as Au/Cu alloys order quite rapidly once heated above about 100°C. Earlier 
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work
159

 suggests that 2 is greater for the disordered phase than for the ordered phase (thereby 

suggesting a stronger plasmon resonance for the latter) although the contrary has also been reported.
97

  

It is interesting to note that ordered intermetallic AuCu nanoparticles can be converted to AuCu3 by 

heating at 315°C in a tetraethylene glycol solution of Cu(C2H3O2)2.H2O.
162

 The very high surface to 

volume ratio of the nanoparticles evidently imparts quite high chemical reactivity. This may prove in the 

future to be another strategy to control composition, and hence the wavelength of the plasmon 

resonance.  

There has been some interest in the non-linear optical properties of hybrid Au/Cu nanoparticles, 

however, the best figures-of-merit obtained so far, while promising, still fall short of the requirements of 

all-optical switching devices.
96

  

 

3.1.1.3 Cu-Ag 

At room temperature, bulk Cu and Ag have negligible solubility for one another
83

 (although 

nanoparticles of less than about 270 atoms (~1 nm) would be expected to be alloyed on the basis of the 

surface energy argument and simulations mentioned above
89

). Therefore, Cu and Ag are promising 

materials for constructing core-shell hybrids with diameters in the typical colloidal range (5 to 50 nm for 

metallic particles). However, there are comparatively few studies of this system. An early study of sub-

10 nm nanoparticles prepared by co-impregnation of the Cu and Ag nitrates into a porous silica support 

followed by calcination showed that the Cu tended to migrate to the core and the Ag to the surface.
161

 

Ag and Cu can also be loaded into bulk glass or silica by ion implantation or by ion exchange from a 

molten salt, and it has been claimed that both Ag@Cu and Cu@Ag particles of less than about 10 nm 

can result from these processes, depending on sequence of treatments.
163-164

 The optical properties of the 

Ag@Cu particles in both cases are similar to those of an Ag nanosphere, with only a small shoulder at 

550 nm from the Cu. It was suggested that the shape of the optical absorption spectrum was evidence 

for core-shell particle formation
163-164

 but it could be argued that two separate populations of 
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nanoparticles were formed, or that the Cu shell had partially oxidized. In contrast, Cu@Ag particles 

prepared by Manikandan et al.
163

 exhibited a single, rather broad, resonance at about 440 nm, as 

expected from a damped Cu core plasmon resonance and a strong Ag shell resonance.  

Core-shell particles of the Cu@Ag type have also been prepared by physical vapor deposition
165

 or 

sonochemistry followed by galvanic displacement,
63

 and of the Cu@Ag and Ag@Cu types by reduction 

in ethylene glycol.
166-167

 The polyol technique of Tsuji et al. is quite useful for this system and, besides 

the core-shells mentioned, can also produce alloy particles
168

 and heterodimers,
169

 Figure 13. 

Presumably, however, the alloy particle is metastable and might demix readily if heated.  

 

Figure 13. Three morphologies of Cu/Ag hybrid nanoparticles, prepared by reduction in ethylene 

glycol, with product type controlled by the reaction parameters. Reproduced from refs.
166-167,169

 with 

permission of The Chemical Society of Japan. 

 

In the case of the particles prepared by physical vapor deposition, the structure of the Cu@Ag 

depends on the particle diameter; Cu@Ag core shell particles formed only when the overall diameter 

was <12 nm.
165

 In general it appears that simple two-phase heterostructures are more stable above that 

size.
63,165,170

 The transition in morphology may be due to a mismatch in lattice parameter, such that an 

epitaxial Ag shell is not favored above 12 nm diameter.
165

 Hybrid nanoparticles of about five 

nanometers diameter have also been produced by spark discharge and were found to be two-phase.
171

  

 

3.1.1.4 Cu-Ag-Au 

Three-way hybrids of the coinage metals are also possible. Strictly speaking, the nanoparticles in the 
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famous Roman Lycurgus Cup are Cu-Ag-Au hybrids, with a composition of about 60% Ag, 30% Au 

and 10% Cu.
99

 There are only a few examples of studies into hybrids of these three elements though. 

Chatterjee
91

 prepared Au-Ag-Cu nanoparticles of 20 to 50 nm diameter by simultaneous physical 

deposition of the elements. The resulting hybrid was not single phase and partitioned into one or more 

coherent domains of Ag-rich face-centered cubic phase and ordered AuCu3. Later, Pal et al. reported 

that they had successfully prepared true alloy hybrid nanoparticles of these three elements within a SiO2 

matrix, a conclusion based on the presence of a single plasmon resonance peak at 480 nm and the results 

of electron dispersive spectroscopy analyses
172

. Onion-like core-shell particles, consisting of an Au 

core, and then successive shells of Ag and Cu were reported by Belloni et al.
115

 

 

3.1.2 Hybrids with platinum group metals 

Some early experiences of the optical properties of coinage metal/platinum group metal hybrids were 

summarized by Belloni
173

 and illustrated some important principles. In particular, the plasmon 

resonance of a coinage metal core is very rapidly damped by any platinum group metal shell, which 

somewhat mitigates against use of these structures in optical applications. 

 

3.1.2.1 Au/Pd 

Au@Pd particles have been studied for some decades, primarily as catalysts, with their optical 

properties often utilized as tools for characterization. In the bulk  phase, the two elements are mutually 

soluble at elevated temperatures but will over time form ordered compounds at lower temperatures,
83

 

similar to the behavior of the Cu-Au system. Particles produced by simultaneous reduction of HAuCl4 

and PdCl2 using ethanol as the reductant
174

 were characterized using EXAFS, which indicated an Au 

core with an outer Pd-rich zone on the surface.
174-175

 The plasmon resonance of the Au was attenuated 

and eventually suppressed as the Pd:Au ratio was increased. Later work showed that annealing at 
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temperatures up to 573K homogenized the alloy to produce a random solid solution
175

 but the optical 

properties of this structure were not reported. Clearly, the initial presence of the Au core in this work is 

the result of the more noble nature of Au, which was reduced first, rather than to any thermodynamic 

structural considerations peculiar to this size of nanoparticle and these elements. Curiously, if the 

reduction reactions are conducted sequentially, then quite different outcomes result depending on the 

order. Reduction of Au followed by Pd produced a mixed monometallic population of elemental 

nanoparticles, whereas the reaction of existing Pd nanoparticles with Au ions produced a hybrid dual-

phase nanoparticle in which, apparently, the surface contained a mixture of Au- or Pd-rich
176

 regions. Li 

et al.
45

 produced Au@Pd nanoparticles by thermal decomposition of PdCl2 on existing Au nanoparticle 

cores, and Wong et al.
177

 deposited Pd onto a colloid of Au nanoparticles. In both cases it was found that 

the plasmon resonance of the Au rapidly disappeared. It cannot be determined from this observation 

whether the attenuation of the Au resonance was due to the formation of a Pd shell, or a Au-Pd alloy, as 

both scenarios would have similar effects. Incidentally, alloying with Pd or Ni is commonly used to 

bleach the yellow color of gold to make ‘white gold’ for jewelry178
- a macroscale demonstration of the 

strong effect that alloying has on the electronic structure of Au.  

The precipitation of Pd onto Au nanorod cores has also been demonstrated
135,179

 and as expected, as 

the Pd shell thickened, the longitudinal and transverse resonances of the underlying rod were attenuated, 

Figure 14. Under appropriate conditions, very regular parallopipeds of Pd with a Au nanorod core can 

be synthesized.
179
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Figure 14. Rapid attenuation of the core resonance of a Au@Pd hybrid nanorod with increase in 

thickness of the Pd shell. Curves a to f representing increasing thickness of Pd. (a) measured data, (b) 

simulated effect. (Reprinted with permission from ref.
179

 Copyright 2006 American Chemical Society.) 

 

The whimsically-named ‘tadpole’ nanoparticle consists of a spherical Au ‘head’ and a Pd nanorod 

‘tail’,180
 Figure 15. It was made by galvanic displacement of Pd by Au, which under appropriate 

conditions occurs only on the ends of the Pd nanorods. Later, Ostwald ripening causes one of the two 

Au ends to grow at the expense of the other to produce the ‘tadpole’. In these particles, there is a 

weakly-developed plasmon resonance in the vicinity of 560 nm due to the spherical gold ‘heads’.  
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Figure 15. (a). Au nanospheres can be grown epitaxially on one end of a Pd nanorod to produce a 

shape that has been termed a ‘tadpole’. (b). The composition of each part of the hybrid nanoparticle was 

confirmed by STEM/EDS. (Reprinted with permission from ref.
180

 Copyright 2007 American Chemical 

Society.) 

 

3.1.2.2 Au/Pt 

Au and Pt have limited mutual solubility in the bulk phase
83

 and alloyed nanoparticles of more than 3 

to 6 nm
84-85,171

 are not readily produced.
115

 In the range of sizes that are associated with a well-

developed plasmon resonance (usually 10 to 100 nm) it appears that only Au@Pt or Pt@Au core-shells 
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have been made. If single phase particles are desired, as catalysts for example, then a very energetic 

reduction, such as by application of electron beam radiation, can suppress de-mixing
181

 but the particles 

produced will be only about 2 nm in diameter with no plasmon resonance in the visible or near-visible 

regime.
181

 

Many schemes to produce Au@Pt and Pt@Au core shell particles have been reported since the mid-

1990s.
115

 The overall diameter of such nanoparticles must be bigger than the threshold below which 

alloying occurs. In particular, due to the relatively lower surface energy of Au than Pt, a Pt@Au particle 

would be favored.
85

 An Au shell on a Pt core has a plasmon resonance peak of about 520 nm, if thick 

enough. 
64

 Once again, the shell’s plasmon resonance is similar to that of a solid nanosphere of the same 

composition, rather than the red-shifted resonance expected of a hollow or dielectric-cored Au structure. 

Similar to Au@Pd, the resonance in Au@Pt is attenuated with a reasonably thin shell of Pt.
115,182

 
183-185

 

Evidently, the highly damped plasmon response
76

 of the platinum group metal shields the gold core and 

attenuates its oscillation. An intriguing inversion of the core –shell geometry as a result of high intensity 

laser irradiation has been reported, in which a Au@Pt particle of 20 to 30 nm becomes changed into a 

Pt@Au one.
186

 The reorganization when the particle solidifies after the laser pulse is presumably a result 

of the lower surface energy of the Au relative to the Pt and its lower melting point. 

Damping was also observed when Pt was deposited onto Au nanorods. If, however, the Pt is 

preferentially deposited on the ends of the rod, then the longitudinal resonance red-shifts,
185

 a 

phenomenon also observed for Ag deposition onto the ends of Au nanorods. A small degree of red-

shifting also occurred when a sparse, incomplete coverage of Pt nanospheres
187

 or Ag/Pt nanospheres
188

 

was deposited onto a Au nanorod core. In these cases, the longitudinal plasmon resonance of the rod 

was only relatively modestly attenuated. This is because the Au core in these instances is not covered by 

a continuous later of metal, so its resonance is not suppressed and instead only red shifted by the 

increase in near-field dielectric permittivity. 

FePt@Au particles have also been prepared and have a plasmon resonance at about 540 nm.
189

 As 
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synthesized, the particles were superparamagnetic, but became ferromagnetic after annealing at 400°C 

ostensibly corresponding to a transition of the core from a disordered face centered cubic Fe,Pt solid 

solution to the ordered FePt phase.  

Nanorods or nano-cylinders can be produced by electrodeposition within the pores of an alumina 

template. The process to produce single component nanorods this way dates from 1989,
190

 while the 

idea of varying the electroplating solution to produce a free hybrid nanoparticle seems to have appeared 

in 1999,
54

 in this case to produce an Au-Pt-Au nanocylinder of 200 nm diameter and considerable 

length. Autonomous propulsion of such objects by catalytic decomposition of H2O2 was realized in 

2004,
191

 and has been studied several times since, with some refinements such as the addition of a 

magnetic Ni component to provide another means of external control,
192

 the use of other platinum group 

metals as catalyst,
55

 or asymmetric deposition of the catalyst to give a rotary motion.
193

 However, these 

particles are too large to exhibit localized plasmon resonances and their optical properties are due to 

scattering of the incident light. 

  

3.1.2.3 Ag-platinum group metal 

Simultaneous radiolytic reduction of mixed Ag and Pd salts produced alloyed nanoparticles of Ag and 

Pd, and the plasmon resonance could be tuned between that of Ag (~400 nm) and that of Pd (~200 nm) 

by control of the stoichiometry.
115

 A similar result can be obtained by rapid reduction of a solution of 

mixed precursors with hydrazine.
194

 

Pd@Ag particles have a similar plasmon resonance wavelength (360 to 390 nm depending on shell 

thickness)
195

 to that of solid Ag nanospheres, in accordance with the general principle discussed earlier. 

Although Ag and Pd are mutually soluble at all stoichiometries
83

, this result strongly implies that these 

were true core-shell particles since a stronger blue shift in the peak position away from that of Ag would 

have been expected for alloy particles. However some alloying of Ag and Pd has been reported for 

ostensibly core-shell hybrids.
82
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On the other hand, Ag and Pt have limited mutual solubility
83

 suggesting an intrinsic suitability for 

use in core-shell particles. Lee et al. attempted to prepare Ag@Pt and Pt@Ag nanoparticles by 

deposition-precipitation, but found that only the former could be successfully prepared under their 

conditions, with the reverse order of reactions creating separate populations of Pt and Ag 

nanoparticles.
92

 The surface composition of their Ag@Pt was verified by a process of phase transfer 

from an aqueous phase into toluene, which would apparently occur only if the outer layers were Pt. A 

puzzling aspect of their work, however, was that their  Pt-coated core shell particles retained the 

plasmon resonance of the Ag cores, which is not the behavior expected for a continuous Pt shell. In 

contrast, Bunker et al.
82

 prepared small Pt@Ag particles by radiolysis and observed the expected 

plasmon resonance due to Ag at about 360 nm. 

Kim et al. prepared Ag@Pt nanoparticles by aqueous deposition-precipitation and then converted 

them to hollow Pt shells by a process involving intense laser irradiation at 1064 nm.
196

 The heated Pt 

shells melted and expelled the Ag core. The structures, before and after irradiation, had relatively 

featureless optical absorption, as would be expected from the Pt shell.  

In summary, overcoating a plasmon-active coinage metal with a platinum group metal has the effect 

of destroying the coinage metal’s plasmon resonance, whereas in the converse case, the coinage metal 

coating has the optical properties of a solid coinage metal nanosphere. From the point-of-view of the 

technological exploitation of the optical properties specifically, neither of these outcomes is particularly 

attractive.  

 

3.1.3 Hybrids with magnetic metals 

A number of magnetic hybrid nanoparticle systems have been investigated
197

 but few descriptions of 

their optical properties have been forthcoming. Systems such as Au-CoPt3,
197-198

 Ag@Co,
199

 FePt-

Au,
198,200

 FePt-Ag,
201

 Fe3O4-Au,
201

 and Fe@Au
202

 prepared as core shell particles
199,202

 or as 

heterodimers
197-198,200-201

 would be expected to exhibit the plasmon resonance of their coinage metal 
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component provided that it is not masked by a non-plasmonic shell. In some cases the shell resonance of 

the coinage metal, for example Au in the Fe@Au
202

 particles is a little red-shifted and attenuated 

compared to that expected from a solid Au nanosphere of similar diameter but such trends can be 

explained as the result of surface roughness, a red-shifting factor for nanoshells generally.
203-204

 In this 

respect, noble metal coatings might in some cases behave more like a hollow ensemble of loosely 

connected nanospheres than a true shell.
205-207

 

In these systems, the magnetic properties and the optical properties are independent of one another. 

We will discuss the different and interesting concept of ‘active’ magnetic hybrids in Section 3.3. 

 

3.1.3.1 Au-Ni, Au-Fe and Au-Co 

Au and Ni are almost completely immiscible in the bulk phase and so are good choices for the 

preparation of core-shells or other two-phase hybrid nanoparticles. Due to the lower surface energy of 

Au relative to Ni,
127

 the expected stable structure is Ni@Au, and experimental data support this.
208-209

 

An increased proportion or coverage of Au provides an increasingly stronger plasmon resonance at 

about 520 nm. Ni can be deposited onto Au nanorods, which can then be aligned in an external electric 

field.
210

 Controlled alignment of Au nanorods is an attractive outcome because it could provide a useful 

color change system,
76

 but coating the rods with Ni significantly attenuated the longitudinal plasmon of 

Au nanorods, Figure 16. Retention of the resonance of an Au core should possible in principle, however,   

provided that the thickness of the Ni is strictly limited. For example, Sánchez-Iglesias et al. have shown 

that the plasmon resonance of an Au nanosphere was still evident after it had been overcoated with up to 

8 nm of Ni and NiO.
211
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Figure 16. Overcoating Au nanorods with Pt and Ni results in complete attenuation of the longitudinal 

and transverse plasmon resonances. (a) Experimental data, (b) calculated for similar shapes. Copyright 

Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced from ref.
210

 with permission. 

 

Although the bulk Au-Fe system exhibits similar immiscibility to bulk Au-Ni, alloyed nanoparticles 

of Au and Fe in the 4 to 6 nm size range have been prepared by ion implantation into a SiO2 matrix.
86

 

The plasmon resonance of the alloy is, however, rapidly attenuated by the additions of Fe. 

Au-Ni hybrid nanorods can act as nanoscale rotors when tethered to a substrate by one end.
212

 The 

hybrid particles in this case were produced by electroplating into a porous Al2O3 template of about 200 

nm diameter followed by release. Their movement could be observed in an optical microscope due to 

their scattered light.  

Besides the core-shell and heterodimer morphologies mentioned above, it is also possible, under 

carefully controlled conditions, to precipitate gold nanospheres onto the ends or flanks of Co 
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nanorods.
213

 The site of nucleation of the Au nanospheres on the Co nanorod could be controlled by 

reaction parameters. Electron microscopy revealed that the Au/Co interface of this hybrid was of the 

coherent type, with a (111) plane of Au matching up with  a (002) plane of the Co. 

 

3.1.3.2 Ag-Ni  

Ni and Ag are also expected to form core-shell particles of the Ni@Ag type, because these elements 

are completely immiscible as solid bulk materials, and because the surface energy of Ag is only about 

half that of Ni.
11

 A similar tendency holds for Co and Ag. A study in which 2 to 5 nm particles 

containing these elements were prepared within a Al2O3 matrix found that the optical properties of both 

Ni@Ag and Co@Ag were dominated by the plasmon resonance of an Ag shell, which occurred, 

depending on thickness, between about 410 and about 450 nm, 
208

 suggesting that core-shell particles 

had formed. In contrast, Ag/Ni nanoparticles of about 8 nm diameter prepared by others were found to 

be homogenously alloyed.
214

 Evidently, the method of synthesis and thermal history of these types of 

particles has a large effect on their structure. 

 

3.1.4 Other metallic hybrids 

3.1.4.1 Intermetallic compounds of the alkali metals 

Blaber et al.
10,215

 assessed a range of other intermetallic compounds and identified the coinage metal 

CsCl (B2) structured intermetallic compounds with the alkali metals, such as AuK, as candidates for 

plasmonic applications. Little experimental work has been performed to date on these systems,
216

 and 

the physical properties of AuK are somewhat uncertain.
217

 Hybrid nanoparticles in the sub-nanometer 

size range of Na or Cs with Au, Cu or Ag have been prepared by a gas phase process but the optical 

properties have not been reported. Au2Na has been reported to have a bright brassy color in the bulk 

form
218

 and so investigations into the optical properties of nanoparticles of this material may be 

warranted.  
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3.1.4.2 Other intermetallic nanoparticles 

There are other intermetallic compounds of coinage metals that are quite strongly colored, suggesting 

interesting dielectric functions in the visible range. The compound AuAl2, for example, is purple in the 

bulk phase. Due to the peculiar variation of its dielectric properties with wavelength, it has been 

predicted that nanoparticles would show dual broad plasmon resonances at both 480 and 600 nm, Figure 

17.
219

 AuAl2 may be challenging to prepare in nanoparticle form by chemical methods (due to the 

reactivity of the Al) but it is interesting to note that the isostructural AuIn2, which has a blue color
220

, 

has been prepared in nanoparticle form by physical vapor deposition.
221

 PtAl2 has the same crystal 

structure as AuAl2 and AuIn2 but is bright yellow.
222

 

 

Figure 17. Some calculations suggest that nanospheres of AuAl2 should display two, overlapping, 

plasmon resonances b and c. The simulation is for 20 nm diameter particles, with the resonance of a 

similarly sized Au nanosphere shown for comparison as a. Inset. Thin films of the intermetallic 

compound AuAl2 have a purple color in reflection and a green color in transmission. Redrawn from 

Supansomboon
219

 and reproduced with permission of Gold Bulletin.  

Cu-Zn nanoparticles (“nanobrass”) of various stoichiometries and in the 5 to 10 nm size range have 

been prepared and their plasmon resonances are red-shifted and rapidly attenuated from that of Cu as the 

proportion of Zn is increased. Surprisingly, these particles consisted of more than one phase (there are 
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several possibilities in the Cu-Zn binary phase diagram) despite their small size.
223

 In general, the core 

seems enriched in Cu in these structures.
11

 AuZn would be another prospective basis for a plasmon 

resonance in the visible range of the spectrum.
10

 

In addition to the various systems already mentioned, Ag@Cd,
224

 Ag@Pb,
105

 Au@Sn,
225

and even 

Au@Pb@Cd
226

 may be added. More recently, Fe@Au, Fe@Pt, Fe@Pd have also been synthesized, but 

the optical properties were unremarkable, with only the slightest of plasmon resonance peaks evident for 

the Au-coated samples.
227

 Se@Au and Se@Ag have been synthesized,
228

 and the optical absorption 

spectra of both are dominated by the shell, and similar to a solid nanosphere of the shell composition. A 

novel approach to the synthesis of a metal-dielectric hybrid was to prepare bimetallic AuCd 

nanoparticles first, and then react them at 250°C with a solution containing Se to finally produce 

Au@CdSe core-shells.
229

 The plasmon resonance of the core was retained in the hybrid, albeit red 

shifted by about 10 to 15 nm, since the CdSe is non-metallic and does not screen the core. A similar 

effect holds when coating an Au core with SnO2 (rather than Sn).
230

 

Hybrids of the coinage metals and some other non-magnetic, non-platinum group element might be 

useful for several reasons. A core of an active metal such as Co can serve as a sacrificial template to 

prepare hollow gold nanoshells, and although the amount of red-shifting (the main technological 

motivation for doing this) initially obtained was initially relatively modest,
231

 further refinements to the 

process have demonstrated hollow gold nanoshells with strong plasmon resonance peaks that can be 

tuned from 520 to 850 nm.
232

 Alternatively, hybrid nanoparticle semi-shells of concentric layers of Au, 

Al and Au have been prepared by physical vapor deposition onto a nanosphere template, and dissolution 

of the Al in an alkali produces a ‘nanobell’, in principle with an ostensibly detached core.
233

 Similarly, 

dissolution of Fe3O4 in Au/Si/Fe3O4 hybrids has been shown to produce ‘nanorattles’, consisting of a 

hollow silica shell containing a small number of Au nanospheres
234

.  

The general principle that the optical properties of the hybrid closely resemble those of the shell 

material also holds for these examples.
226
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3.2 Passive metallo-dielectric hybrids 

This section discusses hybrid metallo-dielectric nanoparticles in which the two or more components 

have independent functionalities that do not interact significantly, at least in so far as the optical 

properties are concerned.  

There are many reports of coinage metal / semi-conductor hybrids in the category of ‘passive’ 

metallic-dielectric hybrids. CdS/Au, PbS/Au and PbS/Ag, Fe3O4/Ni and Fe3O4-/Pt, Au/MnO and 

Au/Fe3O4 are but a few of the many possibilities that have been reported.
25,235-238

 Core-shells, 

heterodimers, and even more complex shapes have been prepared. A general review of passive hybrid 

nanoparticles made by the precipitation of noble metals onto diverse semi-conductors, and vice versa, 

was recently provided by Costi et al.,
25

 while Zeng et al.
29

 have recently reviewed passive hybrid 

nanoparticles in which one component is a magnetic material. 

In the case of coinage metal@dielectric hybrids, or coinage metal/dielectric heterodimers, the net 

effect on optical properties is often simply additive, with some red-shifting of the plasmon resonance 

due to a localized increase in the surrounding refractive index,
25,29,31,44,230,239-243

 Figure 18. However, 

red-shifting of the plasmon resonance obtained in this manner is generally less dramatic than the far 

more potent red-shift achievable by increasing the aspect ratio of the underlying coinage metal ellipsoid, 

nanorod or nanoshell.  

In contrast, the dielectric@coinage metal geometry should, as described earlier, have the optical 

properties of a true metal shell for the most part, modified somewhat by the refractive index of the 

core.
205

 In this case, the resonance of the metal shell can be red-shifted significantly by reduction of its 

thickness,
125

 which provides a versatile platform for a variety of budding technological applications.
244-

249
 Alternatively, in the specific case of an Au shell, the resonance can be tuned to higher energies by 

overcoating with Ag.
250

 A magnetic core can provide other useful features, such as the capability to 

move particles around by an external magnetic field.
251
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Figure 18. Red shift of underlying Au nanosphere due to increasing thickness of an Fe3O4 shell due to 

effect of local dielectric environment on the Au plasmon resonance. (Reprinted with permission from 

ref.
240

 Copyright 2006 American Chemical Society.)  

 

An optically-related reason for coating noble metal nanoparticles with dielectric material is to prevent 

aggregation of the particles and hence collapse of their single-particle plasmon resonances. On the other 

hand, controlled aggregation, using a defined thickness of dielectric coating, may be useful at times as a 

means of developing a controlled interparticle plasmon resonance. This has considerable utility, since if 

Au or Ag nanoparticles, for example, are deliberately closely spaced (with an interparticle distance 

between about 1 nm and one particle diameter), there will be additional dipole-dipole plasmon 

resonances between adjacent particles which are strongly red-shifted relative to the single particle 

resonance. 
19,78

 The effect can be exploited to make sensitive colorimetric biosensors to detect lead ions, 

cocaine, DNA or pregnancy,
252-255

 to name only a few of the possibilities. Coatings comprised of closely 

packed Au or Au@SiO2 particles, for example, exhibit a range of interesting and tunable optical 

properties due to this effect.
256-257

  

In addition to spherical geometries, Au, for example, can be nucleated onto the tips of nanorods of 

CdSe and CdS, with the process ostensibly exploiting both the greater reactivity of the strongly curved 

tips of the dielectric nanorods and the more sparse coverage of protective ligands on the tips of the 
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dielectric nanorods compared to their flanks.
25

 The resultant particles have been described as ‘nano-

dumbbells’. Precipitating Au onto a spindle-shaped Fe2O3 core, possibly with the assistance of an 

intermediate layer of SiO2,
37

 produces the ‘nano-rice’ particle, Figure 19.258
 This has very tunable 

plasmon resonances because of the ability to independently modify the shape of the spindle core, and 

the identity, thickness, and morphology of the coinage metal deposited
258

 and can be achieved with Ag 

too.
37

 In principle, relaxation of the ellipsoidal core geometry (a=bc, where a, b and c are the 

dimensions of the core) to produce a scalene ellipsoid (abc) coated with Ag should produce the 

ultimate nanoparticle from the point-of-view of tunability through the visible spectrum.
259

 The three 

dimensions plus aspect ratio, alloy composition and refractive index of the core, would provide six 

degrees of freedom by which to tune the resonances across the visible and near-visible spectrum. 

 

Figure 19. (a) The ‘nanorice’ hybrid consists of a spindle-shaped dielectric core onto which Au or Ag 

is deposited. (b) to (e) shows examples of nanorice in various stages of deposition (Reprinted with 

permission from ref.
258

 Copyright 2007 American Chemical Society.). The process of overcoating can 

be terminated at any stage to produce a partially coated particle, such as these (f) Fe2O3@SiO2@Ag and 

(g) Fe2O3@SiO2@Au particles, if desired. (Reprinted with permission from ref.
37

 Copyright 2007 

American Chemical Society.). 

 

In another kind of hybrid, thin films of chalcogenide compounds can be formed on noble metal cores, 

or vice versa, to produce a variety of core-shell nanoparticles. For example, the first synthesis of gold 
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nanoshells was prepared from Au2S nanoparticles by partial in situ reduction to form an Au shell,
41,260

 

and there have been several other descriptions of methods to coat noble metal nanoparticle cores with 

chalcogenide layers such as Au2S, Ag2S or Ag2Se.
44,261

 

There are other reasons for producing ‘passive’ metal-dielectric hybrids with some optical 

functionality. The combination of a noble metal nanoparticle and a fluorescent dielectric produces a 

staining agent for microscopy of biological samples in which the noble metal has the electron density 

needed for contrast in the electron microscope while an attached fluorescent material provides a signal 

for optical microscopy.
241

 Fluorescent material (e.g., a CdSe quantum dot) can be attached to or 

deposited onto a magnetic core to produce a light emitting nanoparticle that can be moved around in 

biological tissue using an external magnetic field while being observed in a confocal optical 

microscope.
251

 Heterodimers of Au and Fe3O4 can be synthesized for simultaneous optical (due to 

scattered light from the plasmon resonance of the Au) and magnetic imaging.
242

 Controlled aggregation 

of a hybrid particle comprised of a gold or silver part and a magnetic part can be interrogated in at least 

three ways: by measuring the shift in the plasmon resonance peak of the coinage metal, or the change in 

the magnetic signal of the magnetic component, or the increase in dynamic light scattering caused by 

the aggregated particles.
235

 In principle, the multiplicity of available modes of detection should increase 

the sensitivity of a sensor or diagnostic stain that uses such hybrids. 

 

3.3 Active metallo-dielectric hybrids 

 

3.3.1 Modulation of plasmon resonance by metal-insulator transitions 

The wavelength and intensity of the plasmon resonance in a nanoparticle is strongly affected by the 

refractive index in its immediate vicinity. There are a few compounds, such as VO2, WO3, SmS or NiS 

for example,
262-263

 that can undergo metal-insulator transitions (and hence transitions in their optical 

properties) as a function of temperature, composition, redox potential, or pressure. A hybrid 
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nanoparticle containing one of these compounds will therefore have a component with a variable 

refractive index. In particular, VO2 has been investigated for temperature-switchable optical devices. 

This compound has two forms, a semi-conducting, monoclinic form (‘VO2-M1’), which is stable at 

temperatures below about 67°C, and a metallic, tetragonal structure (‘VO2-R’), stable above that 

temperature. The displacive transformation between the two is reversible and attended by large changes 

in electrical conductivity and optical properties.
263-265

 The idea of combining VO2 with Au to make an 

active composite nanomaterial with switchable optical properties appears in 1999
266

 and the idea of 

making discrete VO2@Au or VO2@Ag hybrid nanoparticles emerged a few years later.
267

 One attribute 

of such a particle is that, at certain wavelengths, its optical cross-section drops when heated through the 

phase transition. This could provide a type of optical limiting effect and possibly even provide 

temperature control in the nanoparticle, an idea behind the so-called ‘regulatron’ smart particle,
262

 

Figure 20. Unfortunately, no simple chemical process to prepare these hybrids as discrete nanoparticles 

has been developed yet, although the effect has been experimentally verified for arrays of Ag or Au 

nanoparticles on or in a thin film of VO2.
268-269
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Figure 20. Simulations show that hybrid particles of Au and VO2 should undergo large changes in 

optical extinction as a function of the metal to insulator transition in VO2. (a) Au@VO2, (b) VO2@Au, 

(c) conceptual hybrid nanorods in which VO2 has been coated onto the ends of an Au nanorods core. 

Reprinted with permission from ref.
262

 Copyright 2007 American Physical Society.) 

 

3.3.2 Magnetic hybrids 

We consider here particles in which the magnetic component is used to modulate the optical 



 

47 

properties through an interaction with the localized electromagnetic field of the plasmon. Such 

interactions, as in the magneto-optical Kerr and Faraday effects which rotate the plane of polarization of 

light, have been known in thin films for some time.
270

 Rather different geometries are offered by 

discrete nanoparticles and studies of these effects are more recent. An ‘active’ metal-magnet hybrid 

nanoparticle was reported by Li et al. in 2005.
271

 In this case Ag-CoFe2O4 dimers were formed in 

colloidal suspension and an enhanced degree of Faraday rotation was observed at some wavelengths 

indicating that an interaction between the localised surface plasmon of the Ag part and the magnetic 

material had occurred. Armelles et al.
272

 produced Au, Co, Au sandwiches on a substrate of glass by a 

combination of nanosphere lithography and physical vapor deposition. The plasmon resonance of the 

gold was somewhat red-shifted, attenuated and broadened in the hybrid but the most interesting point 

was that an enhancement of the magnetic-optical effect was observed and ascribed to the effect of the 

localized plasmon in the gold part. Du et al.
273

 subsequently obtained a similar effect in hybrid 

nanoparticles comprised of two Au nanodisks at either end of a multilayer Co/Pt stack while Jain et 

al.
274

 have shown that the enhanced magneto-optical activity is possible with Fe2O3@Au nanoparticles. 

The effect is emphasized only at certain wavelengths however, Figure 21. In general, increased rotation 

of the plane of polarization in these examples required spectral overlap of the magneto-optical transition 

and a sharp plasmon resonance. There are yet further possibilities for these plasmon-magnetic hybrids 

with, for example, second harmonic generation recently reported by Murzina et al.
275

 for an Au-Co-Au 

sandwich particle while Temnov et al. 
276

  have recently shown how the propagation of surface plasmon 

polaritons can be controlled by subjecting a Co layer inserted into an Au waveguide to a magnetic field. 

This relatively young field of research appears to have much more to offer. 



 

48 

 

Figure 21. Magneto-optical interaction in hybrid nanoparticles consisting of magnetic material and 

coinage metal. (a) The Faraday rotation in Ag/CoFe2O4 dimers is enhanced for wavelengths >500 nm, 

relative to the effect in single nanoparticles. (Reprinted with permission from ref. 
271

 Copyright 2005 

American Chemical Society.) (b) Some enhancement in Faraday rotation is found in Fe2O3@Au 

nanoparticles for wavelengths >500 nm, relative to a mixture of the individual nanoparticles. (Reprinted 

with permission from ref. 
271

 Copyright 2009 American Chemical Society.) 

 

3.3.3 Active hybrids with a fluorescent component 

Hybrid particles or nanostructures comprised of a plasmonically resonant part and a fluorescent part 

were mentioned in Section 3.2 in respect of passive, independent, functionalities. However, the presence 

of the metal part can have a pronounced effect on the light emission from the fluorescent component, 

generally attenuating or quenching it
25,240,277-279

 but occasionally enhancing it.
280-282

 The interaction is 

relatively complex and interesting. A plasmon resonance on the metallic component will have the effect 

of considerably enhancing the electric field strength around the nanoparticle. This can, in principle, lead 
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to enhanced emission from fluorescent molecules or quantum dots located within the region of enhanced 

field, provided of course that the frequency of the enhanced electric field corresponds with the 

excitation frequency of the fluorescent substance. However, if the light emitting structure is too close to 

the metal portion, its excited state may be quenched by transfer of an electron to the metal, which causes 

the hole to decay non-radiatively in the semi-conductor portion. Which of the effects (enhancement or 

extinction) will occur depends acutely on the distance between the two components, the temperature, the 

spatial extent of the electric field and other factors.
281

 It has been proposed that the interplay of these 

phenomena could be used as the basis of a sensor.
281

  

Photoluminescence of a semiconductor generally shows two peaks, a band edge emission and an 

emission in the mid-visible regime from surface state defects. Depending on application, it may be 

desired to enhance or suppress the latter. Recently Dimir et al. showed how the surface state emission of 

a CdS semiconductor nanocrystal could be enhanced twelvefold relative to the band edge emission by 

deposition onto a layer of Ag nanoparticles. The enhancement mechanism involves coupling between 

the plasmons in the Ag and the surface state emissions of the CdS.
280

 This is a highly desirable effect if 

efficient white light emission is desired. While this is not a true hybrid nanoparticle system as defined 

earlier, it illustrates that some intriguing effects remain to be explored.  

When the energy of an exciton is close to that of a plasmon, then a coherent transfer of energy 

between the two can occur.
281

 The resulting state has been termed a ‘mixed polariton’283
 and interactions 

of this type have been reported for various geometric configurations of metal and fluorescent 

material
281,283-284

 and are an example of a type of metal-enhanced fluorescence. In general these are non-

linear phenomena.
25,285

  

Metal-enhanced fluorescence due to amplification of the local electric field is generally absent when 

the fluorescent material is too close to a metal surface
278,286-288

 and is optimized when the fluorophore is 

at some intermediate distance of a few tens of nanometers from the surface.
289-290

 The insertion of 

‘spacer’ layers of polymer or some other dielectric such as SiO2 between fluorophore and metal is useful 
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to maintain an optimum separation distance.
277,291-293

 Under optimum circumstances, several-fold 

enhancements in fluorescence have been demonstrated in nanosphere hybrids by this means, Figure 

22.
281,292

 The use of a more complex plasmonic structure, for example a sandwich or ‘tower’ of two Au 

discs separated by a dielectric and then overcoated with the fluorescent material, has been claimed to 

provide enhancements in fluorescence of over forty-fold due to the development of a spatially extended 

electric field around the hybrid nanostructure.
60

  

 

 

Figure 22. The interaction between metal and fluorescent emitter can lead to quenching or enhancement 

of the fluorescence. a. The distance, d, between emitter and nanoparticle is a key variable. b. 

Simulations showing how fluorescence enhancements of four or five-fold can be achieved in the most 

appropriate geometries. (Reprinted with permission from ref.
281

 Copyright 2006 American Chemical 

Society.).  

The quenching effect is often desirable for applications in photocatalysis. In these cases, long-lived 

separation of the exciton is required so that the hole can provide a site for oxidation and the electron can 

facilitate reduction. It is possible that the negative charge in this case builds up in the metallic portion 

slightly faster than it is consumed by reduction reactions, thereby raising the electron density of the 

metallic region. Since the plasmon resonance frequency of a metal is sensitive to its electron density via 

the dependence of the bulk plasmon wavelength, λp, on the electron density
294

, it follows that the 

plasmon resonance wavelength of the metallic nanoparticle can be modulated to some extent by 

changing its electron density electrochemically,
295

 by depositing a shell of redox-active dielectric onto 
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it
105

 or charging with electrons from a nearby excitons. For example, when Ag@TiO2 nanoparticles are 

used as photocatalysts, the plasmon resonance of the Ag blue shifts, which has been interpreted as 

indicating an increase of electron density in that part of the nanoparticle.
296

  

Although the presence of the metal part can quench or enhance the fluorescent emission, the reverse 

effect, i.e. the exciton exerting an influence on the plasmon, is less well studied. Nevertheless, transfer 

of energy from exciton to plasmon has been reported
291,297

 although in somewhat larger structures than 

the hybrid nanoparticles discussed in this review. For example, when CdS or CdSe quantum dots 

attached to a SiO2 spacer layer lying in turn on the surface of a Ag nanowire of several micrometers 

length were excited, their emitted light coupled to a surface plasmon polariton in the Ag.
291,298

 However, 

we are not aware of a demonstration of the analogous effect with a localized surface plasmon yet. The 

interaction between an emitter and a metal nanoparticle has been analyzed theoretically,
299-300

 and found 

to depend sensitively on the distance between the two. The effect is, however, in general a negative one, 

in the sense that it removes rather than enhances a functionality (light emission). 

Finally, non-linear optical effects have been reported for hybrid nanoparticles of this type. For 

example, Yang et al reported a significant increase in (3)
 for films comprised of Au@CdS core-shell 

particles
301

 and Shaviv et al. found second harmonic emission in Au-CdSe hybrids.
302

  

 

4. Conclusions and Future Outlook 

Hybrid nanoparticles with two or more components provide significant flexibility in design and 

application. In this review we have focussed on hybrid systems that display a plasmon resonance in the 

visible or near-visible regions of the spectrum.  

In the hybrid system which we have denoted as ‘passive’ metallo-dielectric hybrids, the 

functionalities of the parts remain reasonably independent. Hybrids between a coinage metal (Cu, Ag, or 

Au) on the one hand and semi-conductors or magnetic oxides on the other frequently fall into this class. 

The optical properties of these structures may be explained by the properties the individual parts, except 
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for some bathochromic shifting of the plasmon resonance of the metallic component due to the increase 

in local dielectric constant due to the other component.  

Metal-metal hybrids and their closely related alloyed nanoparticles exhibit more complex behaviour. 

The plasmon resonance or resonances of the parts can interact in interesting ways, and can, for example, 

be enhanced, shifted or suppressed. In the case of core-shell particles, the dielectric properties of the 

shell material will dominate above some modest thickness and, in the limit, the result is as if the hybrid 

was comprised throughout of the shell material. This is a fundamentally different result to that obtained 

in dielectric@coinage metal structures which have a strongly red-shifted plasmon resonance. An 

important implication of this is that coating a core material that is capable of undergoing plasmon 

resonance with some other, non-resonant metallic substance, will rapidly destroy any features in the 

optical spectrum that come from the core plasmon resonance.  

Finally, the least understood and possibly most interesting hybrids are those in which the plasmon 

resonant component interacts in a synergistic manner with the other materials of the hybrid. The 

plasmon resonance characteristics can be modulated, for example, by a phase change in the other 

component, or an exciton in a semi-conducting part can be coupled to a plasmon in the metallic part to 

form a mixed state. These particles appear to offer the prospect of unique new functionalities, such as 

temperature control, optical limiting or improved photocatalytic properties. 

The outlook for hybrid and alloy nanoparticles is promising as they offer the prospect of new or 

enhanced functionalities. They especially show potential in health technologies, particularly for 

diagnostic applications, and many of the reports in this field describe quite applied test work. However, 

as we have documented, hybrid particles may also offer the possibility of breakthrough photocatalysis 

technology, or as improved non-linear optical materials. There are a great many permutations possible, 

even if only the metallic elements are considered as ingredients, and of course the possibilities multiply 

hugely when compounds are considered. The availability of this flexibility provides a platform for the 

design of some quite sophisticated hybrids, to the extent that some of the more elaborate possibilities 
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could be quite justifiably described as  individual, functional ‘nano-devices’. Examples mentioned here 

included the ‘regulatron’, the particle with self-adaptive optical extinction, or the various 

multifunctional hybrids that can be manipulated with light or magnetism and which can be induced to 

unload a chemical or thermal payload in response to an external stimulus.  There will surely be other, as 

yet unimagined, functionalities in these hybrid systems, and so there is considerable potential for further 

research, discovery and exploitation. 
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Caption : Schematic illustration of the nucleation and growth of a copper coating on the flanks of a gold 

nanorod core to produce a hybrid nanoparticle. The symbols are the medieval European representations 

for Au and Cu. 
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